Chapter 1

THE INFORMATION STATE APPROACH
TO DIALOGUE MANAGEMENT

David R. Traum
University of Southern California Institute for Creative Technologies

18274 Fiji Way, Marina del Rey California 90292 USA

traum@ict.usc.edu

Staffan Larsson
Department of Linguistics, Gothenburg University, Bozx 200
SE-405 30 Gdteborg, Sweden

sl@ling.gu.se

Abstract

Keywords:

We introduce the information state approach to dialogue management,
and show how it can be used to formalize theories of dialogue in a man-
ner suitable for easy implementation. We also show how this approach
can lead to better engineering of dialogue management components of
dialogue systems, allowing for separate development of modular system
fundamentals, dialogue theories, and domain-specific dialogue systems,
in a manner where components can more easily be reused. ‘TrindiKit
is a tool instantiating the lowest level, and allowing straightforward
implementation of dialogue theories formalized using the information
state approach. We briefly describe several dialogue systems built using
TrindiKit, and how components have been successfully further devel-
oped and reused in other projects.

Dialogue Management, information state, TrindiKit, GoDiS, EDIS

1. Introduction

There are currently many quite different approaches to dialogue man-
agement in existing and proposed dialogue systems. It is difficult to com-
pare these approaches, especially divorced from the systems and specific
tasks for which these systems have been designed. A crucial issue for

2

progress in dialogue management is to be able to evaluate dialogue man-
agement approaches, bringing theoretical approaches closer to practical
implementations, and having a better sense of the appropriate starting
point for a new dialogue system: how much (of both theory and imple-
mentation) can be carried over from previous efforts, and what might
need to be added/changed. This article describes an approach toward
these issues, along with some development aids for producing dialogue
management in dialogue systems, as developed in the TRINDI project.!
A first issue is a lack of universal agreement about what dialogue
management is. We can trivially define dialogue management as the
functions performed by a dialogue manager component of a dialogue
system, but this, if anything, makes the situation even worse, since dif-
ferent systems break up the division of functions to software components
very differently. Some systems include in a dialogue manager component
more or less than others of such functions as contextual interpretation,
domain reasoning and action, message routing, and natural language
generation. Other systems, e.g., (Allen et al., 2001; Blaylock et al.,
2002) have no component called a dialogue manager, assigning dialogue
management functions to other modules. To be clear, we define dialogue
management as the following functions within a dialogue system:

1 updating the dialogue context on the basis of interpreted commu-
nication (both that produced by the system and by other commu-
nicating agents, be they human “user” or other software agent)

2 providing context-dependent expectations for interpretation of ob-
served signals as communicative behavior

3 interfacing with task/domain processing (e.g., database, planner,
execution module, other back-end system), to coordinate dialogue
and non-dialogue behavior and reasoning

4 deciding what content to express next and when to express it

Some of these functions are naturally closely-related to other func-
tions, and so, e.g., one might want to have the same software component
that manages the context updates actually perform context-based inter-
pretation, alleviating the need for communications of expectations on
one side, and interpretations on the other. In this case, from our point
of view, we would say that this module (whether it is called a “Dialogue
Manager” or some other name) is performing both dialogue management
and other dialogue system functions (e.g., interpretation). Many of these
decisions about which functions to allocate to which components (and

Information State approach 3

how many different components there should be) are decided purely lo-
cally to the development of a specific dialogue system for a particular
domain and task. Sometimes these decisions are based on the data-
flow for a particular task, and may yield efficiency and simplicity gains
for a particular system, but often these decisions are made for external
reasons, such as the expertise of particular team members, or the avail-
ability of existing software tools. Unfortunately, this somewhat arbitrary
decision on assigning functions to software modules creates problems for
reuse of components. The efficiency-based determinations for one sys-
tem don’t necessarily carry over to a next system, often requiring a more
radical redesign for a new system than might be necessary with other
boundaries. Also, there has not been much in the way of support for
dialogue management reuse, since dialogue management has often been
performed as part of system-specific and domain-specific modules.

