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Abstract

Research on adjustable autonomy (AA) is critical if we are to
deploy multiagent systems in support of important human ac-
tivities. Through AA, an agent can dynamically vary its level
of autonomy — harnessing human abilities when needed, but
also limiting such interaction. While most previous AA work
has focused on individual agent-human interactions, this pa-
per focuses on agent teams embedded in human organizations
in the context of real-world applications. The need for agent
teamwork and coordination in such environments introduces
novel AA challenges. In particular, transferring control to
human users becomes more difficult, as a lack of human re-
sponse can cause agent team miscoordination, yet not trans-
ferring control causes agents to take enormous risks. Fur-
thermore, despite appropriate individual agent decisions, the
agent teams may reach decisions that are completely unac-
ceptable to the human team.
We address these challenges by pursuing a two-part decision-
theoretic approach. First, to avoid team miscoordination due
to transfer of control decisions, an agent: (i) considers the
cost of potential miscoordination with teammates; (ii) does
not rigidly commit to a transfer of control decision; (iii)
if forced into a risky autonomous action to avoid miscoor-
dination, considers changes in the team’s coordination that
mitigate the risk. Second, to ensure effective team deci-
sions, not only individual agents, but also subteams and teams
can dynamically adjust their own autonomy. We implement
these ideas using Markov Decision Processes, providing a
decision-theoretic basis for reasoning about costs and uncer-
tainty of individual and team actions. This approach is central
to ourdeployedmulti-agent system, calledElectric Elves, that
assists our research group in rescheduling meetings, choosing
presenters, tracking people’s locations and ordering meals.

Introduction
Recent exciting, ambitious applications in agent technology
involve agents acting individually or in teams in support of
critical activities of individual humans or even entire human
organizations, in arenas such as intelligent homes (Lesseret
al. 1999), “routine” organizational coordination (Pynadath
et al. 2000), electronic commerce (Collinset al. 2000), and
long-term space missions (Kortenkampet al. 1999; Dorais
et al. 1998). These new applications have raised interest in
the development of agents withadjustable autonomy, i.e.,
agents that dynamically adjust their own level of autonomy
based on their situation (Call for Papers 1999). An agent
may act with full autonomy, or it may act with reduced or no
autonomy, instead transferring decision-making control to a
person. The agent must decide to transfer such control at
appropriate times, without overly burdening people, while
simultaneously harnessing their possibly superior skillsor
knowledge.

Our research aims at a decision-theoretic approach to ad-
justable autonomy (henceforth AA) in rich environments
with agent teams embedded within large-scale human or-
ganizations. In such environments, not only do individual
agents interact with individual people, but they also coordi-
nate with each other and act jointly in teams. The required
teamwork and coordination give rise to novel AA challenges
that previous work does not address. Whereas most existing
research focuses on the interaction between an individual
agent and an individual person, we focus on two key novel
challenges in AA: theAA coordination challengeand theAA
team-decision challenge.

The AA coordination challengearises in transferring
decision-making control. In AA, the problem of when an
agent should transfer decision-making control to a human
(or vice versa) is already a well-known central problem. In
a team setting, the novel challenge is that an agent must
transfer control while also avoiding miscoordination with
its teammates and while ensuring effective team perfor-
mance. Techniques from previous AA research on transfer-
ring decision-making control fail to address this challenge.
For instance, in one existing method, an agent avoids an au-
tonomous decision if it has high uncertainty about the cor-
rectness of its decision, and it relies on human input in-
stead (Gunderson & Martin 1999). Applying such a tech-
nique in a team setting, an agent may transfer control to a



human to reduce decision-making uncertainty, but if the hu-
man fails to respond, then the agent may be unable to com-
municate with its teammates, resulting in costly miscoor-
dination. On the other hand, while an agent’s autonomous
decision may avoid miscoordination, it may also be erro-
neous and jeopardize the overall team activity. Thus, we ad-
dress theAA coordination challengeby applying decision-
theoretic means to optimally balance possible miscoordina-
tion through inaction against possibly erroneous actions.

The secondAA team-decision challengearises due to the
multiple levels of decision making in teams, i.e., an individ-
ual agent’s decision may typically lead to negotiations and
decisions within a subteam, and inputs from subteams may
lead to decisions at the team level. Since individual human
users interact with only individual agents, there is a key dif-
ficulty in ensuring effective team decisions. Unfortunately,
despite responsible decisions by individual agents, the agent
team’s collective decision may still be highly undesirable.
Thus, AA must consider the impact of an individual deci-
sion at multiple levels of team decision making.

Our research in AA addresses the above challenges in the
context of a real-world, multi-agent system calledElectric
Elves(or E-Elves) (Pynadathet al. 2000), supporting ev-
eryday human collaboration for several months at USC/ISI.
E-Elves assists a group of 12 researchers and one project
assistant in their daily activities and provides a unique, ex-
citing opportunity to test our ideas in a deployed team of
intelligent agents1. To address theAA coordination chal-
lenge, agents in E-Elves explicitly reason about team coor-
dination. In particular, they follow a novel three-step ap-
proach: (i) Before transferring decision-making control,an
agent explicitly weighs the cost of waiting for user input and
any potential team miscoordination against the cost of erro-
neous autonomous action; (ii) If transferring control is the
best option, then an agent does not rigidly commit to this
decision (as is often the case in previous work), but rather
it flexibly reevaluates, sometimes reversing its decision to
ensure team coordination (e.g., if an agent transfers control
to a user, but the user fails to act, then the agent may act
autonomously to avoid team miscoordination); (iii) Unfor-
tunately, while an agent may appropriately regain control
over a decision to avoid miscoordination, it may face sig-
nificant uncertainty or cost over that decision, so rather than
force a risky decision in such situations, an agent may elect
to change its coordination arrangements, postponing or re-
ordering activities, to potentially buy time to lower decision
cost/uncertainty. Since each such coordination decision and
change incurs various costs, agents can look ahead over the
different possible sequences of changes in coordination and
select the one that maximizes team benefits.

