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Abstract

The problem of deriving joint policies for a group
of agents that maximize some joint reward func-
tion can be modeled as a decentralized partially
observable Markov decision process (POMDP).
Yet, despite the growing importance and applica-
tions of decentralized POMDP models in the mul-
tiagents arena, few algorithms have been devel-
oped for efficiently deriving joint policies for these
models. This paper presents a new class of lo-
cally optimal algorithms called “Joint Equilibrium-
based search for policies (JESP)”. We first describe
an exhaustive version of JESP and subsequently
a novel dynamic programming approach to JESP.
Our complexity analysis reveals the potential for
exponential speedups due to the dynamic program-
ming approach. These theoretical results are ver-
ified via empirical comparisons of the two JESP
versions with each other and with a globally opti-
mal brute-force search algorithm. Finally, we prove
piece-wise linear and convexity (PWLC) proper-
ties, thus taking steps towards developing algo-
rithms for continuous belief states.

1 Introduction
As multiagent systems move out of the research lab into crit-
ical applications such as multi-satellite control, researchers
need to provide high-performing, robust multiagent designs
that are as nearly optimal as feasible. To this end, researchers
have increasingly resorted to decision-theoretic models as a
framework in which to formulate and evaluate multiagent de-
signs. Given a group of agents, the problem of deriving sep-
arate policies for them that maximize some joint reward can
be modeled as a decentralized POMDP (Partially Observable
Markov Decision Process). In particular, the DEC-POMDP
(Decentralized POMDP) [Bernstein et al., 2000] and MTDP
(Markov Team Decision Problem [Pynadath and Tambe,
2002]) are generalizations of a POMDP to the case where
there are multiple, distributed agents basing their actions on
their separate observations. These frameworks allow a vari-
ety of multiagent analysis. Of particular interest here, they
allow us to formulate what constitutes an optimal policy for a
multiagent system and in principle derive that policy.

However, with a few exceptions, effective algorithms for
deriving policies for decentralized POMDPs have not been
developed. Significant progress has been achieved in efficient
single-agent POMDP policy generation algorithms [Mona-
han, 1982; Cassandra et al., 1997; Kaelbling et al., 1998].
However, it is unlikely such research can be directly car-
ried over to the decentralized case. Finding optimal poli-
cies for decentralized POMDPs is NEXP-complete [Bern-
stein et al., 2000]. In contrast, solving a POMDP is PSPACE-
complete [Papadimitriou and Tsitsiklis, 1987]. As Bernstein
et al. [2000] note, this suggests a fundamental difference in
the nature of the problems. The decentralized problem can-
not be treated as one of separate POMDPs in which individ-
ual policies can be generated for individual agents because
of possible cross-agent interactions in the reward, transition
or observation functions. (For any one action of one agent,
there may be many different rewards possible, based on the
actions that other agents may take.) In some domains, one
possibility is to simplify the nature of the policies considered
for each of the agents. For example, Chadès et al. [2002]
restrict the agent policies to be memoryless (reactive) poli-
cies. Further, as an approximation, they define the reward
function and the transition function over observations instead
of over states thereby simplifying the problem to solving a
multi-agent MDP [Boutilier, 1996]. Xuan et al. [2001] de-
scribe how to derive decentralized MDP (not POMDP) poli-
cies from a centralized MDP policy. Their algorithm, which
starts with an assumption of full communication that is grad-
ually relaxed, relies on instantaneous and noise free commu-
nication. Such simplifications reduce the applicability of the
approach and essentially side-step the question of solving de-
centralized POMDPs. Peshkin et al. [2000] take a different
approach by using gradient descent search to find local op-
timum finite-controllers with bounded memory. Their algo-
rithm finds locally optimal policies from a limited subset of
policies, with an infinite planning horizon, while our algo-
rithm finds locally optimal policies from an unrestricted set
of possible policies, with a finite planning horizon.