We propose two contributions toward solving the problem of dialogue
management re-use. First, a unifying view of dialogue management,
that can help organize the relationship between dialogue theories and
implementations, and secondly, software tools that can help to achieve
reusable dialogue systems. The unifying view includes a proposal to
formalize dialogue management functions in terms of information state
update. Key to this approach is identifying the relevant aspects of infor-
mation in dialogue, how they are updated, and how updating processes
are controlled. This simple view can be used to compare a range of ap-
proaches and specific theories of dialogue management within the same
framework (as well as facilitating hybrid approaches).

The term INFORMATION STATE of a dialogue represents the informa-
tion necessary to distinguish it from other dialogues, representing the
cumulative additions from previous actions in the dialogue, and motivat-
ing future action. For example, statements generally add propositional
information; questions generally provide motivation for others to pro-
vide specific statements. Information state is also referred to by similar
names, such as “conversational score”, “discourse context” or “mental
state”. Generally, although not necessarily, we will also talk about the
information state of participants of the dialogue, representing the infor-
mation that those participants have at a particular point in the dialogue
— what they brought with them to the dialogue, what they pick up, and
how they are motivated to act in the (near) future.

In the next section, we present the information state approach, which
allows specific theories of dialogue to be formalized, implemented, tested,
compared, and iteratively reformulated. Key to this approach will be
a notion of UPDATE of information state, with most updates related to
the observation and performance of DIALOGUE MOVES. In Section 3, we

4

describe how the information state approach can be used to help provide
reusable components for dialogue system design, separating out a basic
software engineering layer, a dialogue theory layer, and a task/domain
specific layer. We follow this with sections describing the bottom two
layers: first, in Section 4, we describe TrindiKit, a tool that provides
the basic software engineering glue that can be used to implement a dia-
logue manager at a level closer to linguistic theories than other existing
toolkits. In Section 5, we illustrate some of the systems that have been
built using TrindiKit to implement different theories of dialogue. Fi-
nally, in Section 6, we describe how the separation of architecture layers
described in Section 3 has led to actual reuse in a number of dialogue
systems beyond those described in Section 5.

2. The Information State Approach

Just as dialogue systems are largely incommensurable, so are dialogue
theories. Often, when comparing different theories, functionally similar
concepts are given different names, or the same name is used for quite
different concepts. It can also be difficult to tease apart the relative
contributions of the underlying formal tools vs the specific aspects of
the dialogue theory. Moreover, there is often quite a gap between theo-
ries of dialogue that linguists or philosophers of language might devise
and the theories directly implemented in dialogue systems. Dialogue
systems can provide a great testbed for theories of dialogue, since they
can straightforwardly manifest behavior of an implemented theory as
the dialogue progresses, however, this is true only in so far as the system
incorporates an accurate representation of the theory. To help in this
regard, we present a method of specifying a dialogue theory that makes
it straightforward to implement, and, as described in the following sec-
tions, tools to help implement a dialogue theory specified along these
lines.

We view an information state-based theory of dialogue as consisting

of:

m a description of the informational components, including as-
pects of common context as well as internal motivating factors
(e.g., participants, common ground, linguistic and intentional struc-
ture, obligations and commitments, beliefs, intentions, user mod-
els, etc.).

» formal representations of the above components (e.g., as lists,
sets, typed feature structures, records, Discourse Representation
Structures (DRSs), propositions or modal operators within a logic,
etc.).

Information State approach 5

m a set of dialogue moves that will trigger the update of the infor-
mation state. These will generally also be correlated with exter-
nally performed actions, such as particular natural language ut-
terances. A complete theory of dialogue behavior will also require
rules for recognizing and realizing the performance of these moves,
e.g., with traditional speech and natural language understanding
and generation systems.

m aset of update rules, that govern the updating of the information
state, given various conditions of the current information state and
performed dialogue moves, including (in the case of participating
in a dialogue rather than just monitoring one) a set of selection
rules, that license choosing a particular dialogue move (or set of
dialogue moves) to perform given conditions of the current infor-
mation state.

= an update strategy for deciding which rule(s) to apply at a given
point, from the set of applicable ones. This strategy can range
from something as simple as “pick the first rule that applies” to
more sophisticated arbitration mechanisms, based on game theory,
utility theory, or statistical methods.