With respect to theAA team-decision challenge, two
classes of approaches are possible. One approach is to
ensure perfect individual agent decisions, such that the
(sub)team reaches the desired decision. A second approach
is to simplify the individual agent decision, but to introduce

1E-Elves is a joint project among several research groups at
USC/ISI. In this paper, we describe only the role of our own group
within the overall project

AA at the team level; thus, the agent team may consult a
user team if the collective decision involves significant un-
certainty, cost, etc. E-Elves relies on the second approach,
introducing AA at multiple levels of team decision-making.
A key novelty in AA at team-level decision-making is that
the transfer-of-control reasoning focuses on collective team
features (e.g., majority of team members) rather than spe-
cific individual features.

We have implemented the above decision-theoretic ap-
proach to AA in E-Elves using Markov Decision Processes
(MDPs) (Puterman 1994). MDPs allow explicit represen-
tation of individual and team decision costs, as well as ex-
plicit representation and reasoning about uncertainty of an
agent’s state of knowledge or user responses. MDPs also
provide a mechanism for decision-theoretic planning that al-
lows agents to choose an optimal policy of actions represent-
ing possible coordination changes.

Electric Elves:
A Deployed Multi-Agent System

The past few years have seen a revolution in the field of soft-
ware agents, with agents now proliferating in human orga-
nizations, helping individuals in information gathering,ac-
tivity scheduling, managing email, etc. The Electric Elves
(E-Elves) effort at USC/ISI is now taking the next step: dy-
namic teaming of all such heterogeneous agents, as well as
proxy agents for humans, to serve not just individuals, but
to facilitate the functioning of entire organizations. Theul-
timate goal of our work is to build agent teams that assist
in all organizational activities, enabling organizationsto act
coherently, to robustly attain their mission goals, and to re-
act swiftly to crises. For instance, in an external crisis (e.g.,
a natural disaster) E-Elves agent teams may help an organi-
zation to urgently locate relevant personnel, coordinate their
movement to the crisis site, coordinate the shipping of their
equipment, provide them with the latest information, etc.
The results of this work are potentially relevant to all organi-
zations, including the military, disaster rescue organizations,
corporations, and research institutions.

As a step towards this goal, we have had a team of 15
agents, including 13 proxies (for 13 people) running 24/7
since June 1, 2000, at USC/ISI. Each proxy is called Fri-
day (from Robinson Crusoe’s Friday), and it acts on behalf
of its user in the agent team. Thus, if a user is delayed to a
meeting, then Friday can reschedule that meeting by inform-
ing other Fridays, which, in turn, will inform their users. If
there is an open slot to give a research presentation, Friday
may volunteer or decline the invitation for that slot on behalf
of its user. In addition, Friday can also order its user’s meals
by automatically faxing orders to local restaurants. Friday
also tracks the user’s location and posts this information on
a web page for others to see. Friday communicates with
users using different types of mobile wireless devices, such
as personal digital assistants (Palm VIIs) and WAP-enabled
mobile phones. A Palm VII connected to a Global Position-
ing Service (GPS) device allows Friday to track its user’s
location using wireless transmission. These mobile devices
also enable easy communication between users and their Fri-



day proxies.
Each Friday is based on a teamwork model, called

STEAM (Tambe 1997), that helps it communicate and co-
ordinate with other Fridays. For instance, Friday models
each meeting as a team’s joint intention (Cohen & Levesque
1991). Then, by the rules of STEAM, Friday agents keep
each other informed of the status of this joint intention (e.g.,
a meeting is delayed, cancelled, etc). Furthermore, Friday
uses STEAM’s role relationships (e.g.,AND, OR, androle-
dependency) to model the relationships among team mem-
bers attending a meeting. For instance, the role of the pre-
senter is critical since the roles of the other attendees depend
on its successful fulfillment. Thus, if the presenter cannotat-
tend, the team recognizes a critical role failure, and requires
a role substitution, i.e., the team must recruit a new presenter
so that the meeting can succeed.