Thus, there remains a critical need for new efficient
algorithms for generating optimal policies in distributed
POMDPs. In this paper, we present a new class of algorithms
for solving decentralized POMDPs, which we refer to as Joint
Equilibrium-based Search for Policies (JESP). JESP iterates
through the agents, finding an optimal policy for each agent



assuming the policies of the other agents are fixed. The it-
eration continues until no improvements to the joint reward
is achieved. Thus JESP achieves a local optimum similar
to a Nash Equilibrium. We discuss Exhaustive-JESP which
uses exhaustive search to find the best policy for each agent.
Since this exhaustive search for even a single agent’s policy
can be very expensive, we also present DP-JESP which im-
proves on Exhaustive-JESP by using dynamic programming
to incrementally derive the policy. We conclude with sev-
eral empirical evaluation that contrast JESP against a glob-
ally optimal algorithm that derives the globally optimal pol-
icy via a full search of the space of policies. Finally, we prove
piece-wise linear and convexity (PWLC) properties, thus tak-
ing steps towards developing algorithms for continuous initial
belief states.

2 Model
We describe the Markov Team Decision Prob-
lem (MTDP) [Pynadath and Tambe, 2002] frame-
work in detail here to provide a concrete illustra-
tion of a decentralized POMDP model. However,
other decentralized POMDP models could poten-
tially also serve as a basis [Bernstein et al., 2000;
Xuan et al., 2001].

Given a team of � agents, an MTDP [Pynadath and
Tambe, 2002] is defined as a tuple:
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�), " ����������, * � .� " ����������� * are the set of observations for agents 1 to � .�5-�/��6��, " ���������
, * �0�87#3 , the observation function, represents
the probability of joint observation
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receive a single, immediate joint reward
�5-9/:��, " ����������, * 3

which is shared equally.
Practical analysis using models like MTDP often assume

that observations of each agent is independent of each other’s
observations. Thus the observation function can be expressed
as
�5-�/����9, " ���������
, * �;�87#3< =� " -9/����), " ����������, * �;�>7 " 3�?(�����@?� * -�/�����, " ���������
, * �0�>7 * 3 .

Each agent A chooses its actions based on its local policy,B ' , which is a mapping of its observation history to actions.
Thus, at time C , agent A will perform action B ' -6D7FE' 3 whereD7FE'  G7 "' ���������>7FE' . B  H� B " ��������� B * � refers to the joint policy
of the team of agents. The important thing to note is that in
this model, execution is distributed but planning is central-
ized. Thus agents don’t know each other’s observations and
actions at run-time but they know each other’s policies.

3 Example Scenario
For illustrative purposes it is useful to consider a familiar
and simple example, yet one that is capable of bringing out
key difficulties in creating optimal policies for MTDPs. To
that end, we consider a multiagent version of the classic

tiger problem used in illustrating single agent POMDPs[Kael-
bling et al., 1998] and create an MTDP (

�9���
�I�
	���������
�J�
)

for this example. In our modified version, two agents are
in a corridor facing two doors:“left” and “right”. Behind
one door lies a hungry tiger and behind the other lies un-
told riches but the agents do not know the position of ei-
ther. Thus,

�K � �FLM���F�I� , indicating behind which door
the tiger is present. The agents can jointly or individually
open either door. In addition, the agents can independently
listen for the presence of the tiger. Thus,

� "  N�POQ 
�:R �TSVU � L#U2W C>X � R �TSVU � � A�Y[Z\C>X � R L A / C U �(X � . The transition func-
tion

	
, specifies that every time either agent opens one of

the doors, the state is reset to
�FL

or
�]�

with equal proba-
bility, regardless of the action of the other agent, as shown
in Table 1. However, if both agents listen, the state remains
unchanged. After every action each agent receives an obser-
vation about the new state. The observation function,

� " or� O
(shown in Table 2) will return either ^ L or ^ � with dif-

ferent probabilities depending on the joint action taken and
the resulting world state. For example, if both agents listen
and the tiger is behind the left door (state is

�FL
), each agent

receives the observation ^ L with probability _ � `�a and ^ �
with probability _ � � a .