It is important to distinguish information state approaches to dia-
logue modeling from other, structural, dialogue state approaches. These
latter approaches conceive a “legal” dialogue as behaving according to
some grammar, with the states representing the results of performing
a dialogue move in some previous state, and each state licensing a set
of allowable next dialogue moves. The “information” is thus implicit
in the state itself and the relationship it plays to other states. It may
be difficult to transform an information state view to a dialogue state
view, since there is no necessary finiteness restriction on information
states (depending on the type of information modeled), and the motiva-
tions for update and picking a next dialogue move (using update rules,
and update strategy) may rely on only a part of the information avail-
able, rather than the whole state. On the other hand, it is very easy
to model dialogue state as information state: the information is the di-
alogue state, itself. This is easily modeled as a register indicating the
state number (for finite state models, or a stack for recursive transition
networks). The dialogue moves will be the same moves that are used in
the dialogue state theory, the update rules will be the transitions in the
dialogue state theory, formulated as an update to a new state, given the
previous state and performance of the action, and the update strategy
will be much the same as in the transition network (i.e., deterministic
or non-deterministic, etc.)

Structural dialogue state approaches have often been contrasted with
plan-based approaches to dialogue modeling (e.g., by (Cohen, 1996;
Sadek & De Mori, 1998)). Structure-based approaches are usually viewed
as viable for simple, scripted dialogues, while plan-based approaches,
though more complex and difficult to embed in practical dialogue sys-
tems, are seen as more amenable to flexible dialogue behavior. Plan-
based approaches are also criticized as being more opaque, especially
given the large amount of procedural processing and lack of a well-
founded semantics for plan-related operations. An information-state ap-
proach allows one to fruitfully combine the two approaches, using the
advantages of each. The information state may include aspects of dia-
logue state as well as more mentalistic notions such as beliefs, intentions,
plans, etc. Moreover, casting the updates in terms of update rules and
strategies that apply the rules under appropriate conditions provides for
a more transparent, declarative representation of system behavior than
most procedural programs, rendering the resulting dialogue manager
easily amenable to experimentation with different dialogue strategies.

In the rest of this section, we will present the aspects of information
state in a little more detail. To keep a degree of concreteness, we will
make reference to an example theory of information state developed by

Cooper and Larsson, described in more detail in (Cooper et al., 1999;
Traum et al., 1999; Bohlin et al., 1999).

2.1 Informational Components

Information state is usually not conceived of as a monolithic node in
a transition network (as with dialogue state), but rather as consisting
of several interacting components. There is a wide range of possibili-
ties as to what kinds of components should be used to model dialogue.
The first choice point comes as to whether to model the participants’
internal state, or more external aspects of the dialogue. There are also
many ways of modeling the internal state of a participant. One can
choose to model the mental state of the agent (attitudes such as belief,
desire, intention, along with social correlates such as mutual belief, joint
intention, and obligation) (e.g., (Bretier & Sadek, 1996; Traum & Allen,
1994)), or one can take a more structural view of the dialogue, concen-
trating on the performance of actions and various sorts of accessibility
relationships. (e.g., (Ahrenberg et al., 1990)). It may also be useful
to distinguish components of information state into static and dynamic
aspects. The former are those aspects of information state that are not
expected to change during the course of a dialogue, but are still very
useful for modeling the progression of the dialogue. Examples of static

Information State approach 7

information state components could include things like domain knowl-
edge, or knowledge of dialogue conventions. It depends on the type of
dialogue being modeled, and the scope of the conversation as to which
aspects will be assumed to be static vs. dynamic (e.g., contrasting a
knowledge acquisition system vs. a question answering system — the
former may want to treat domain knowledge as dynamic, while the lat-
ter would see it as static). Marking some information as static may
have some advantages in efficient implementation, since various com-
pilation shortcuts and efficient memory allocation techniques could be
performed. It is still good practice to have declarative knowledge sources
rather than implicit knowledge in program (or finite state automaton)
control structure, to be able to reuse the same knowledge for different
dialogue situations.

