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Abstract
Reasoning about sound similarities improves the performance of a Natural

Language Understanding component that interprets speech recognizer output: we
observed a 5% to 7% reduction in errors when we augmented the word strings
with a phonetic representation, derived from the words by means of a dictionary.
The best performance comes from mixture models incorporating both word and
phone features. Since the phonetic representation is derived from a dictionary,
the method can be applied easily without the need for integration with a specific
speech recognizer. The method has similarities with autonomous (or bottom-
up) psychological models of lexical access, where contextual information is not
integrated at the stage of auditory perception but rather later.

Introduction
A standard architecture for spoken dialogue systems interprets the input language in
two steps: first, an Automatic Speech Recognizer (ASR) transforms the user’s speech
into a string of words, and then a Natural Language Understanding (NLU) component
turns these words into a meaning representation. This architecture represents an
efficient way to tackle the problem of understanding human speech by splitting it into
two manageable chunks. However, it comes at a cost of an extremely narrow bandwidth
for communication between the components: often the only information that passes
from the speech recognizer to the NLU is a string of words, while other information
contained in the speech signal is not accessible to the interpretation component (Litman
et al., 2009; Raymond and Riccardi, 2007; Walker et al., 2000). If the ASR output string
is deficient then the NLU will experience difficulties which may cause it to ultimately
misunderstand the input. The most straightforward way to address this issue is to
improve ASR accuracy, and in the long term, perfect or near-perfect ASR may make
the NLU problem for speech systems much more straightforward than it currently is.
In the meantime, however, we need to find ways that allow NLU better recovery from
speech recognition errors.

This chapter addresses a particular kind of deficiency – speech recognition errors in
which the ASR output has a different meaning than the actual speech input, but the two
strings of words are phonetically similar. An example (taken from the experimental
data described in the next section) is the question “Are you married?”, which in
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one instance was recognized as “Are you Mary?”. This question was presented to
a conversational character who cannot understand the word “Mary”, and if he could
he would probably give an inappropriate response. The character does know that he
is quite likely to be asked if he is married; but since he is not aware that “Mary”
and “married” sound similar, he cannot make the connection and infer the intended
question. Such confusions in ASR output are very common, with varying levels of
phonetic similarity between the speech input and ASR output. Some more subtle
examples from the data include “Are all soldiers deployed?” misrecognized as “Are
also just avoid”, and “just tell us how you can talk” misrecognized as “does tell aside
can tell”.

Speech recognizers typically encode information about expected outputs by means
of language models, which are probability distributions over output strings. However,
language models cannot fully eliminate this kind of close phonetic deviation without
severely limiting the flexibility of expression that users can employ. A typical
response to the problem is to relax the strict separation between speech recognition
and language understanding, allowing for more information to flow between the
processes. A radical approach eschews the word-level representation altogether and
interprets language directly from the phonetic representation; this has been shown to
be useful in call routing applications (Alshawi, 2003; Huang and Cox, 2006). Milder
approaches include building phonetic and semantic representations together (Schuler
et al., 2009) or allowing NLU to select among competing ASR outputs (Chotimongkol
and Rudnicky, 2001; Gabsdil and Lemon, 2004; Skantze, 2007). What is common to
all of these approaches is that they work with the speech signal directly, and thus incur
costs that are associated with working with speech data. Specifically, these approaches
require a substantial amount of speech data for training, and each specific solution is
committed to one particular speech recognizer with which the rest of the system is
integrated.

We present a different approach: we accept the output of an off-the-shelf speech
recognizer as-is (with trained domain-specific language models), and use a dictionary
to endow the NLU component with a way to compute phonetic similarity between
strings of words. We do not attempt to correct the ASR output through postprocessing
as in Ringger (2000), and we deliberately ignore detailed information from the speech
recognizer such as the word and phone lattices which are used internally by the speech
recognizer for computing the most likely output. Our approach thus avoids the costs
associated with training on speech data, allows replacing one off-the-shelf speech
recognizer with another, and yields performance gains even when there is little or no
speech data available to train with.