Action/Transition SL b SL SL b SR SR b SR SR b SLc
OpenRight,* d 0.5 0.5 0.5 0.5c
OpenLeft,* d 0.5 0.5 0.5 0.5c
*,OpenLeft d 0.5 0.5 0.5 0.5c

*,OpenRight d 0.5 0.5 0.5 0.5c
Listen,Listen d 1.0 0.0 1.0 0.0

Table 1: Transition function

Action State HL HRc
Listen,Listen d SL 0.85 0.15c
Listen,Listen d SR 0.15 0.85c
OpenRight,* d * 0.5 0.5c
OpenLeft,* d * 0.5 0.5c
*,OpenLeft d * 0.5 0.5c

*,OpenRight d * 0.5 0.5

Table 2: Observation function for each agent

If either of them opens the door behind which the tiger
is present, they are both attacked (equally) by the tiger (see
Table 3). However, the injury sustained if they opened the
door to the tiger is less severe if they open that door jointly
than if they open the door alone. Similarly, they receive
wealth which they share equally when they open the door to
the riches in proportion to the number of agents that opened
that door. The agents incur a small cost for performing theR L A / C U �(X action.

Clearly, acting jointly is beneficial (e.g.,
� "  N�eOf 

R �TSVU � LgUhW C>X ) because the agents receive more riches and sus-
tain less damage by acting together. However, because the
agents receive independent observations (they do not share
observations), they need to consider the observation histories
of the other agent and what action they are likely to perform.



Action/State SL SRc
OpenRight,OpenRight d +20 -50c

OpenLeft,OpenLeft d -50 +20c
OpenRight,OpenLeft d -100 -100c
OpenLeft,OpenRight d -100 -100c

Listen,Listen d -2 -2c
Listen,OpenRight d +9 -101c
OpenRight,Listen d +9 -101c
Listen,OpenLeft d -101 +9c
OpenLeft,Listen d -101 +9

Table 3: Reward function A

We also consider consider another case of the reward func-
tion, where we vary the penalty for jointly opening the door
to the tiger (See Table 4).

Action/State SL SRc
OpenRight,OpenRight d +20 0c

OpenLeft,OpenLeft d -50 +20c
OpenRight,OpenLeft d -100 -100c
OpenLeft,OpenRight d -100 -100c

Listen,Listen d -2 -2c
Listen,OpenRight d +9 -101c
OpenRight,Listen d +9 -101c
Listen,OpenLeft d -101 +9c
OpenLeft,Listen d -101 +9

Table 4: Reward function B

4 Optimal Joint Policy

When agents do not share all of their observations, they must
instead coordinate by selecting policies that are sensitive to
their teammates’ possible beliefs, of which each agent’s en-
tire history of observations provides some information. The
problem facing the team is to find the optimal joint policy,
i.e. a combination of individual agent policies that produces
behavior that maximizes the team’s expected reward.

One sure-fire method for finding the optimal joint policy
is to simply search the entire space of possible joint policies,
evaluate the expected reward of each, and select the policy
with the highest such value. To perform such a search, we
must first be able to determine the expected reward of a joint
policy. We compute this expectation by projecting the team’s
execution over all possible branches on different world states
and different observations. We present here the 2-agent ver-
sion of this computation, but the results easily generalize to
arbitrary team sizes. At each time step, we can compute the
expected value of a joint policy, B  � B " � B O � , for a team
starting in a given state,

�FE
, with a given set of past observa-

tions,
D7gE" and

D7gEO
, as follows:

� E� -9� E ���[D7 E" � D7 EO�� 3F �5-9� E ��� B " -6D7 E" 3�� B O -6D7 EO 3 � 3��	
��������
 	�� � E � � B " �hD7 E"�� � B O �2D7 EO � � �� E�� " �
? 	� ����� ��� �

	
� ����� ��� �

� � � E�� " ��� B " � D7 E" � � B O�� D7 EO � � ���87 E�� "" �87 E�� "O � �
? � E�� "� �9� E�� " � � D7 E�� "" � D7 E�� "O � � (1)