Our example information state is a simplified version of the dialogue
game board which has been proposed by Ginzburg (Ginzburg, 1996a;
Ginzburg, 1996b; Ginzburg, 1998). There is some information assumed
to be private (including beliefs, and an agenda of actions to perform
in the dialogue) and some that is assumed to be shared (propositions
assumed to be shared beliefs, questions under discussion (QUD), and the
latest dialogue move performed (/m)). This small set of informational
elements was used to track the behavior of participants in information
seeking dialogues, including asking and answering (potentially elliptical)
questions and accumulating information (Cooper et al., 1999; Poesio
et al., 1999).

2.2 Formal Representations

Given a choice of what aspects of the dialogue structure and the par-
ticipants’ internal state to model, the question then arises as to how to
model them. There are a wide number of choices, from simple abstract
data types, to more complex informational systems, such as logics (with
associated inference systems) and statistical systems of various flavors.
These choices will be related to the particular theory of accessibility
of these elements, and will also affect other processing issues, such as
comprehensiveness and efficiency. As an example, consider an aspect of
information state such as actions to be performed in the dialogue (e.g.,
an agenda, plan, or other such bundle of intentions). There’s a choice as
to whether to represent tokens separately (e.g., with some sort of list) or
just types, not distinguishing between multiple tokens of the same type
(e.g., with a set). Given a choice of representing a list, there is still the
question of accessibility — should it be a FIFO queue, a LIFO stack, or
some more open structure, allowing access to the whole list? Likewise,

8

if an agent’s beliefs are represented, should this be a set, some sort of
ordered list, or a complete logical inference system, in which implicit
beliefs are also said to hold given some configuration of explicit beliefs?

BEL : SET(PROP)
PRIVATE
AGENDA : STACK(ACTION)
(1) BEL : SET(PROP)
SHARED QUD : STACK(QUESTION)
LM : Move

Our example information state is represented as a record (Cooper &
Larsson, 1999), as shown in (1). Here private and shared information are
represented as sub-records, each with several fields. Each field is either a
value, a set or a stack, with the type of information (proposition, action,
question or move) indicated.

2.3 Dialogue Moves

Dialogue moves are meant to serve as an abstraction between the large
number of different possible messages that can be sent (especially in a
natural language) and the types of update to be made on the basis of
performed utterances. Dialogue moves can also provide an abstract level
for content generation. As with information components, there are also
a number of dialogue move taxonomies to choose from; some principles
regarding this issue are outlined in (Traum, 2000). There must be at
least sufficient types of dialogue moves to provide the different kinds of
updates desired. The set of dialogue moves to choose is also influenced
by the task of language interpretation — how easy will it be to (reliably)
determine that one move vs. another has been performed? Another
complicating issue is how to capture the inherent multi-functionality
of utterances — with complex moves and move taxonomies, where each
move has multiple functions, or with a set of more simple moves, one per
function, in which case a single utterance will embody multiple moves.
Dialogue moves are often conceived of as speech-acts in the sense of
(Searle, 1969), but this is not a necessity, dialogue moves could be any
mediating input, e.g., logical forms or even word-lattices augmented with
likelihoods.

Our example information state theory uses only two moves, ask and
answer.

2.4 Update Rules

Update rules formalize the way that information state is changed as
the dialogue progresses. Each rule consists of a set of applicability con-
ditions and a set of effects. The applicability conditions specify aspects

Information State approach 9

of the information state that must be present for the rule to be appro-
priate. Effects are changes that will be made to the information state
when the rule has been applied (assuming that all conditions hold). Up-
date rules are meant to encapsulate coherent bundles of change to the
information state, given a particular theory of dialogue. While atomic
conditions and effects are built from the set of possible operations on an
abstract datatype, update rules specialize these operations further to be
specific (potentially complex) building blocks of a dialogue theory.
Continuing our example information state theory, the rule for adding
a question to QUD if an ask move has been performed is shown in (2).
This rule has two conditions: that the latest move was of type ask, and
that the top of the agenda was the action of raising a question, the effects
are to pop this item from the agenda, and push onto QUD the question
that is the content of both the raise agenda item and the ask dialogue
move. Other update rules in our sample information state theory include
rules to select an answer move on the basis of the top of the agenda (3),
to integrate an answer (possibly elliptical) from the user relevant to the
topmost question on QUD (4), and to remove the question from the
QUD if a proposition resolving the question is in the shared beliefs (5).