We demonstrate our approach using NPCEditor (Leuski and Traum, 2010), a
statistical NLU which is based on a classifier: for each input utterance, NPCEditor
selects one output out of a fixed set, based on a learned mapping between input and
output language models. Instead of creating input language models based on word
tokens, we translate each input word string into a string of phones using a dictionary;
we then create language models which include both word information and phonetic
information, which allows the NLU to select an output based on both word and phone
similarities between the input string and the training data. Our experiments show that
the best performance comes from mixture models, which combine and weigh separate
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language models for words, phones, and their respective n-grams.
The primary motivation for this work is to improve the performance of NLU in

the face of a less than perfect input word string. Our method does however touch on
a parallel debate in the psycholinguistic literature, regarding how humans recognize
spoken words: autonomous models assert that word recognition happens in a bottom-
up fashion, so the initial stages of word recognition are based only on the acoustic
signal, with contextual information integrated at a later stage (Marslen-Wilson, 1987;
Norris et al., 2000); interactive models make the opposite claim, namely that context
affects the earliest stages of word recognition (Marslen-Wilson and Welsh, 1978;
McClelland and Elman, 1986). Our method can be seen as an extreme implementation
of an autonomous model, where all the information about the speech signal is discarded
after a word is identified, and downstream interpretation processes must use other
knowledge in order to recover from errors.

The remainder of the chapter describes in detail the experiment setup and results,
and concludes with broader implications and directions for further study.

Method
Data
We evaluate our method using two sets of data collected from deployed virtual
question-answering characters – computer characters with an animated body, who
respond to human speech using their own speech and animated gestures. SGT Star
(Artstein et al., 2009) is a character who answers questions from potential recruits about
the U.S. Army, and is contained in a mobile exhibit; the twins Ada and Grace (Swartout
et al., 2010) are part of a fixed exhibit at the Museum of Science in Boston, where
they answer questions from visitors about exhibits in the museum and about science in
general. Characters in both systems can also answer questions about themselves, such
as the example above where SGT Star is asked if he is married. Each system has a
fixed set of pre-recorded responses (283 responses for SGT Star, 148 for the Twins),
and uses a statistical Natural Language Understanding component trained on a set of
example user utterances with a many-to-many mapping to appropriate responses. The
NLU is designed to select the most appropriate response to variable inputs which are
the result of speech recognition errors as well as variations in the phrasing of questions.

Visitor interaction with the characters is done primarily through trained handlers,
who relay the visitors’ questions and act as intermediaries between the visitors and the
characters. The handlers are familiar with the characters, and many of their utterances
are a precise word for word match of utterances in the characters’ training data. It is
these utterances that form the basis for our experiment, because for these utterances
we know the set of correct responses; if they were sent to the NLU as uttered, the
response would be perfect. But the utterances are processed by a speech recognizer,
which introduces errors that sometimes lead to incorrect interpretation. The purpose of
our experiments is to identify techniques for interpreting this speech recognizer output
more accurately.

Our test data contain 3498 utterances from the SGT Star domain and 7690
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Word Error Rate (%)
Data set N

Median Mean S.D.

SGT Star 3498 43 45 38
Twins 7690 20 29 36
Star Unseen 759 50 51 36

Table 1: ASR Quality for the different data sets

utterances from the Twins domain. All utterances were transcribed manually, and we
included in the set only those utterances whose transcriptions are identical to one of the
training utterances in their respective domains. The data come from actual deployments
of the characters, and each utterance contains the original speech recognizer output
retrieved from the system logs. Speech recognition was much better for the Twins
domain, with about half the word error rate (Table 1). In each domain, all of our
experiments use the same training and test data – the original utterance-response
links for training, and the speech recognizer output from the logs for testing. The
classification algorithm of the NLU is also the same in all the experiments, and the
differences are only in how the NLU constructs language models from the input data.
A response to a speech recognizer output is scored as correct if it is linked in the training
data to the corresponding manual transcription; otherwise it is scored as incorrect.

In addition to the above data, we investigated 759 utterances from the SGT Star
domain whose transcriptions were not found in the training data. This was done in order
to verify that our results are also valid when the NLU has to overcome variability in
phrasing on top of speech recognition errors. For these utterances there is no automatic
way to determine whether responses are correct, so all responses produced by the
various test conditions were rated manually as correct or incorrect. Previous studies
have shown that rating the appropriateness of on-topic responses is highly reliable in
both the SGT Star and Twins domains (Artstein et al., 2009; Swartout et al., 2010), so
we only used one rater for this purpose.