The design of the Friday proxy is discussed in detail
elsewhere (Pynadathet al. 2000; Tambeet al. 2000;
Tambe, Pynadath, & Chauvat 2000) (where they are some-
times referred to as TEAMCORE proxies). While the basic
proxy design presented there still pertains, we have made
several significant advances since those initial reports. For
instance, we extended STEAM’s method of allocating roles
to team members. Previously, if there was an important role
that was vacant, an agent with the relevant capability would
obtain it on a first-come-first-served basis (Tambe 1997).
Now, the team instead auctions off the role, allowing it to
consider a more complex combination of factors in choosing
a replacement. Figure 1 shows the auction tool that allows
human users to view auctions in progress and to possibly
intervene in such auctions. As an example, some meetings
have a presenter role. Given a topic of presentation, Fri-
day bids on behalf of its user, indicating whether its user
is capable and willing to give a presentation on that topic
at that time. In the auction shown in progress in Figure 1,
the Friday representing Jay Modi has bid that Jay is capable
of giving the presentation, but is unwilling to do so. Here,
a Friday looks up its user’s capability (with respect to the
presentation topic) in a capability knowledge base and bids
1 or 0 on the capability as appropriate. While Friday makes
this capability decision fully autonomously, it does not doso
for the willingness decision (as we describe in a following
section). In this specific auction, Paul Scerri’s agent has sub-
mitted the highest bid, and the team indeed correctly chose
Paul to be the presenter for the meeting.

AA is of critical importance to Friday agents. Clearly, the
more decisions that Friday makes autonomously, the more
time it save its user. Yet, given the high uncertainty in Fri-
day’s beliefs about its user’s state, it could potentially make
very costly mistakes while acting autonomously. For exam-
ple, it may order an expensive dinner when the user is not
hungry, or volunteer a busy user to give a presentation. Thus,
each Friday must make intelligent decisions about when to
consult its user and when to act autonomously.

The E-Elves domain itself adds to the challenge of AA.
There are significant costs associated with incorrect au-
tonomous decisions, as already discussed. Furthermore, a
Friday agent faces significant uncertainty in its autonomous
decision (e.g., does a user’s absence from the meeting loca-

Figure 1: E-Elves auction tool.

tion at meeting time indicate a delay or does s/he not plan
to attend at all?). In addition to uncertainty and cost, the E-
Elves domain raises the two novel AA challenges mentioned
in the opening section. First, consider theAA coordination
challenge. Suppose that, when faced with uncertainty, a Fri-
day agent consults its user (e.g., to check whether the user
plans to attend a meeting), but the user is unable to respond
for a long time (e.g., s/he is caught in traffic). By waiting
for a response from its user, this Friday may produce misco-
ordination with its teammates (i.e., the other Friday agents),
since its inaction means that it does not inform them whether
the user will attend or not. This, in turn, means that the
other meeting attendees (humans) may end up wasting their
time by waiting. However, if Friday avoids the miscoordina-
tion by taking an autonomous action and this action is erro-
neous (e.g., erroneously informing teammates that the user
will not attend), then the results are potentially disastrous for
the team as well.

The secondAA team-decision challengeis to ensure ef-
fective team-level decisions. In particular, AA in individual
Friday agents may ensure effective individual decisions, but
the resulting team decision may still be highly undesirable.
As a simple example, suppose all individual agents act re-
sponsibly, and, as a result, a team receives a reasonably high
bid on an unallocated role. If not all team members have
submitted bids yet, the team itself faces a difficult choice:
should the team immediately assign the role to the current
highest bidder, or should it wait for the possible submission
of a higher bid? Waiting too long may mean that a user may
not have sufficient time to prepare for their presentation, but
immediate assignment may mean a suboptimal choice of a
presenter.

A Decision-Tree Approach to AA
Our initial attempt at AA in E-Elves was inspired by
CAP (Mitchell et al. 1994), the well-known agent system
for advising a human user on scheduling meetings. As with
CAP, Friday learned user preferences using C4.5 decision-
tree learning (Quinlan 1993), although Friday’s focus was on
rescheduling meetings. In its training mode, Friday recorded
values of a dozen carefully selected attributes, as well as the
user’s preferred action (identified by a query using a dialog



box as shown in Figure 2). Friday used the recorded data and
user responses to learn a decision tree (e.g.,if the user has
a meeting with his/her advisor, but the user is not at ISI at
the meeting time,thendelay the meeting 15 minutes). In ac-
quiring its data, Friday also queried the user if s/he wanted
Friday to make this decision autonomously or not. Friday
again used C4.5 to learn a second decision tree to indicate
whether it should ask for user input or not. The key idea was
to resolve the transfer-of-control decision by learning from
user input.

Figure 2: Dialog for delaying meetings in Electric Elves.

Initial tests based on the above setup were success-
ful (Tambeet al. 2000). However, soon thereafter, one key
problem became apparent: a user would suggest Friday to
not take some specific decision autonomously, but then s/he
would not be available to provide any input. Thus, a Fri-
day would end up waiting for user input and miscoordinate
with its team. To address this problem, timeouts were intro-
duced so that if a user did not respond within a fixed time
limit, Friday acted autonomously according to the rules of
its learned decision tree. In our initial tests, the resultsstill
looked promising. Unfortunately, when we deployed the
system 24/7 in our research group, it led to some dramatic
failures. A few illustrative examples include the following:

1. User Tambe’s Friday incorrectly cancelled a meeting withhis
division’s director. C4.5 had overgeneralized, incorrectly taking
an autonomous action from the initial set of training examples.

2. User Pynadath’s Friday incorrectly cancelled the group’s weekly
research meeting. The time-out forced an incorrect autonomous
action when Pynadath was unavailable to respond in time.

3. One of the Fridays delayed a meeting almost 50 times, each in
5 minute increments. The agent was applying its learned ruleto
cause a small delay each time, but ignoring the nuisance to the
rest of the meeting participants.