U-RULE: integrateSysAsk
val(SHARED.LM, ask(usr,Q))

PRE: . ..
fst(PRIVATE.AGENDA, raise(Q))

— push(SHARED.QUD, Q)
' pop(PRIVATE.AGENDA)

(2)

U-RULE: selectAsk
(3) PrE: { fst(PRIVATE.AGENDA, raise(Q))
EFF: { set(NEXT_MOVE, ask(Q))

U-RULE: integrateUserAnswer
val(SHARED.LM, answer(usr,A)),
fst(SHARED.QUD, Q)

DOMAIN :: relevant(A, Q)
DOMAIN :: reduce(@, A, P)
EFF: { add(SHARED.BEL, P)

U-RULE: downdateQUD
fst(SHARED.QUD, @)
PRE

(5)

in(SHARED.BEL, P)
DOMAIN :: resolves(P, Q)
EFF: { pPOp(SHARED.QUD)

2.5 Update Strategy

Along with the set of update rules, a strategy for how to apply the
rules is needed. This is, in many cases, going to be crucial for the design

10

of the rules themselves. Given a particular update strategy, one may
need to make adaptations to the rules, and perhaps also aspects of the
information state itself, in order to guarantee a particular sequence of
rule applications. There’s also a question of whether to have separate
strategies for choosing different types of update rules (i.e., for obser-
vation and selection of dialogue moves), and whether these processes
can be ordered or asynchronously applied. Some of the types of update
strategies we have considered include:

1 Take the first rule that applies (iteratively until no rules apply)
2 Apply each rule (if applicable) in sequence

3 Apply rules according to class

4 Choose among applicable rules using probabilistic information

5 Present choices to user to decide (for development modes)
For our sample information state, we use algorithm 1, above.

2.6 Discussion

We have presented a five component model of the formalization of
dialogue theories as information state update. There is a synergy be-
tween choices for the components of information state: the conceptual
notions, formal representations, dialogue moves, update rules, and up-
date strategy. A complete theory of dialogue update will need to include
a smoothly interacting combination of these aspects. However, it is still
very possible to hold some of them constant while trying out different
possibilities for the others. E.g., different formal representations for a
concept, different rules for doing updates, or different update strategies
for applying rules.

Given the sample informational components described above, we can
track information states in simple information-seeking dialogue. A short
question-answer exchange is illustrated in Figure 1.1. Before the ex-
change, the system has an agenda item to raise the question about the
user’s destination. This meets the conditions for update rule (3). After
the system utterance, the update algorithm will apply rule (2). After the
user utterance, rule (4) will check that the answer matches the question
topmost on QUD, and if so, will integrate the answer into the shared
beliefs, and then rule (5) will pop the question off the QUD.

Information State approach 11

PRIVATE = [BEL = {} N
AGENDA = (raise(?s.dest-city(z)), raise(...), ...)
BEL = {}

SHARED = [Qup = ()]
LM =

U-RULE: selectAsk
EFF: { set(NEXT_MOVE, ask(?z.dest-city(z)))

Sys: Where do you want to go?
U-RULE: integrateSysAsk

EFF: push(SHARED.QUD, ?z.dest-city(z))
) pop(PRIVATE.AGENDA)

PRIVATE = BEL = {} . .]
AGENDA = (raise(?x.depart — city(x)),...)
BEL = {}

SHARED = [QUD = (?w.dest-city(z))]
LM = ask(7z.dest-city(z))

Usr: Malvern

U-RULE: integrateUsrAnswer

EFF: { add(SHARED.BEL, dest-city(malvern))
U-RULE: downdateQUD

EFF: { pop(SHARED.QUD)

BEL = {}
PRIVATE = . .
AGENDA = (raise(?z.depart-city(z)), ...)
BEL = {dest-city(malvern)}
SHARED = Qub = ()
LM = answer(malvern)