Natural Language Understanding
The Natural Language Understanding component we use is based on the selection
approach: meanings are assumed to constitute a closed, fixed set, and interpreting an
input utterance is defined as selecting the most appropriate meaning from that set. This
contrasts with the generation approach, where meaning representations are constructed
from smaller elements using some composition procedure. An advantage of the
selection approach is that each output is guaranteed to be a coherent and consistent
representation; a disadvantage is that a fixed set of meanings is typically less varied
than what can be achieved with a comparable generation approach. A selection-based
NLU can use any form of representation for output meanings; in our systems, outputs
are character responses – that is, the meaning of a user utterance is identified with the
most appropriate character response from a predetermined set. The task of the NLU is
to identify that response for each input.
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In our experiments we used NPCEditor (Leuski and Traum, 2010) – a text
classification system which is available for download as part of the ICT Virtual Human
Toolkit (http://vhtoolkit.ict.usc.edu). We summarize this work briefly here in order to
describe how we modified it to accommodate phonetic information.

NPCEditor employs a statistical language modeling approach called relevance
models (Lavrenko et al., 2002). The central idea is to compute an abstract
representation – a language model – for the ideal response to an input question, and then
select an available answer that is the closest to the ideal answer. The language model for
AQ – the ideal answer to the user’s question Q – is the probability P(w|AQ) that a token
sampled at random from the answer will be the token w, and is computed from training
data in the form of question-response pairs. The language model of AQ is compared
to the language models of all available character responses R – the probability P(w|R)
that a token sampled at random from the response will be the token w – and NPCEditor
selects the response with the closest language model to that of the ideal answer AQ.

The language model of each available response R is computed using Maximum
Likelihood Estimation (MLE) with Jelinek-Mercer smoothing (Bahl et al., 1983):

INSERT EQUATION 1 HERE

where #R(w) is the number of times token w appears in sequence R, |R| is the length of
sequence R, and λπ is a parameter that can be determined from the training data. The
language model of the idealized answer AQ is estimated using a cross-lingual relevance
model estimation

INSERT EQUATION 2 HERE

where the sum is over all linked question-response pairs {Q j,R j} in the character
database.

To compare the answer to the user’s question with a character response, NPCEditor
compares the corresponding distributions φQ(w) and πR(w) by applying Kullback-
Leibler (KL) divergence:

INSERT EQUATION 3 HERE

where the sum is over all tokens observed in character responses. The KL-divergence
is a dissimilarity measure, so NPCEditor uses −D(AQ||R) as the confidence score.

So far this discussion assumed that the vocabularies of the input and output consist
of a single token type (e.g. words). These tokens can be different for questions
and responses, but for a single utterance type we assumed that the tokens have the
same statistical properties. NPCEditor supports mixture models where the same
text string can be represented as, for example, a sequence of words and a sequence
of word pairs (bigrams). Leuski and Traum (2010) call these individual sequences
“fields.” NPCEditor implements a mixture language modeling approach that calculates
probability distributions for each individual field and then combines them using a
weighted mixture:

INSERT EQUATION 4 HERE
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Here the outer summation goes over every field l of interest in responses, while the
inner summation iterates over the vocabulary for that field. R(l) denotes the lth field
in a response sequence. The distribution φQ(l)(w) is similarly defined as a mixture of
probability distributions for the question fields:

INSERT EQUATION 5 HERE

where Q j(k) is the kth field in the question from the jth question-response pair in the
character database and qk,i is the ith word or token in the kth field of the input question.
Parameters αl and βk allow us to vary the importance of different fields in the mixture
and are determined from the training data.

Tokenization
NPCEditor builds language models based on tokens; the first step in interpreting an
input (whether for training or at runtime) is transforming that input into tokens. By
default, NPCEditor uses a word tokenizer which separates an incoming English text
into words (with some morphological analysis such as unifying certain noun and verb
inflections). Tokens are created for words and word bigrams, and the two types
of tokens constitute separate fields as described in the previous section. However,
word tokens do not carry any information about the phonetic form of the words they
represent.