4. Tambe’s proxy automatically volunteered him for a presentation,
even though he was not willing. Again, C4.5 had overgeneral-
ized from a few examples and, because of the timeout, taken an
undesirable autonomous action.

From the growing list of failures, it became increasingly
clear that our original approach faced some fundamental
problems. The first problem was clearly theAA coordination
challenge, which required the agent to balance the possibil-
ity of team miscoordination against effective team action.
The fixed timeouts failed to address this challenge, since the

agent sometimes had to take autonomous actions when it
was ill-prepared to do so, causing the problems illustrated
by examples 2 and 4. Second, C4.5 was not considering
the cost to the team due to erroneous autonomous actions,
as seen in example 1 and 2. Third, decision-tree learning
lacked the ability to look ahead and plan actions that work
better over the longer term. For instance, in example 3, each
5-minute delay is appropriate for its corresponding statein
isolation, but the C4.5 rules did not take into account the
consequences of one action on future actions. Such plan-
ning could have preferred a one-hour delay instead of sev-
eral 5-minute delays. Such planning and consideration of
cost could also enable an agent to choose a low-cost action
of delaying a meeting while it double-checks with its user
regarding the higher-cost cancellation action (example 1).
As a final note, this work did not address theteam-decision
challengeat all, given that it first failed to overcome theAA
coordination challenge.

One possible solution to these problems would be to ob-
tain more data, to find a better set of attributes, and to exploit
C4.5’s confidence factors to support some reasoning about
uncertainty. Unfortunately, the E-Elves domain is very rich,
so it would be difficult to gather the amount of training data
required by C4.5, and the agents must still be able to per-
form reasonably in the meantime. The overall point is not
that learning is inapplicable in AA, but rather that the AA
problem has significant complexities in team settings that
complicate domain-independent learning approaches.

Addressing Challenges
in Adjustable Autonomy

To more directly address theAA coordination challenge, we
need a mechanism that would allow us to explicitly repre-
sent and reason with the different types of costs as well as
uncertainty (e.g., costs of miscoordination vs. costs of taking
an erroneous action). Second, it should enable lookahead,
allowing the agent to plan a systematic transfer of decision-
making control and provide an optimal action policy over
the longer term. Third, it should allow us to encode signif-
icant amount of initial domain knowledge in terms of costs
and uncertainty, so that the agent does not have to learn ev-
erything from scratch (as C4.5 required).

MDPs fit the above requirements, and the rest of this
paper describes how we use them in addressing the AA
challenges. Indeed, Friday invokes the MDP-based AA
reasoning for each and every decision that it makes, from
rescheduling meetings, to volunteering a user to give a pre-
sentation, to ordering meals. To lessen the computational
complexity of the reasoning, we rely on partitioning the
MDPs. Thus, each individual agent reasons about each
meeting or presentation separately, using separate MDPs
for each possible decision. Overall, there are four types of
MDPs used. The first subsection discusses the basic repre-
sentation of these MDPs, using thedelay MDPas an illus-
trative example (two other MDPs, thebid-for-role MDPand
the order-meal MDP, are similar). The next subsection il-
lustrates how these MDPs address theAA coordination chal-
lenge. The third subsection discusses theassign-role MDP,



which focuses on theAA team-decision challenge.

MDP Representation
This section describes our MDP representation using the
delay MDP for illustration. The delay MDP represents a
class of MDPs covering all types of meetings for which the
agent may take rescheduling actions. For each meeting, an
agent can perform any of 12 actions. In particular, it can
autonomously perform any of the 10 actions shown in the
dialog of Figure 2. For example, it could ask for a meeting
delay of 15 minutes so that its user is in attendance on time,
or it could announce the user will not attend or report that
the user is in attendance etc. It can also wait and sit idly
without doing anything. Finally, an agent can autonomously
reduce its own autonomy and ask a user (the user can also
directly issue any of the 10 commands from Figure 2).

The agent may choose to perform any of these 12 actions
in various states of the world. The most salient features of
the delay MDP’s state space are the user’s current location,
which helps determine if and possibly when the user will
attend the meeting, and the current time. Figure 3 shows a
portion of this state space, showing just these two features,
as well as the transitions between states possible for some
of the available actions (a transition labeled “delayn” cor-
responds to the action “delay byn minutes”). Each state
also contains a feature representing the number of times the
meeting has previously been delayed and a feature repre-
senting what the agent has told the other attendees about the
user’s attendance (either nothing, that the user is currently
attending, that the user will be late, or that the user will not
be attending). There are a total of 768 possible states (per
each individual meeting).

As shown in the figure, the delay MDP’s reward function
has its maximum value in stateS2 where the user is at the
location of the meeting when the meeting starts. We de-
note the component of the reward function that focuses on a
user’s being at meeting time at the meeting location asruser .
This component gives the agent an incentive to delay meet-
ings when the individual user is unlikely to make it to the
meeting location by the originally scheduled time. However,
in isolation,ruser could drive the agent to choose arbitrarily
large delays, giving the user as much time as possible to ar-
rive before the start of the meeting. However, there is clearly
a high team cost incurred by forcing all of the attendees to
rearrange their schedules. Fortunately, we can easily incor-
porate this team cost into the delay MDP’s reward function
by adding a negative reward,rrepair for delay actions, with
the magnitude of the cost increasing with the magnitude of
the delay. The magnitude is also an increasing function in
the number of attendees (e.g., rescheduling a meeting of a
large group is more costly than rescheduling a one-on-one
meeting).