At each time step, the computation of
� E� performs

a summation over all possible world states and agent
observations, so the time complexity of this algorithm

is
� ��-"! �#!h?�! � " !h?�! ��O�! 3%$'& . The overall search performs

this computation for each and every possible joint pol-
icy. Since each policy specifies different actions over pos-
sible histories of observations, the number of possible poli-

cies for an individual agent A is
�)(*! � ' !%+ ,�-.+ /10 �+ ,�-.+ 0 �32 . The

number of possible joint policies for � agents is thus� (4( ! �65�! + ,�7�+ / 0 �+ ,�7�+ 0 � 2 * 2 , where
�85

and
�45

correspond to

the largest individual action and observation spaces, respec-
tively, among the agents. The time complexity for find-
ing the optimal joint policy by searching this space is thus:� (4( ! �65�! + , 7 + / 0 �+ , 7 + 0 � 2 * ?:-�! �#!h?�! �#5�! * 3 $ 2
5 Joint Equilibrium-based Search for Policies
Given the complexity of exhaustively searching for the op-
timal joint policy, it is clear that such methods will not be
successful when the amount of time to generate the policy
is restricted. In this section, we will present algorithms that
are guaranteed to find a locally optimal joint policy. We refer
to this category of algorithms as “JESP” (Joint Equilibrium-
Based Search for Policies). Just like the solution in Section 4,
the solution obtained using JESP is a Nash equilibrium. In
particular it is a locally optimal solution to a partially ob-
servable identical payoff stochastic game(POIPSG) [Peshkin
et al., 2000]. The key idea is to find the policy that maxi-
mizes the joint expected reward for one agent at a time, keep-
ing the policies of all the other agents fixed. This process
is repeated until an equilibrium is reached (local optimum is
found). The problem of which optimum the agents should se-
lect when there are multiple local optima is not encountered
since planning is centralized.

5.1 Exhaustive approach(Exhaustive-JESP)
The algorithm below describes an exhaustive approach for
JESP. Here we consider that there are � cooperative agents.
We modify the policy of one agent at a time keeping the poli-
cies of the other �:9 � agents fixed. The function best-
Policy, returns the joint policy that maximizes the expected
joint reward, obtained by keeping �;9 � agents’ policies
fixed and exhaustively searching in the entire policy space
of the agent whose policy is free. Therefore at each itera-
tion, the value of the modified joint policy will always either



increase or remain unchanged. This is repeated until an equi-
librium is reached, i.e. the policies of all � agents remains
unchanged. This policy is guaranteed to be a local maximum
since the value of the new joint policy at each iteration is non-
decreasing.

Algorithm 1 EXHAUSTIVE-JESP
-�3

1: prev � random joint policy, conv � _
2: while conv

� � 9 � do
3: for A�� � to � do
4: fix policy of all agents except A
5: policySpace � list of all policies for A
6: new � bestPolicy( A ,policySpace,prev)
7: if new.value

 
prev.value then

8: conv � conv + 1
9: else

10: prev � new, conv � _
11: if conv

 � 9 � then
12: break
13: return new

The best policy cannot remain unchanged for more than� 9 � iterations without convergence being reached and in
the worst case, each and every joint policy is the best policy
for at least one iteration. Hence, this algorithm has the same
worst case complexity as the exhaustive search for a globally
optimal policy. However, it could do much better in practice
as illustrated in Section 6. Although the solution found by this
algorithm is a local optimum, it may be adequate for some
applications. Techniques like random restarts or simulated
annealing can be applied to perturb the solution found to see
if it settles on a different higher value.

The exhaustive approach to Steps 5 and 6 of the
Exhaustive-JESP algorithm enumerates and searches the
entire policy space of a single agent, A . There are� ( ! � ' ! + ,�-.+ / 0 �+ ,�-.+ 0 � 2 such policies, and evaluating each incurs

a time complexity of
� ��� ! �#!2?�! � ! $ ��� . Thus, using the ex-

haustive approach incurs an overall time complexity in Steps

5 and 6 of:
� (*! � ' ! + , - + / 0 �+ ,�-%+ 0 � ! �#!h?�! � ! $ 2 . Since we incur this

complexity cost in each and every pass through the JESP
algorithm, a faster means of performing the bestPolicy
function call of Step 6 would produce a big payoff in overall
efficiency. We describe a dynamic programming alternative
to this exhaustive approach for doing JESP next.

