
IORelator: A Graphical User Interface to Enable Rapid Semantic
Annotation for Data-Driven Natural Language Understanding

David DeVault and Susan Robinson and David Traum
USC Institute for Creative Technologies

13274 Fiji Way
Marina del Rey, CA 90292

{devault,robinson,traum}@ict.usc.edu

Abstract
This paper describes a new annotation
GUI, called IORelator, which is designed
to facilitate rapid semantic annotation in
support of high-performance data-driven
NLU for spoken dialogue systems. We
summarize our requirements for rapid
NLU annotation, and discuss how the GUI
views and operations that IORelator pro-
vides meet these needs by enabling thou-
sands of natural utterances to be quickly
annotated with their correct semantics.

1 Introduction

This paper introduces a new annotation GUI,
called IORelator, that is designed to improve the
process of annotating the semantics of large col-
lections of natural language utterances. This new
GUI has a number of design features which work
together to enable an annotator to focus on rele-
vant parts of a growing annotated corpus, and to
add new annotations quickly and in a consistent
manner. These design features include:

• The annotator can create one or more views
of the data using several kinds of filters. The
filters enable similar utterances or similar se-
mantics to be grouped together within a view
(a sub-window) in the GUI.

• Several of these filtered views can be posi-
tioned simultaneously on screen, and can be
connected in a way that allows the annotator
to choose the best semantics by highlighting
and exploring previous annotations of similar
or related utterances.

• Together, these features allow groups of sim-
ilar utterances to be identified, selected, con-
sidered, and quickly annotated.

We begin by motivating our need for rapid seman-
tic annotation.



mood : declarative

sem :


type : event
agent : captain− kirk
event : deliver
theme : power − generator

modal :
[

possibility : can
]

speech− act :
[

type : offer
]




Figure 1: Example utterance semantics (AVM).

<s>.mood declarative
<s>.sem.type event
<s>.sem.agent captain-kirk
<s>.sem.event deliver
<s>.sem.theme power-generator
<s>.sem.modal.possibility can
<s>.sem.speechact.type offer

Figure 2: Example utterance semantics (frame).

2 Motivation and Background

In this paper, we consider an annotation task
that arises for the natural language understand-
ing (NLU) component in SASO-EN (Traum et al.,
2008), a virtual human dialogue system. This
system allows users to interact in interactive spo-
ken dialogue with virtual human characters, and
is designed to serve as a negotiation training tool,
where users learn about negotiation tactics in the
context of the culture and social norms of a par-
ticular community. The semantic representation
for NLU, also used in several previous virtual hu-
man systems (Traum, 2003), is an attribute-value
matrix (AVM), where the attributes and values
are linked to a domain ontology and task model
(Hartholt et al., 2008). Figure 1 shows an example
AVM for an utterance such as “we can provide you
with power generators”. To facilitate statistical
NLU, the AVMs are linearized using a path-value
(or key-value) notation, as shown in Figure 2. We
call these linearized AVMs frames. In SASO-EN,
the NLU module takes a spoken utterance (as rec-



Training
set size

100 500 1000 2000 3000 3826

NLU F-
score

0.31 0.63 0.70 0.74 0.75 0.79

Table 1: NLU performance vs. training set size.

ognized by ASR) as input and emits an appropriate
semantic frame as output.

The NLU module is data-driven, and requires
a set of annotated (transcribed utterance, frame)
pairs as training data. Over the years, a variety
of machine learning frameworks have been ex-
plored to try to increase NLU performance. Table
1 shows how NLU performance for one recent im-
plemented NLU algorithm (Sagae et al., 2009) in-
creases as the number of annotated training utter-
ances grows. In this figure, NLU performance is
measured with F-score, computed as the harmonic
mean of the precision and recall of the individual
key-values in the NLU output frames for 449 held-
out test utterances. In the figure, note first that
NLU performance generally increases as the train-
ing set grows. For SASO-EN, this improvement is
especially pronounced as the training set grows to
include around 2000 annotated examples.

Incorrect NLU output, which can create mis-
understandings that disrupt the training process,
is one of the most problematic issues in the cur-
rent SASO-EN system. Unfortunately, the need
to annotate and maintain an NLU training cor-
pus of thousands of utterances to achieve high-
performing NLU introduces considerable costs
and challenges into the development process. The
IORelator GUI has been developed with the aim
of increasing both the speed at which utterances
can be annotated as well as the size of annotated
corpus that can be effectively explored and main-
tained when changes in the semantic annotation
scheme are necessitated by ongoing development.