To capture phonetic similarities between words we created custom tokenizer
plugins that parse the utterance text and produce additional fields that represent
phonetic information. Each string of words was transformed into phones using the
CMU Pronouncing Dictionary (http://www.speech.cs.cmu.edu/cgi-bin/cmudict) as in
the following example.

word: does the army pay well
phone: d ah z dh ah aa r m iy p ey w eh l

From this output we created five kinds of tokens: single words, word bigrams, single
phones, phone bigrams, and phone trigrams.

bigram: does the the army army pay pay well
biphone: d ah ah z z dh dh ah ah aa aa r r m m iy iy p p ey ey w w eh eh l
triphone: d ah z ah z dh z dh ah dh ah aa ah aa r aa r m r m iy m iy p iy p ey p ey w ey w eh w eh l

The phone n-grams deliberately ignore word boundaries, in order to allow recovery
from errors in boundary placement by the speech recognizer (as in the example from
the introduction, where “all soldiers” was misrecognized as “also just”).

We created three types of tokenizers that use the five kinds of tokens above. Simple
tokenizers use just one kind of token, “bag” tokenizers lump two or more kinds into
a single field, and mixture models combine two or more token types as distinct fields
in a mixture model. We use mnemonics of the form w[12]p[123] to designate the bag
and mixture model tokenizers – for example, w12p2 combines word unigrams, word
bigrams and phone bigrams. Altogether our experiments used 17 tokenizers, shown in
Table 2.
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Simple Bag Mixture

word w12 w12p1 w12 w12p1
phone w12p2 w1p2 w12p2
biphone w12p12 w1p12 w12p12
triphone w12p123 w1p123 w12p123

Table 2: Tokenizers used in the experiments

Results
Accuracy/return tradeoff
Comparing results from the different tokenizers is not straightforward, because
performance of the Natural Language Understanding component, NPCEditor, is not
easily boiled down to a single number. NPCEditor is more than just a classifier:
it also employs dialogue management logic designed to avoid the worst responses.
When faced with a novel input, NPCEditor first ranks all the available responses
according to the classifier’s confidence in the appropriateness of each response. If
the confidence score of the top-ranked response exceeds a threshold determined during
training, NPCEditor returns that response; if the best response falls below the threshold,
NPCEditor replaces the selected response with an “off-topic” utterance that asks the
user to repeat the question or takes initiative and changes the topic (Leuski et al., 2006).
Such failure to return a response, also called non-understanding (Bohus and Rudnicky,
2005), is usually preferred over returning an inappropriate one (misunderstanding).
The response threshold is set to provide an optimal balance between false positives
(inappropriate responses above threshold) and false negatives (appropriate responses
below threshold) on the training data; however, it turns out that the various tokenizers
yield very different return rates, making it impossible to compare them directly.

The capability to not return a response is crucial in keeping conversational
characters coherent, but it is not captured by standard classifier evaluation methods
such as accuracy, recall (proportion of correct responses that were retrieved), or
precision (proportion of retrieved responses that are correct). We therefore evaluate the
different tokenizers in a way that takes into account the ability to avoid responses for
certain questions, using an error return plot – a graphical representation of the tradeoff
between errors and failures to return a response (Artstein, 2011). For each tokenizer we
log the top-ranked response for every test utterance, together with its confidence score.
Then at each possible threshold we plot the error rate (number of incorrect responses
divided by total inputs) against the non-return rate (failures to respond divided by total
inputs). Plots are done separately for each tokenizer because confidence scores are
based on parameters learned during training, and are therefore not comparable across
tokenizers.

Figure 1 shows the curves for five representative tokenizers: non-returns are plotted
on the horizontal axis and corresponding error rates on the vertical axis; at the extreme
right, where no responses are returned, error rates are necessarily zero for all tokenizers,
while at the extreme left, the error rate is equivalent to accuracy under a forced choice.
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INSERT FIGURE 1 ABOUT HERE

Figure 1: Trade-off between errors and non-returns (Wang et al., 2011, c�AAAI)

Lower curves indicate better performance, since a better tokenizer will give fewer
errors at all return levels, or at least at all the relevant ones (for a typical application it
is acceptable to not return 10%–30% of the responses).