5.2 Dynamic Programming (DP-JESP)
If we examine the single-agent POMDP literature for inspi-
ration, we find algorithms that exploit dynamic programming
to incrementally construct the best policy, rather than simply
search the entire policy space [Monahan, 1982; Cassandra et
al., 1997; Kaelbling et al., 1998]. These algorithms rely on
a principle of optimality that states that each sub-policy of an
overall optimal policy must also be optimal. In other words,
if we have a � -step optimal policy, then, given the history
over the first C steps, the portion of that policy that covers the
last � 9.C steps must also be optimal over the remaining � 9.C

steps. In this section, we show how we can exploit an anal-
ogous optimality property in the multiagent case to perform
more efficient construction of the optimal policy within our
JESP algorithm.

To support such a dynamic-programming algorithm, we
must define belief states that summarize an agent’s history
of past observations, so that they allow the agents to ignore
the actual history of past observations, while still supporting
construction of the optimal policy over the possible future.
In the single-agent case, a belief state that stores the distri-
bution, � E� ' *��	��
  ����-9��E�!9D7FE>3

, is a sufficient statistic, because
the agent can compute an optimal policy based on � E� ' *�����

without having to consider the actual observation sequence,D7FE

[Sondik, 1971].
In the multiagent case, an agent faces a complex but nor-

mal single-agent POMDP if the policies of all other agents are
fixed. However, � E� ' *��	��
 , is not sufficient, because the agent
must also reason about the action selection of the other agents
and hence on the observation histories of the other agents.
Thus, at each time C , the agent A reasons about the tuple

UhE'  � ��E��D7FE �%('�� , where
D7gE �%('  � D7FE" ��������� D7FE'��(" � D7FE' � " ��������� D7FE* � is

the joint observation histories of all the agents except A . By
treating

U6E' to be the state of the agent A at time C , we can define
the transition function and observation function for the single
agent POMDP for agent A as follows:	 X -)U E ' �
, E ' �
U E�� "' 3N �	���-)U E�� "' ! U E ' �
, E ' 3 �	.-�� E �6- B �%@' -2D7 E �%(' 3���, E ' 3+��� E�� " 3

?��� �%@' � � -9� E�� " ��- B �%(' -6D7 E �%(' 3+�
, E ' 3��87 E�� "� 3
(2)

� X -�U E�� "' ��, E ' �87 E�� "' 3N �	���- 7 E�� "' ! U E�� "' �
, E ' 3 �� ' -9� E�� " ��- B �%(' -6D7 E �%@' 3+�
, E ' 3��>7 E�� "' 3
(3)

where B �%('  � B E" ��������� B E'��(" � B E' � " �������+� B E* � is the joint policy
for all agents except A .

We now define the novel multiagent belief state for an
agent A given the distribution over the initial state, � -9/23� ���6-�� "  /23

: � E'  �����-�U E' ! D7 E' �2D, E �;"' � � 3 (4)

In other words, when reasoning about an agent’s policy in
the context of other agents, we maintain a distribution over

U E ' ,
rather than simply the current state. Figure 1 shows different
belief states � " , � O and � X O for agent 1 in the tiger domain.
For instance, � O , shows probability distributions over

U O " . InU O "  H-9�]LM�6- ^ �J383 , - ^ �J3 is the history of agent 2’s observa-
tions while SL is the current state. Section 5.3 demonstrates
how we can use this multiagent belief state to construct a dy-
namic program that incrementally constructs the optimal pol-
icy for agent A .
5.3 The Dynamic Programming Algorithm
Following the model of the single-agent value-iteration al-
gorithm, our dynamic program centers around a value func-
tion over a � -step finite horizon. For readability, this sec-
tion presents the derivation for the dynamic program in the
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Figure 1: Trace of Tiger Scenario

two-agent case; the results easily generalize to the � -agent
case. Having fixed the policy of agent 2, our value function,� E - � E>3 , represents the expected reward that the team will re-
ceive when agent 1 follows its optimal policy from the C -th
step onwards when starting with a current belief state, � E" .
We start at the end of the time horizon (i.e., C  � ), and then
work our way back to the beginning. Along the way, we con-
struct the optimal policy by maximizing our value function
over possible action choices:� E - � E" 3g *),+(-