3 Related Work

Rather than developing a new GUI, we could use,
or adapt, a general-purpose linguistic annotation
tool such as GATE (Cunningham et al., 2002) for
SASO-EN annotation. However, we perceived a
need for rapid browsing, filtering, and linking op-
erations, as described in the next section, which
we judged were easier to implement, for initial
evaluation purposes, in a standalone GUI. We are

currently integrating our new GUI into a plug-in
for Protégé (Knublauch et al., 2004), a general
purpose ontology editor used for SASO-EN.

Previous work has illustrated that special-
purpose tools (e.g. (Geertzen, 2007)) and using
annotators with strong expertise are important to
achieving a high annotation throughput, with ex-
perts able to annotate much more quickly than
non-experts (Geertzen et al., 2008). Our effort
here is motivated by the desire to improve the an-
notation speed that non-experts as well as experts
can attain (though we do not address the differ-
ences between annotator types in this paper).

The specific functionality implemented in dif-
ferent annotation GUIs shows differences in em-
phasis and assumptions, such as support for
adding semantic annotations to existing syntac-
tic structure (Burchardt et al., 2006), or provid-
ing detailed pop-up or drop-down options and
other guidance for structured semantic annotations
(Geertzen, 2007). We discuss the emphasis and as-
sumptions of our own GUI in the next section.

4 The IORelator GUI

The IORelator (Input Output Relator) GUI,
which is implemented in Java and depicted in Fig-
ure 3, is designed to support the rapid definition
and maintenance of links from an input domain I
(such as a set of utterances) to an output domainO
(such as a set of possible SASO-EN frames). The
links that have been defined determine an input-
output relationR ⊆ I ×O.

The IORelator GUI allows the annotator to cre-
ate any number of views of the input domain (see
Utterance View 1 and Utterance View 2 in the Fig-
ure), the output domain (see Frame View), and the
annotated links (see Links View). Each view is a
resizable, dockable sub-window that can be posi-
tioned as desired by the annotator to make efficient
use of screen real-estate for the task at hand. Each
view has its own separate filters, connectedness,
item selection, and toolbar.

A filter uses some criterion to limit the items
that are visible in a view. Based on guidance
from our annotators, IORelator supports filters
that include or exclude items using keywords or
keyphrases, regular expressions, or whether an
item participates in any links. For example, in
the Frame View in the figure, the user has in-
troduced a keyphrase filter (see Frame Text Fil-
ter) that includes only frames containing the text



Selection
Transfer

Frame View Frame Text Filter

Utterance View 2 (Unlinked Utterances)

Links View

Utterance Text Filter

Utterance View 1 (Linked Utterances)Utterance View Toolbar

Figure 3: The IORelator GUI.

theme power-generator.1 Because only 5 of
115 frames in the output domain match this filter,
only 5 frames are visible in the view. The annota-
tor can thereby focus on only these frames. In the
figure, the user has used filters to create Utterance
View 1 as a view that shows only utterances which
have already been linked, and Utterance View 2
as a view that shows only utterances which have
not yet been linked. In this way, Utterance View
2 serves as a “todo list” for utterances requiring
annotation; the annotator can consult the previous
annotations of already linked utterances in Utter-
ance View 1 when desired. Additionally, the user
has added a keyword filter (see Utterance Text Fil-
ter) to Utterance View 2, so that only the 20 un-
linked utterances containing the word generator

are displayed. Together, these filters allow the an-
notator to focus attention on the 20 utterances in-
cluding the word “generator” and the 5 possibly

1To support filtering with regular expressions, IORelator
requires that all items in its input and output domains be con-
vertible to plain text. This does not preclude the use of struc-
tured semantic annotations such as SASO-EN frames in the
output domain. Any semantic annotation can be used so long
as it can (1) be depicted on screen in views and (2) converted
to plain text so that filtering operations can be performed.

appropriate frames for these utterances.
Each view in IORelator can be either connected

or not connected. When a view is connected,
items selected with the mouse cause related items
in other connected views to become highlighted.
In the figure, the user has marked all the views
as connected except for Utterance View 2, which
contains unlinked utterances. In this screenshot,
the user has selected the bottom-most frame in the
Frame View; this selection has been transferred
(Selection Transfer) to Utterance View 1 by auto-
matically selecting the utterances in that view that
are already linked to that frame. This helps the
annotator to consider this frame as a possible an-
notation for some of the unlinked utterances, as
they can be quickly compared to other utterances
already linked to that frame.2 A second aspect of
connectedness between views is that filters applied
in connected views automatically filter out unre-
lated items in other connected views.