We note a number of observations from these charts. First of all, the scales are
different: when no off-topics are returned we get around 30% errors in the SGT Star
domain, 10% errors in the Twins domain, and 45% errors for the SGT Star unseen
utterances. Nevertheless, the relations between the curves are rather consistent between
the three plots, which suggests that the results may generalize to other domains. As a
baseline we take the simple word tokenizer. Other simple tokenizers, represented here
by biphones, are usually worse than word tokens, though there is some variability – for
example, we see that the biphone tokenizer on the SGT Star data is better than words
at low non-return rates but worse at higher non-return rates. A peculiar case is the
simple phone tokenizer (not shown), which is substantially worse than words across
the entire range on the SGT Star data, but better than words on the Twins data; we do
not have an explanation for this behavior. Bag-of-features tokenizers, represented here
by w12p2-bag, are also usually worse than word tokens, especially at higher non-return
rates (above 20% non-return for SGT Star and above 10% for Twins).

Where we do get substantial performance improvements is the mixture models.
The best performing tokenizer, for all three datasets and across the entire range of
return rates, is w12p2. For the SGT Star domain it beats the word tokenizer by 5%–7%
until the latter’s error level drops to 10%, and continues to provide more modest gains
at higher non-return rates. The other mixture models which include the same features,
w12p12 and w12p123 (not shown), come fairly close. Other mixture models do not
show a consistent improvement over word tokens. For example, w1p123 is better than
words on the SGT Star domain, but much worse than words on the Twins domain;
similar mixture models, containing word unigrams and a variety of phonetic features
but not word bigrams, display similar behavior. The mixture model w12 (not shown),
containing words and bigrams without any phonetic features, is very similar to word
tokens on all three domains.

It turns out, then, that the necessary features for high performance are words,
word bigrams, and phone bigrams. At this point we can only conjecture about the
reason for this. The phonetic features allow the NLU to recover from certain speech
recognition errors; phone unigrams probably do not carry sufficient information, which
is why bigrams are required. However, phonetic features alone might cause too much
confusion, which is why word information is also needed. Apparently, both word
unigrams and bigrams are required to offset the phonetic confusion, though it is not
exactly clear why, especially given that without phonetic features, words and bigrams
are practically equivalent to words alone. At any rate, the experiments demonstrate that
when used appropriately, phonetic features derived from a dictionary can improve the
performance of NLU in the face of speech recognition errors.
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Full ranking of responses
For the implemented systems of SGT Star and the Twins, NPCEditor always chooses
the top-ranked option as the character response (if the confidence score is high enough).
For some applications, however, it may be desirable to return all of the appropriate
responses rather than only the best one; this may be useful, for instance, if the
Natural Language Understanding component passes its result to a dialogue manager
downstream. NPCEditor evaluates and ranks all of the responses, and certain input
utterances may have more than one appropriate response. If multiple responses
are returned, one wants to ensure that the correct responses are consistently ranked
above the incorrect responses, so that a maximal number of correct responses are
returned with a minimal number of incorrect ones. Discrimination between correct
and incorrect responses can be viewed with a Detection Error Tradeoff (DET) curve
(Martin et al., 1997); these curves plot the miss rate (correct responses below threshold
as a proportion of all correct responses) against the false alarm rate (incorrect responses
above threshold as a proportion of all incorrect responses).

INSERT FIGURE 2 ABOUT HERE

Figure 2: SGT Star discrimination among all responses (Wang et al., 2011, c�AAAI)

Figure 2 shows DET curves for the same 5 tokenizers of Figure 1. Each curve,
corresponding to a single tokenizer, shows the false alarm rate on the horizontal axis
plotted against the miss rate on the vertical axis, based on the scores of all responses
to all test utterances. Lower curves indicate better discrimination between correct and
incorrect responses. The best discrimination at very low (under 2%) and very high
(over 40%) false alarm rates is achieved by the word tokenizer, while in the middle
range, better discrimination is achieved by w1p123. Tokenizer w12p2, the consistent
top performer on the task of picking the best single response, is among the worst in
discriminating among the full set of responses. Explaining this observation would
require a more detailed investigation.

Discussion
Our experiments show that adding phonetic features, derived from a dictionary,
can substantially improve the performance of a Natural Language Understanding
component. This is because the phonetic features allow the NLU to recover from
certain kinds of speech recognition errors, where the recognizer output is distinct
from the actual words uttered by the speaker but the words are phonetically similar.
The phonetic dictionary used in tokenizing the ASR output gives the NLU access
to information that would otherwise not be available, allowing it to reason about
phonetic similarity between strings. However, the transformation from words to phones
also loses information, most importantly about word boundaries. This highlights the
importance of the word level, and explains why the best performers are mixture models,
which make use of both word and phone-level information.
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The contrast in relative performance of w12p2 in Figures 1 and 2 points out that
it is important to evaluate the NLU in the manner that it will be actually used. The
tokenizer that does best on the task of picking a single best response is not the top
performer on the task of returning multiple responses, and therefore one might pick a
different tokenizer depending on whether one wants to maximize accuracy of 1-best or
n-best, or whether one cares more about false positives or false negatives.