. � �0/ � � . �E - � E" 3 (5)

We can define the action value function,
� . �E , recursively:� . �E - � E" 3N 1��5-), " � � E" 3*� 	

� � ��� ��� �
� ��- 7 E�� "" ! � E" �
, " 3

? � E�� " � � E�� "" � (6)

The first term in equation 6 refers to the expected immediate
reward, while the second term refers to the expected future re-
ward. � E�� "" is the belief state updated after performing action, " and observing

7 E�� "" . In the base case, C  � , the future
reward is 0, leaving us with:� . �$ - � $" 3F 21��5-), " � � $" 3 (7)

The calculation of expected immediate reward breaks down
as follows:

1��5-�, " � � E" 3F 	

 � � % � 
��43�5� �� ��

E" -�U E " 3�?��5-9� E ��-), " � B O�-6D7 EO 383
3 (8)

Thus, we can compute the immediate reward using only the
agent’s current belief state and the primitive elements of our
given MTDP model (See Section 2).

Computation of the expected future reward (the second
term in Equation 6) depends on our ability to update agent
1’s belief state from � E" to � E�� "" in light of the new observa-
tion,

7 E�� "" . For example, in Figure 1, the belief state � " is
updated to � X O on performing action

, " and receiving obser-
vation

7 X "" . We now derive an algorithm for performing such
an update, as well as computing the remaining

���6- 73! � �
,�3
term from Equation 6. The initial belief state based on the
distribution over initial state, � , is:

� " -)U "" 3F � -�� " 3 (9)

For
U E�� ""  � ��E�� " � � D7FEO �87 E�� "O � �

, the updated � E�� "" -�U E�� "" 3
is

obtained using Equations 2 and 3 and Bayes Rule and is given
as follows:

� E�� "" -)U E�� "" 3N 	 
 � � E" -)U E " 3 ?6	.-�� E �6-), " � B O -6D7 EO 383+��� E�� " 3? � " -�� E�� " �6-), " � B O4-6D7 EO 383+�>7 E�� "" 3
? � O -�� E�� " �6-), " � B O -6D7 EO 383+�>7 E�� "O 3�6
	���- 7 E�� "" ! � E" �
, " 3 (10)

We treat the denominator of Equation 10 (i.e.,���6- 7 E�� "" ! � E" �
, " 3 ) as a normalizing constant to bring
the sum of the numerator over all

UhE " to be 1. This result
also enters into our computation of future expected reward
in the second term of Equation 6. Thus, we can compute
the agent’s new belief state (and the future expected reward
and the overall value function, in turn) using only the agent’s
current belief state and the primitive elements of our given
MTDP model. Having computed the overall value function,� E , we can also extract a form of the optimal policy, B " ,
that maps observation histories into actions, as required by
Equations 8 and 10.

Algorithm 2 presents the pseudo-code for our overall dy-
namic programming algorithm. Lines 1–6 generate all of
the belief states reachable from a given initial belief state,� -9/63� � ��-�� "  /63

. Since there is a possibly unique belief
state for every sequence of actions and observations by agent
1, there are

� � -�! � " !h?�! � " ! 3 $ � reachable belief states. This
reachability analysis uses our belief update procedure (Algo-
rithm 3), which itself has time complexity

�5-"! �#! O ! ��O�! E�� " 3
when invoked on a belief state at time C . Thus, the over-
all reachability analysis phase has a time complexity of�5- � ! �#! O -"! � " !2?�! � " !h?�! ��O�! 3 $ � . Lines 7–22 perform the heart
of our dynamic programming algorithm, which also has a
time complexity of