On the other hand, we do not want the rescheduling cost
to scare the agent intoneverdelaying meetings. In fact, in
addition to the potential benefit to the individual user, explic-
itly delaying a meeting can produce an additional benefit to
the team itself, since, without a delay, the other attendees
may end up wasting their time waiting for the agent’s user
to arrive. Therefore, the delay MDP’s reward function in-

cludes a component,rtime, that is negative in states after the
start of the meeting, but before the user’s arrival. The mag-
nitude of this reward, like that of the team rescheduling cost,
also increases in magnitude with the number of attendees.
The reward function also includes an additional componentrrole, which, likeruser , is positive when the user is in atten-
dance and zero everywhere else. However, the magnitude ofrrole increases with the importance of the user’s role (e.g.,
speaker vs. passive participant) to the success of the meet-
ing, thus representing the value of the user’s attendance to
the team. Finally, the reward function includes a compo-
nent,rmeeting , which is positive once the meeting starts and
zero everywhere else (to deter meeting cancellation). The
overall reward function for a states is a weighted sum of
these components:r(s)=�userruser(s) + �repairrrepair(s) + �timertime(s) +�rolerrole(s) + �meetingrmeeting(s)

Thus, the agent reasons about different tradeoffs in team
costs. This reasoning follows a fundamental tenet of team-
work in our system, that the individual team members act
responsibly towards the team. Nonetheless, Friday’s deci-
sions are on behalf of only its individual user; the team may
or may not concur with them. Thus, even if Friday follows
its reasoning about individual and team costs in requesting
a delay, the team may deliberate on it and may or may not
accept it, as discussed in a following subsection.

For the agent to reason effectively, it must consider the
likelihood over the possible times of the user’s arrival. The
delay MDP’s state transition probabilities represent the like-
lihoods over possible user movement (e.g., from office to
meeting location) in a given interval of time (as illustrated
in Figure 3 by the multiple transitions possible through a
“wait” action). Without any user input, the agent uses prob-
abilities learned over observations of the user’s movements
in the past. In most cases, from stateS1, the transition toS2
(where the user arrives on time) is much more likely than the
one toS3 (where the user arrives late). The thickness of the
arrows in Figure 3 represents the relative likelihood of the
transitions.

The “ask” action, by which the agent gives up autonomy
and queries the user, has two possible outcomes. First, the
user may not respond at all, in which case, the agent is per-
forming the equivalent of a “wait” action. We use a commu-
nication model (Tambeet al. 2000) to provide the probabil-
ity of receiving a user’s response in the amount of time left
before the meeting. We also derive the cost of the “ask” ac-
tion from the cost of interrupting the user, again taken from
the communication model. These probabilities and costs
vary with the mode of interaction. For example, a dialog
box on the user’s workstation is cheaper than sending a page
to the user’s cellular phone. A second possible outcome of
the “ask” action is that the user responds with any one of the
10 responses from Figure 2. Thus, we compute an expected
value of receiving user input by summing over the value
of each possible response, weighted by its likelihood. The
value of each user response is computed using the reward
function mentioned above, but with the assumption that user
response is accurate. For instance, if the user provides an



Figure 3: A small portion of simplified version of the delay MDP, with no response from the user.

input suggesting a 5 minute delay, then the agent knows that
it will incur the cost of the 5-minute delay but will then re-
ceive the highest possible reward when the user arrives at
the (rescheduled) meeting on time. We compute the desired
likelihoods based on using the delay MDP as a (possibly er-
roneous) model for the user’s own decision-making process.

Given the state space, action space, transition probabili-
ties, and reward function of our MDP, we can use standard
techniques like value iteration to compute the expected value
of taking a particular action in a particular state. We can then
use these expected values to generate apolicyspecifying the
proper action for the agent to take in each and every possible
state. We have designed and implemented an algorithm that
computes such a policy as the basis for the agent’s decision-
making on when to give up its autonomy and what action to
take when acting autonomously. One possible policy, gen-
erated for a subclass of possible meetings, specifies “ask”
and then “wait” in stateS1 of Figure 3, which prompts the
agent to give up its autonomy. If the agent then reaches state
S3, the policy again specifies “wait”, so the agent continues
acting without autonomy. However, if the agent then reaches
stateS5, the policy chooses “delay 15”, which the agent then
executes autonomously.

Addressing the AA coordination challenge
The MDP from previous section enables Friday to address
theAA coordination challengeusing the three-step approach
discussed in the opening section: (i) weighing costs of wait-
ing for user input and team miscoordination against cost of
possible erroneous actions; (ii) flexibly transferring auton-
omy rather than rigidly committing to an initial decision;
(iii) electing to change the coordination rather than taking
risky actions in uncertain states. The previous section’s de-
scription of the delay MDP illustrates how the agent follows
the first step in the team-related components of its reward
function and its decision-theoretic approach to trading off
individual preferences and input against the team’s needs.

This section describes how such MDPs support the other two
steps of our AA coordination approach as well.

