USC Viterbi

School of Engineering

Evaluating Posterior Probabilities of Mental Models

Jonathan Y. Ito

David V. Pynadath
Stacy C. Marsella

Schoolyard Scenario

Onlooker

Bully's Thought Process

Information Sciences Institute

Teacher's Mental Model Space

Continuous space of teacher mental models

What Does the Bully Consider?

- Continuous space of mental models is too big!
- Must choose a discrete number of mental models to partition the space

Continuous space of teacher mental models

What Does the Bully Believe?

- Choosing 1 mental model is too coarse

e Use a distribution instead!
- Can't have a distribution over continuous space

Example - Initial Beliefs

- Bully has some initial estimation of teacher's mental models

Information Sciences Institute

Example - Actions and Observations

- Bully takes and observes actions in the world

Bully picks on Victim
Onlooker laughs at
 Victim

USC
Information Sciences Institute

Example: Updating Distribution

- Based on his punishment, bully updates his probability distribution over teacher's mental models

Posterior Probabilities

P(StrictTeacher \mid PunishBully)

Calculating Posterior Probabilities

$$
P(\text { StrictTeacher } \mid \text { PunishBully })=
$$

$P($ StrictTeacher $) \ll($ PunishBully \mid StrictTeacher $)$ $\sum_{i} P\left(\right.$ mendalModel $\left._{i}\right) \times P\left(\right.$ PunishBul $^{2} \mid$ mentalModel $\left._{i}\right)$

Prior Belief

Conditional Probability

Information Sciences Institute

Calculating Conditional Probability

- Conditional probability data not directly available
o However, bully can calculate teacher's expected values for a given action under different mental models

Table of Expected Values

Action	Lax	Fair	Strict
Punish Bully	.5	.75	.75
Punish Class	.4	.6	.5
Punish Observer	.3	.4	.6
Do Nothing	.8	.25	.3

Expected Value to Conditional Probability

Bully observes teacher punishing him

$P($ PunishBully \mid StrictTeacher $)$

Table of Expected Values

Action	Lax	Fair	Strict
Punish Bully	.5	.75	.75
Punish Class	.4	.6	.5
Punish Observer	.3	.4	.6
Do Nothing	.8	.25	.3

Basic Assumption

- Actions with a higher expected value should accordingly have a higher probability of being performed
if
$E($ punishBully, StrictTeacher $)>E($ doNothing, StrictTeacher $)$ then
$P($ punishBully \mid StrictTeacher $)>P($ doNothing \mid StrictTeacher $)$

Method 1: Expected Value Ratio

- Relative expected value is good overall indicator of probability
$P_{\text {ratio }}($ PunishBully \mid StrictTeacher $)=\frac{E(\text { PunishBully }, \text { StrictTeacher })^{\sum_{i} E\left(\text { action }_{i}, \text { StrictTeacher }\right)}}{\text { St }}$
Table of Expected Values

Action	Lax	Fair	Strict
Punish Bully	.5	.75	.75
Punish Class	.4	.6	.5
Punish Observer	.3	.4	.6
Do Nothing	.8	.25	.3

Ranking-Based Methods

- Relative ranking or order is good overall indicator of probability
- Convert Expected Value to Ranking

Table of Expected Values

Action	Lax	Fair	Strict
Punish Bully	.5	.75	.75
Punish Class	.4	.6	.5
Punish Observer	.3	.4	.6
Do Nothing	.8	.25	.3

Table of Rankings

Action	Lax	Fair	Strict
Punish Bully	3	4	4
Punish Class	2	3	2
Punish Observer	1	2	3
Do Nothing	4	1	1

Information Sciences Institute

Linear and Exponential Ranking Methods

$P_{\exp r a n k}($ PunishBully \mid StrictTeacher $)=\frac{e^{\text {Rank (PunishBully,StrictTeacher })}}{\sum_{i} e^{\left.\text {Rank(action } i_{i}, \text { StrictTeacher }\right)}}$
Table of Rankings

Information Sciences Institute

Fair Teacher

\rightarrow Rank \rightarrow Ratio - Exp-Rank

Lax Teacher

\longrightarrow Rank - Ratio - Exp-Rank

No Convergence in Ratio Method

- No additional preference is given for optimal actions

Expected Value Table

$$
P_{\text {ratio }}(\text { Nothing } \mid \text { Lax })=.33 \quad P_{\text {ratio }}(\text { Nothing } \mid \text { Strict })=.33
$$

Information Sciences Institute

Strict Teacher

\longrightarrow Rank - Ratio - Exp-Rank

What's Wrong with Ranking Methods?

- No notion of closeness

Expected Value Table

Action	Lax	Strict	Fair
Do Nothing	.9	.86	.3
Punish Class	.8	.89	.9
Punish Bully	.6	.88	.7
Punish Onlooker	.4	.87	.65

Ranking Table

Action	Lax	Strict	Fair
Do Nothing	4	1	1
Punish Class	3	4	4
Punish Bully	2	3	3
Punish Onlooker	1	2	2

Information Sciences Institute

Discussion of Results

- Ratio method
- Relative EV of action is accurate predictor of probability
- Can converge slowly if EVs of actions are similar within model - no extra weight given to optimal actions
- Ranking methods
- Relative ordering of actions is accurate predictor of probability
- Much quicker convergence
- Loses the notion of 'closeness'
- Possible solution: Normalization across models!

Summary

- Importance of mental models in constraining space
- Maintaining posterior probabilities over mental models
- Methods of calculating conditional probabilities:
- Expected Value Ratio
- Linear and Exponential Ranking methods
- Preliminary experiments
- Identified boundary cases and issues with current methods of conditional probability calculation

Future Directions

- Better methods of calculating conditional probability that deal with issues of 'closeness' and of preference of optimal actions
- More formal characterization of conditional probability calculation methods
- Imperfect memory of observations

Information Sciences Institute