Figure 1.1. FExample Dialogue and associated information state and updates

3. A multi-level architecture for reusable
dialogue management

Building theoretically adequate dialogue managers for specific dia-
logue tasks is a difficult endeavor because multiple types of expertise
are required. At a basic level, one must handle the tasks involved with
managing a complex software system, generally involving multiple com-
ponents, inter-component communication, and complex data manipula-
tion. Another requirement is expertise in the dialogue theory itself and
intricacies of how it should be applied in different circumstances. Finally,
there is the issue of engineering a generic system to a particular task and
domain, requiring domain expertise and domain-related processing (e.g.,

domain & language domain-specific
resources system

Figure 1.2. Multi-level architecture

database creation and maintenance). It is rare that a single individual
has sufficient expertise in all three areas to quickly build a state of the
art dialogue system. Thus, separating these three levels into different
software components can be a big win, allowing individuals to concen-
trate on only a subset of the issues, more easily collaborating to build a
complete system. Moreover, separating these levels into distinct compo-
nents can make it easier to reuse appropriate parts in multiple systems
and allow parallel development. Figure 1.2 shows our multi-level archi-
tecture for dialogue management.

At the lowest level of the architecture shown in Figure 1.2, the is-
sues are those of software engineering to support easy implementation
of dialogue theories. As opposed to those toolkits built for impoverished
theoretical constructs, such as finite state dialogue transition networks
(Sutton & Cole, 1998), we provide tools for directly implementing a di-
alogue theory formalized using the information state approach outlined
in the previous section. As described in the next section, these tools
include: extensible abstract data types for implementing the informa-
tion components, methods for specifying dialogue moves, writing update
rules and strategies, and running the system in conjunction with other
modules (e.g., language interpretation and generation) of a dialogue sys-
tem.

Section 5 describes some of the implemented dialogue systems that
have been built using this toolkit, implementing different dialogue theo-
ries formulated as information state. Parts or all of these systems have

Information State approach 13

been successfully carried over to different domains and tasks, by the
uses of different resources and, where necessary, adapting the theory for
specific genres of dialogue, as discussed in Section 6.

4. TrindiKit: A Dialogue Move Engine Toolkit

Developing a dialogue theory using the information-state approach de-
scribed in the previous section yields a computational theory of dialogue
that naturally lends itself to implementation. We call the implemen-
tation of such a theory of dialogue dynamics a Dialogue Move Engine
(DME), since its main functions are updating information state based
on the observance of moves and selecting moves to be performed. This
DME, together with some connective material, forms the dialogue man-
agement and discourse tracking aspects of a dialogue system. A complete
dialogue system would need modules (or sets of modules) to perform at
least the following additional functions:

m user interface — to receive input from and present output to the
user.

m interpretation — to calculate from the input which dialogue moves
have been performed, adding these to a special latest move part of
the information state.

m generation — to take the contents of the special next move part of
the information state, and produce the output.

m control — to wire together the other modules, either serially or in
parallel.

As part of the TRINDI project and its sequel STRIDUS, and described
more fully in (Larsson et al., 1999), we have developed a DME toolkit
called TrindiKit, which provides the basic architecture as well as facilities
for implementing theories of information state. The general architecture
of TrindiKit is shown schematically in Figure 1.3. Dialogue manage-
ment is handled by the control module, the DME and the information
state.? The DME can consist of one or multiple UPDATE MODULES, each
containing a different set of rules and potentially a different algorithm.
Typically the DME contains an update module and a selection module,
encapsulating the functions of integrating observed dialogue moves, and
selecting new ones for the system to say. Under an architecture of this
sort, it is up to the control module as to how to interleave these two
functions.