The second step of our approach requires agents to avoid
rigidly committing to an initial decision about transferring
decision making control. In particular, in typical approaches
to AA, the agent never reconsiders its decision on transfer-
ring decision-making control. In a team context, such rigid-
ity can cause costly miscoordination. That is, if the agent
decides to give up its autonomy for a decision, it cannot wait
indefinitely for the user’s response as that could jeopardize
the overall team activity. Instead, the agent must continu-
ously reassess the developing situation, possibly changing
its previous autonomy decision.

The MDP representation supports this second step in ad-
dressing the AA coordination challenge by providing the
necessary flexibility and responsiveness in its autonomy de-
cisions. The policies generated through value iteration spec-
ify what action is optimal in each and every possible state.
Therefore, the agent can immediately respond to any state
changes by following the policy’s specified action for the
new state. In this respect, the agent’s AA decision-making
is an ongoing process rather than a single decision, as the
agent acts according to its MDP policy throughout the entire
sequence of states it finds itself in.

The third step of our approach arises because an agent
may need to regain control over decision in order to avoid
miscoordination, yet it may face significant uncertainty and
risk in acting autonomously. In such cases, an agent could
carefully plan a change in coordination, looking ahead us-
ing different costs of team miscoordination vs. erroneous
actions. In the meeting scenario, changes in coordination
are essentially delaying actions. Such changes in coordina-
tion could, among other things, buy time to reduce the un-
certainty or cost. The delay MDP is especially suitable for
producing such a plan because it generates policies while
looking ahead at all of the different outcomes.

For instance, the delay MDP supports reasoning about the



fact that the 15-minute delay gives the user more time to re-
spond to a query by the agent and reduce its uncertainty.
Since the MDP explicitly represents the possibility that the
user may not respond in a limited amount of time, the com-
puted policy is sensitive to the possibility that a “delay” fol-
lowed by an “ask” may be a more effective strategy than an
“ask” by itself. Of course, the policy is also sensitive to the
cost of introducing the “delay” action, so it makes the opti-
mal tradeoff in choosing between such alternate strategiesin
each possible state.

Furthermore, the lookahead in the value iteration algo-
rithm enables a more effective long-term solution. For in-
stance, the delay MDP considers a 5-minute delay in terms
of its effect on the future team states, since its reward func-
tion explicitly represents the costs of rescheduling. In addi-
tion, as already mentioned, the MDP state space includes a
feature representing the number of rescheduling actions al-
ready taken, and the cost of rescheduling,rrepair , increases
as more and more such actions occur. This provides a com-
pact summary sufficient for supporting some history depen-
dency in the cost of future states. Thus, even if the user is
very likely to arrive at the meeting in the next 5 minutes, the
uncertainty associated with that particular state transition is
sufficient, when coupled with the cost of subsequent delays
if the user does not arrive, for the delay MDP policy to spec-
ify an initial 15-minute delay (rather than risk three 5-minute
delays). Thus, the agent reasons about the likelihood of pos-
sible subsequent delays.

Addressing the AA Team-Decision Challenge
Once individual team members provide their input to the
team (e.g., suggestions to delay meetings or bids for roles),
the team must make a collective decision based on the input.
As discussed in the opening section, theAA team-decision
challengerequires ensuring effectiveness of such team deci-
sions. In particular, even if individual Fridays act responsi-
bly, the team may still make a highly undesirable collective
decision. One approach, suggested in previous work, is to
improve the decision making at the individual level so as to
avoid such team-level problems (Hartrum & Deloach 1999).
Unfortunately, this would greatly complicate the individual
reasoning, because each agent would need to model and pre-
dict the actions of its teammates. We instead propose a novel
approach, by introducing AA at the team-decision level, en-
abling the agent team to directly tap into the human team’s
expertise and knowledge in difficult decisions. Thus, our
approach introduces AA at all levels of decision-making in
a team hierarchy—at individual, subteam, and team levels.
At each level, we face the same problems already discussed
for the individual AA case (e.g., while consulting the human
team, the agent team must not overburden the users).

In a team context the AA problem is for the team to de-
cide whether to rely on autonomous teamwork reasoning
or to relinquish the decision to the human team. As men-
tioned earlier, our agents rely on the STEAM teamwork
model for their teamwork decisions. The integration of AA
in STEAM’s decisions is beneficial for the following rea-
sons. Clearly, in some cases, STEAM’s teamwork rules may
have inadequate input, and any decision it reaches may have

a reasonable likelihood of an error (e.g., in choosing a pre-
senter in the absence of all bids). Thus, consulting the hu-
man team may be appropriate in such situations. Indeed,
in general, we can regard any team decision that STEAM
reaches as having some (low) likelihood of error. For in-
stance, STEAM’s decision based on given role-relationships
(AND, OR, androle-dependency) may be completely accu-
rate, but there may be potential errors in the original mod-
eling of the role relationships. Furthermore, each such error
has different cost.