The item selection in a view v is determined
2A long-term motivation for this functionality is to lower

the learning curve associated with the NLU annotation task,
by allowing novice annotators to consult previous expert an-
notations for similar utterances.



by mouse-based selection in v, or, if v is con-
nected, by mouse-based selections in other con-
nected views. Finally, each view has a toolbar
(see Utterance View Toolbar for example) provid-
ing access to relevant operations for the kind of
items in the view. These operations can be cus-
tomized for specific applications, and can have ef-
fects that depend on the selected items in the dif-
ferent views. For example, in the figure, the user
has selected a range of unlinked utterances in Ut-
terance View 2. By clicking the link icon in that
view’s toolbar, the user can link all of these utter-
ances to the frame selected in the Frame View.

5 Evaluation

We have performed an initial evaluation of the
IORelator interface for SASO-EN NLU annota-
tion. We began with a corpus of 4,678 token user
utterances which had been captured as audio and
subsequently transcribed. In this domain, some
common transcripts such as yes, no, okay, and
others recur frequently; however, we require that
only one example of each utterance type be anno-
tated. Factoring out duplicates left 2,561 unique
utterance transcripts in need of annotation. We
then had a system developer (one of the authors of
this paper) annotate each of these 2,561 utterances
with its correct NLU output frame using IORela-
tor. This task was completed in 7.1 hours, or an
average of about 10 seconds per unique utterance.

6 Discussion and Future Work

We have found using IORelator to be substan-
tially faster than prior approaches to SASO-EN
NLU annotation, which have included linking ut-
terances to frames inside the Protégé GUI (us-
ing custom dialogue boxes and forms), or alter-
natively, using a simple text editor for annotation.3

This has made it easier to annotate enough training
data that the NLU module can achieve the high-
performance region of Table 1. Our annotators at-
tribute the speed-up to the rapid browsing, filter-
ing, and linking operations discussed in Section 4.

Future directions include evaluation of addi-
tional design goals for IORelator. These include

3While there has not been a formal study to quantify exact
annotation time for these previous approaches, we estimate
that the previous approach to annotation in Protégé, where
navigation and searching frames is more cumbersome, re-
quired at least 1 minute per utterance for an expert annotator.
Several schemes for annotation in a text editor have also been
implemented, but we estimate that even the fastest of these
required an expert about 20 seconds/utterance.

evaluating throughput for novice annotators or hy-
brid teams of novices and experts, efficiency of re-
vision and maintenance as opposed to initial an-
notation, inter-annotator agreement, and the extent
to which the throughput observed here transfers to
other NLU annotation schemes.

Acknowledgments

We thank our anonymous reviewers, Ron Artstein,
Anton Leuski, Arno Hartholt, Tom Russ, and
Kenji Sagae for helpful discussions. The project
or effort described here has been sponsored by the
U.S. Army Research, Development, and Engineer-
ing Command (RDECOM). Statements and opin-
ions expressed do not necessarily reflect the posi-
tion or the policy of the United States Government,
and no official endorsement should be inferred.

References
A. Burchardt, K. Erk, A. Frank, A. Kowalski, and

S. Pado. 2006. SALTO: a versatile multi-level an-
notation tool. In Proceedings of LREC.

H. Cunningham, D. Maynard, K. Bontcheva, and
V. Tablan. 2002. GATE: A framework and graph-
ical development environment for robust NLP tools
and applications. In Proceedings of ACL.

J. Geertzen, V. Petukhova, and H. Bunt. 2008. Evalu-
ating dialogue act tagging with naive and expert an-
notators. In Proceedings of LREC.

J. Geertzen. 2007. Ditat: a flexible tool to support
web-based dialogue annotation. In IWCS-7.

A. Hartholt, T. Russ, D. Traum, E. Hovy, and S. Robin-
son. 2008. A common ground for virtual humans:
Using an ontology in a natural language oriented vir-
tual human architecture. In Proceedings of LREC.

H. Knublauch, R.W. Fergerson, N.F. Noy, and M.A.
Musen. 2004. The Protégé OWL plugin: An open
development environment for semantic web appli-
cations. In Proceedings of the Third International
Semantic Web Conference, Hiroshima, Japan.

K. Sagae, G. Christian, D. DeVault, and D. R. Traum.
2009. Towards natural language understanding of
partial speech recognition results in dialogue sys-
tems. In Short Paper Proceedings of NAACL HLT.

D. R. Traum, W. Swartout, J Gratch, and S Marsella.
2008. A virtual human dialogue model for non-team
interaction. In L. Dybkjaer and W. Minker, editors,
Recent Trends in Discourse and Dialogue. Springer.

D. R. Traum. 2003. Semantics and pragmatics of ques-
tions and answers for dialogue agents. In Proceed-
ings of IWCS, pages 380–394.