�5-�� � O -�! � " ! ?�! � " !2?�! � O ! 3 $ � . Lines 23–
27 translate the resulting value function into an agent policy
defined over observation sequences, as required by our al-
gorithm (i.e., the B O argument). This last phase has a lower
time and space complexity,

�5-�! �#! O ! � " ! $ ? ! � O ! $ 3 , than our
other two phases, since it considers only optimal actions for
agent 1. Thus, the overall time complexity of our algorithm
is
� � � O -�! � " ! ?�! � " !h?�! � O ! 3 $ � . The space complexity of the

resulting value function and policy is essentially the product
of the number of reachable belief states and the size of our
belief state representation:

� � ! �4! -�! � " ! ?�! � " !h?�! ��O�! 3 $ � .
5.4 Piecewise Linearity and Convexity of Value

Function
Algorithm 2 computes a value function over only those be-
lief states that are reachable from a given initial belief state,
which is a subset of all possible probability distributions over��E

and
D7FEO

. To use dynamic programming over the entire set,
we must show that our chosen value function is piecewise
linear and convex (PWLC). Each agent is faced with solving
a single agent POMDP is the policies of all other agents is
fixed as shown in Section 5.2. Sondik [1971] showed that the
value function for a single agent POMDP is PWLC. Hence
the value function in Equation 5 is PWLC. Thus, in addition



Algorithm 2 OPTIMALPOLICYDP
- � � B O � � 3

1: reachable
- _ 3 � ��� �

2: for C�� � to � do
3: for all � E �;"�� reachable

- C 9 � 3 do
4: reachable

- C 3 � �
5: for all

, " � � " �87 " � � " do
6: reachable

- C 3��� UPDATE
- � E �;" �
, " �87 " 3

7: for C�� � downto � do
8: for all � E � reachable

- C 3 do
9:

� E - � E>3 � 9��
10: for all

, " � � " do
11:

� . �E - � E>3 � _
12: for all

/ � �]� D7 O � �TEO
do � Equation 8

�
13:

� . �E - � E>3 �� � E�-�/�� D7 O 3�?�� -9/:�6�), " � B O -6D7 O 38��3
14: if C�� � then � Compute future reward

�
15: for all

7 " � � " do
16: prob � _
17: for all

/6E���/�E�� "�� ��� D7�O � �TEO
do

18: act � �), " � B O4-6D7�O�3
�
19: prob

�� � E�-�/�E�� D7�O�35? 	.-�/�E� act
�/�E�� " 35?� " -�/�E�� " � act

�87 " 3
20:

� . �E - � E>3 �� prob
?� E�� " - UPDATE

- � E���, " �>7 " 3
3 � Equation 6
�

21: if
� . �E - � E83�	 � E - � E83 then

22:
� E - � E83 � � . �E - � E83

23: for all
D7 " � � $ " do

24: ��
 � �
25: for C � � to � do
26: � E � UPDATE

- � E �;" � B " -2D7 "� � ������- C'9 � 3�� 3+��D7 "�� C � 3
27: B " -2D7 " � � ����� C � 3 � arg

)�+�- . � � . �E - � E83
28: return B "

Algorithm 3 UPDATE
- � E�
, " �87 " 3

for all
/�E�� "�� ����D7 O � � E�� "O

do� E�� " -9/�E�� " ��D7 O 3 � _
act � ��, " � B O�-2D7 O � � ����� C � 38�
for all

/�E � �
do � Equation 10

�
� E�� " -�/�E�� " � D7�O�3 �� � E-9/�E���D7 O � � ����� C � 3 ?	.-�/�E�

act
�/�E�� " 3 ? � " -�/�E�� " � act

�>7 " 3 ?�eO4-�/�E�� " �
act
�[D7 O � C � � � 3

normalize � E�� " -�/�E�� " � D7 " 3
return � E�� "

to supporting the more efficient dynamic programming of Al-
gorithm 2, our novel choice of belief state space and value
function can potentially support a dynamic programming al-
gorithm over the entire continuous space of possible belief
states.