Thus, analogous to the AA at the individual level, the
team-based AA needs to reason about uncertainty, cost, and
potential future developments in the world. Hence, we again
chose an MDP as the underlying AA reasoning mechanism.
The states of the team-level MDP are based on abstract team
attributes rather than individual attributes (e.g.,few, half,
many, or mostbids have been submitted for a role). This
MDP once again compares the expected value of consulting
with the human team against the expected value of making
an autonomous decision. Here, the team-level decision to
delay a meeting is of sufficiently low uncertainty and low
cost that it is not worth consulting with the human team;
instead, the team makes this decision. In contrast, the team-
level decision to assign a presenter with onlyhalf the number
of potential bids has sufficiently high uncertainty and cost
that the agent team consults the human team. However, if
the time draws sufficiently close to the the meeting time, the
agent team takes an autonomous action.

Evaluation
We have used the Electric Elves system within our research
group at ISI for the last six months and have used it con-
tinuously (24 hours a day, 7 days a week) since June 1,
2000 (occasionally interrupted for bug fixes and enhance-
ments). There are twelve agent proxies belonging to twelve
users, one agent proxy for a project assistant, one capa-
bility matcher (with proxy), and an interest matcher (with
proxy). As described in an earlier section, the key function-
ality provided by this system is: (i) to monitor and resched-
ule meetings; (ii) to auction off research presentations; (iii)
to order meals; and (iv) to track user locations. Figure 4
plots the number of daily messages exchanged by the prox-
ies for seven months (6/1/2000-12/31/2000). The size of the
daily counts demonstrates the large amount of coordination
actions necessary in managing all of the activities such as
meeting rescheduling, while the high variability illustrates
the dynamic nature of the domain. Weekends usually have
very little activity, with the notable exception of the week-
ends of June 3, the start date of the Agents 2000 conference.

The fact that E-Elves users were (and still are) willing to
use the system over such a long period and in a capacity
so critical to their daily lives is a testament to the effective-
ness of the Fridays’ decision making. We can also make
several more specific observations. First, over the past sev-
eral months, few emails have been exchanged among our
group members indicating to each other that they may get
delayed to meetings. Instead, Friday agents automatically
address such delays. Thus, the overhead of waiting for de-
layed members in meeting rooms has also gone down. Sec-



Figure 4: Number of daily coordination messages exchanged by proxies over three-month period.

ond, whereas, in the past, one of our research group mem-
bers would need to circulate email trying to recruit a presen-
ter for research meetings and making announcements, this
overhead has been almost completely eliminated — weekly
auctions automatically select the presenters at our research
meetings. Third, a web page, where different Friday agents
post their user’s location, enables us to track our group mem-
bers quickly, again, avoiding the overhead of trying to track
them down manually. Fourth, mobile devices keep us in-
formed remotely of changes in our activities, while also en-
abling us to remotely delay meeting, volunteer for presenta-
tions, order meals, etc. Finally, we have begun relying on
our agents to order lunch for us.

The rest of this section presents more details regarding
these general observations. Over the seven-month period,
the proxies monitored a total of 1128 meetings for the 12
users. Overall, 285 of these meetings were rescheduled.
Of these reschedulings, 230 occurred autonomously, so the
agents are acting autonomously in a large number of in-
stances. Equally importantly, humans are intervening in the
significant remainder of the meetings, indicating the critical
importance of adjustable autonomy in Friday agents.

As already mentioned, auctions decided who would give
research group presentations. The system automatically
opened an auction when it received notification of a meet-
ing requiring a presentation. A summary of the results ap-
pears in Table 1 below. Column 1 shows the dates of the
research presentations (over the summer, we cancelled sev-
eral weekly meetings due to conference travel and vacation).
Column 2 shows the total number of bids received before a
decision. The key here is that the system can make auction
decisions without all bids being in. In fact, in one case, the
system received only 4 bids. The rest of the group simply did
not bid until the winner was announced. Column 3 shows
the winning bid. A winner typically bidh1; 1i, indicating

that the user is both capable and willing to the presentation.
The auction MDP considers a person being both capable and
willing for the task as a high-quality bid. When there was
only one such bid, the MDP could confidently choose the
winner; otherwise, it would wait for user input. Interest-
ingly, the winner of July 27 had a bid ofh0; 1i, indicating
that the user was not capable, but was willing. Thus, the
team was able to settle on a winner despite the bid not be-
ing the highest possible, illustrating its flexibility. Finally,
column 4 indicates whether the assignment was made au-
tonomously or through human intervention. In six of the
eight times, the system automatically selected the winner.
There were two exceptions. First, for the meeting on July
6, human users intervened with the agent team and assigned
Scerri, since they wanted a quicker resolution of the bids.
Second, for the meeting on September 19, a visitor gave a
talk in our research group. Agents were unable to easily
accommodate a visitor proxy in the bidding, so we made
his assignment manually. Automatic handling of visitors re-
mains an issue for future work.

Auction Date # of bids Winnerhbidi Autonomous?
July 6 7 Scerrih1; 1i No
July 20 9 Scerrih1; 1i Yes
July 27 7 Kulkarnih0; 1i Yes
August 3 8 Nairh1; 1i Yes
August 31 4 Tambeh1; 1i Yes
Sept 19 6 Visitorh�;�i No
Oct 31 7 Tambeh1; 1i Yes
Nov 21 7 Nairh1; 1i Yes

Table 1: Table showing results for auctioning research pre-
sentation slot.