Our method is extremely practical: it is easy to implement, does not require any
communication overhead, is not tied to a specific speech recognizer, and can be applied
to the output of an off-the-shelf speech recognizer without access to its code: all of the
experiments presented in this chapter were performed on the text output of a speech
recognizer, without ever accessing the original audio. It is possible, however, that the
actual phonetic content of the utterance, as determined by the speech recognizer, would
be even more useful. We have seen promising results from initial experimentation with
using a phone recognizer to extract information directly from the speech signal, but
further investigation is needed.

We chose to experiment with an NLU component to which adding phonetic
information is fairly straightforward, because it treats its input as tokens without
additional structure. Our method would probably transfer to other applications that use
language modeling of spoken utterances, such as Machine Translation. However, NLU
architectures such as parsing assign more meaning and structure to the word tokens,
so our method would not transfer easily. Nevertheless we believe that any components
that process spoken language (or, more specifically, ASR output) would benefit from
an ability to reason about phonetic similarities between words or strings. Our method
may also be useful for systems that process text interaction, to the extent that users
make phonetically based errors such as substituting typed words with similar sounding
words.

We end with an observation about the application of this research beyond Natural
Language Processing. As we mentioned in the introduction, our method is intended
to improve machine performance and not as a theory of meaning representation or
a model of human cognition. Nevertheless, the phonetic shape of words does affect
formal semantic representations in certain linguistic constructions (Artstein, 2002),
and humans do possess the ability to reason about phonetic relatedness of text strings.
Passonneau et al. (2010) show that human wizards are good at recovering from ASR
output errors, and in a pilot study we found that a human annotator presented with
ASR output and simply guessing the wording of the original utterances was able to
reduce word error rate from 59% to 42%, on a sample of Twins data specifically biased
towards higher word error rates. We as humans are familiar with the feeling of failing
to understand the words of an utterance, only to make sense of it a few seconds later.
So the ability to perform phonetic reasoning and post-processing of an utterance should
form some part of a model of human language comprehension.
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Key terms and definitions
Automatic Speech Recognition (ASR): The process of transforming a sound signal
carrying human speech into a text representation of the words in the speech by means
of a computer. The acronym ASR is also used for Automatic Speech Recognizer, a
software component that performs this function.

Bigram: A sequence of two elements (e.g. two consecutive words, phones, or
characters).

Classifier: A software component that associates each input with one or more
predetermined classes. In the selection approach to Natural Language Understanding,
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each class is a meaning representation, and each input utterance is interpreted as one
of those fixed meanings.

Language model: A representation of text as a probability distribution over tokens.
Misunderstanding: An incorrect interpretation that is output by a system which is

not aware that the interpretation is incorrect.
N-gram: A sequence of elements found in a text, for instance a sequence of words,

phones, or characters. N may be replaced by a prefix denoting the length of the
sequence, so unigram denotes a sequence of length one, bigram a sequence of length
two, and trigram a sequence of length three.

Natural Language Understanding (NLU): A process of transforming a text in
human language into a representation of meaning that can be used by a computer.
Also refers to a software component that performs this function.

Non-understanding: The failure of a system to output a correct interpretation when
the system is aware that it is not able to deliver an interpretation.

Phonetic: Relating to the sounds of a language.
Token: A fundamental (atomic) unit of representation of text. From the perspective

of the system that analyzes the text, tokens do not have an internal structure. Many text
processing systems use words as tokens, though tokens can also be smaller than words
(characters, sounds), larger than words (word pairs, triples), or not directly related to
words (syntactic features, meaning representations).

Trigram: A sequence of three elements (e.g. three consecutive words, phones, or
characters).

Word Error Rate: A measure of speech recognition quality. Defined as the edit
distance (word substitutions, insertions and deletions) between the true (transcribed)
string of words and the string output by the speech recognizer, divided by the length
(in words) of the true string.
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