6 Experimental Results
In this section, we perform an empirical comparison of the
algorithms described in Sections 4 and 5 using the Tiger Sce-
nario (See Section 3) in terms of time and performance. Fig-
ure 2, shows the results of running the globally optimal al-
gorithm and the Exhaustive JESP algorithm for two different
reward functions (Tables 3 and 4. Finding the globally op-
timal policy is extremely slow and is doubly exponential in
the finite horizon, T and so we evaluate the algorithms only
for finite horizons of 2 and 3. We ran the JESP algorithm
for 3 different randomly selected initial policy settings and
compared the performance of the algorithms in terms of the
number of policy evaluations (on Y-axis using log scale) that
were necessary. As can be seen from this figure, for �  �
the JESP algorithm requires much fewer evaluations to arrive
at an equilibrium. The difference in the run times of the glob-
ally optimal algorithm and the JESP algorithm is even more
apparent when �  ��

. Here the globally optimal algorithm
performed

	��
million policy evaluations while the JESP al-

gorithm did ��� _:_�_ evaluations. For the reward function A,
JESP succeeded in finding the globally optimal policies for
both �  �

(expected reward
 9 � ) and

�
(expected reward 9�� ). However, this is not always the case. Using reward

function B for �  Q�
, the JESP algorithm sometimes settles

on a locally optimal policy (expected reward
 9 � ) that is

different from the globally optimal policy (expected reward � _ ). However, when random restarts are used, the globally
optimal reward can be obtained.

Based on Figure 2, we can conclude that the exhaustive
JESP algorithm performs better than an exhaustive search for
the globally optimal policy but can some times settle on a pol-
icy that is only locally optimal. This could be sufficient for
problems where the difference between the locally optimal
policy’s value and the globally optimal policy’s value is small
and it is imperative that a policy be found quickly. Alterna-
tively,the JESP algorithm could be altered so that it doesn’t
get stuck in a local optimum via random restarts.

Table 5 compares presents experimental results from com-
parison of exhaustive JESP with our dynamic programming
approach (DP-JESP). These results, also from the tiger do-
main, show run-time in milliseconds (ms) for the two algo-
rithms with increasing horizon. DP-JESP is seen to obtain
significant speedups over exhaustive-JESP. For time horizon
of 2 and 3 DP-JESP run time is essentially 0 ms, compared to
the significant run times of Exhaustive-JESP. As we increased
the horizon to

	��
, we could not run exhaustive-JESP at all;

while DP-JESP could be easily run up to horizon of � .

7 Summary and Conclusion
With the growing importance of decentralized POMDPs in
the multiagents arena, for both design and analysis, it is crit-
ical to develop efficient algorithms for generating joint poli-
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Figure 2: Evaluation Results

Method 2 3 4 5 6 7
Exhaustive-JESP 10 317,800

DP-JESP 0 0 20 110 1,360 30,030

Table 5: Run time(ms) for various T with Pentium 4, 2.0GHz,
1GB memory, Linux Redhat 7.1, Allegro Common Lisp 6.0

cies. Yet, there is a significant lack of such efficient algo-
rithms. There are three novel contributions in this paper to
address this shortcoming. First, given the complexity of the
exhaustive policy search algorithm — doubly exponential in
the number of agents and time — we describe a class of
algorithms called “Joint Equilibrium-based Search for Poli-
cies” (JESP) that search for a local optimum rather than a
global optimum. In particular, we provide detailed algorithms
for Exhaustive JESP and dynamic programming JESP(DP-
JESP). Second, we provide complexity analysis for DP-JESP,
which illustrates a potential for exponential speedups over ex-
haustive JESP. We have implemented all of our algorithms,
and empirically verified the significant speedups they pro-
vide. Third, we provide a proof that the value function for
individual agents is piece-wise linear and convex (PWLC) in
their belief states. This key result could pave the way to a
new family of algorithms that operate over continuous be-
lief states, increasing the range of applications that can be at-
tacked via decentralized POMDPs, and is now a major issue
for our future work.
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