We also performed a number of experiments to illustrate



the MDPs’ abilities to react to changes in the environment.
As expected, as one increases thecostof asking the user, the
number of situations in which the agent would relinquish au-
tonomy decreases (Figure 5). Furthermore, as thelikelihood
of the user replying to an agent decreases, so does the num-
ber of states in which the agent would ask (Figure 6). This
demonstrates that the agent is able to trade off intelligently
between the wasted effort if the user does not respond and
the value of the information the user could provide.

Figure 5: Changes in the number of states where the agent
will ask the user for input when the cost of asking is
changed.

Figure 6: Changes in the number of states where the agent
will ask the user when the probability that the user responds
changes.

Related Work
This section discusses some of the related work that has in-
fluenced our research. However, as discussed earlier, most
of this work has focused on an interaction between an indi-
vidual agent and an individual human, while our research
has focused on adjustable autonomy in the team context,
raising new challenges such as the AA coordination chal-
lenge and the AA team-decision challenge.

Mitchell’s CAP system (Mitchellet al. 1994), an intelli-
gent interface to an online calendar, provided the initial in-
spiration for our AA work. CAP learns a decision-tree to
capture “general regularities” in the way the user schedules
meetings then uses the decision tree to make suggestions
when new meetings are to be scheduled. However, although
successful for the calendar application, as discussed above,

the decision-tree approach did not scale to the challenges of
AA in a team context.

Mixed-Initiative (MI) systems share the responsibility for
a tasks between a human and agent. TRAINS-95 (Ferguson,
Allen, & Miller 1996), for example, allows collaboration
between an agent and a user in the performance of a fairly
complex planning task. The planning problem is split up so
that the overall system leverages the abilities of the respec-
tive parties. For example, it gives problems having hard-to-
define objective functions to the user and problems involv-
ing consideration of many small details to the machine. In
such systems there is generally only a single user, assumed
to be continually available, and only a single agent; hence,
the team-decision and coordination challenges are avoided.

One aspect of Friday’s decision to relinquish autonomy is
an assessment of the costs and benefits to the individual user.
The PRIORITIES system also uses decision theory to rea-
son about the costs, benefits and uncertainty associated with
alerting a user to the arrival of new email (Horvitz, Jacobs,
& Hovel 1999). The reasoning does not, however, consider
the team-level issues that are considered in E-Elves. One of
the focuses of the PRIORITIES research is to use Bayesian
networks to build a probabilistic model of the user’s inten-
tions, so as to better assess the costs involved in interrupting
them. That research complements the E-Elves work, which
currently makes very simple assumptions about the inten-
tions of the users.

Some of the major research in AA has been motivated
by the requirements of NASA space missions (Doraiset al.
1998; Kortenkampet al. 1999). An important thread of that
research has been the development of an interface layer to
the 3T architecture which provides mechanisms that allow
users to take back control of an agent at whatever level of
control is most appropriate to the situation (Schreckenhost
1999). This interface layer approach is fundamentally differ-
ent to the E-Elves approach, as the agent does not explicitly
reason about reducing own autonomy. Similarly, the AA co-
ordination or team-decision challenges have not yet needed
to be addressed in this domain.

Another area of application for AA mechanisms is inter-
active theater (Hayes-Roth, Brownston, & van Gent 1997).
Here, avatars controlled by agents can be directed interac-
tively to carry out some scenario. The actions the agents
actually take are influenced by the director, the environ-
ment and built-in personality traits. However, interactive
theater agents do not reason about uncertainty, costs and
benefits or the preferences of the user for AA, nor are team-
coordination or learning issues important.

Summary
Gaining a fundamental understanding of adjustable auton-
omy (AA) is critical if we are to deploy multi-agent systems
in support of critical human activities. Indeed, living and
working with the E-Elves has convinced us that AA is a crit-
ical part of any human-collaboration software. No matter
how carefully we design our agents, we cannot allow them
to operate with complete autonomy in their decisions on be-
half of a user. Hence, our research has focused on apply-
ing decision-theoretic mechanisms to optimize AA in rich



environments such as E-Elves, where agent teams are em-
bedded within a human organization. Agent teamwork and
coordination in such environments introduce critical novel
challenges in AA that previous work has not addressed. We
focused on two key challenges: (i) theAA coordination chal-
lengerequires an agent to avoid miscoordination with team-
mates, while simultaneously ensuring effective team action;
and (ii) theAA team-decision challengearises due to multi-
ple levels of decision making in teams and focuses on ensur-
ing effective team decisions.

We proposed several key ideas to resolve these challenges.
In particular, for resolving theAA coordination challenge
agents explicitly reason about costs of team miscoordina-
tion, they flexibly transfer autonomy rather than rigidly com-
mitting to initial decisions, and they may change the coordi-
nation rather than taking risky actions in uncertain states.
For addressing theAA team-decision challenge, we intro-
duced AA at multiple levels of the team decision-making
hierarchy. We have implemented this reasoning through
MDPs.

Our research seeks to fundamentally improve our under-
standing of AA in complex multi-agent environments. The
work presented in this paper provides new techniques to ad-
dress the coordination and team-decision challenges in AA.
In our future work, we plan to generalize our solutions to
arrive at an overall framework that we can apply to new AA
problems as they arise in the E-Elves domain. We also plan
to investigate two techniques to improve agent autonomy: (i)
learning an improved user model, and (ii) explaining agent
decisions to users. Each of these problems will raise further
novel challenges that we look forward to addressing in our
future work in this domain.
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