The components of the architecture are the the total information state
(TIS), consisting of the information state proper (IS), as well as interface

14

-~ Dialogue Mowe Engi

» ,"/ "‘iii\\ PR, N
A e C uptae) [(upcatey| | (updte)
IE‘ Input Interpretation | }(pd)l N)
‘ [T L
Y /
777777777 e e]
T YR ——
I - 5 & B
=N = o eh = 13!
s g S ‘%‘ L E 1 O
® Resource Interface ! ral g 1 8 L oh L
TR s IR [
————— BT - il
v LS L

|:| Obligatory component

Optional component

plan library [N

Figure 1.3. The TRINDI DME Architecture

variables for communicating with language processing modules and non-
linguistic resources; the Dialogue Move Engine, consisting of one or more
DME modules; other dialogue system modules (DME-external); and a
control module, wiring together the other modules, either in sequence
or through some asynchronous mechanism. The IS is specified using
abstract data types, each permitting a specific set of queries to inspect
the type and operations to change it. These are the building blocks of
update rules, which can be used by other modules to inspect and change
the information state in coherent ways.

Some of the components are obligatory, and others are optional or
user-defined. To build a system, one must minimally supply an informa-
tion state type, at least one DME module — consisting of TIS update rules
and an algorithm, and a control module, operating according to a control
algorithm. Any useful system is also likely to need additional modules,
e.g. for getting input from the user, interpreting this input, generat-
ing system utterances, and providing output for the user. The other
modules will generally communicate with the rest of the system through
designated interface variables. Other resources, such as databases, plan
libraries, etc., can also be integrated into the system, using an interface
that allows the same kinds of queries and operations as for the IS proper,
allowing update rules to be oblivious as to whether the components are
part of the information state or external resources. Note that the spe-

Information State approach 15

cific set of modules shown in Figure 1.3 is just an example. TrindiKit
provides methods for defining any number of both DME-modules and
DME-external modules, with associated interface variables.

Apart from the general architecture defined above, TrindiKit provides
definitions of datatypes (for use in TIS variable definitions), a language
and format for specifying TIS update rules, methods for accessing the
TIS, an algorithm definition language for DME and control modules,
default modules for input, interpretation, generation and output, meth-
ods for converting items from one type to another, methods for visually
inspecting the TIS, and debugging facilities. TrindiKit does not itself
specify any particular theory of dialogue - instead, it provides the build-
ing blocks and infrastructure for implementing different dialogue theories
in terms of IS type, update rules, dialogue moves, etc.

Starting with version 2.0, TrindiKit has been adapted to allow multi-
ple means of interacting with OAA (Open Agent Architecture, (Martin
et al., 1999)). The simplest technique is to run a TrindiKit-based sys-
tem as an OAA agent. It is also possible to run TrindiKit modules and
resources as OAA agents, and one can even configure TrindiKit to use
OAA as its internal communication protocol. This allows the use of
a wide selection of existing software together with TrindiKit. It also
makes it easier to write TrindiKit system components in other program-
ming languages such as Java, C, and C++, even though the TrindiKit
implementation is currently written in Sicstus Prolog.

Work on TrindiKit continues as part of the SIRIDUS project®. TrindiKit
3.0 (Larsson et al., 2002), to be released in December 2002, will feature,
among other things, improved methods for accessing the information
state, input and output modules for several common speech recogniz-
ers and synthesizers (e.g. Nuance), improved debugging facilities, and a
graphical user interface.

5. Implementations using TrindiKit

A number of systems have been developed using TrindiKit, imple-
menting dialogue managers for different theories of dialogue, using the
information state approach. We will look at two of them in some detail:
GoDiS, developed at Gothenburg University by Cooper, Larsson and
Bohlin (Bohlin et al., 1999), which uses an extension of the informa-
tion state theory used as an example in Section 2, and the EDIS system
(Matheson et al., 2000), developed at University of Edinburgh, which
uses a notion of information state based on (Poesio & Traum, 1998).
More details of these and other TrindiKit systems can be found in (Bos
et al., 1999).

16

5.1 GoDiS

GoDiS is an experimental dialogue system built using TrindiKit, which
is being used to explore and develop a theory of issue-based dialogue
management (Larsson, 2002). It uses fairly simple algorithms for con-
trol, update and selection modules, keyword-based interpretation and
template-based generation. The notion of information state used in
GoDiS is an extension of that illustrated in Section 2, and is currently
able to handle multiple simultaneous topics, inquiry-oriented and action-
oriented dialogue, grounding, and question accommodation, which, among
other things, allows users to answer unasked but contextually salient
questions. The GoDiS system currently distinguishes 6 “core” dialogue
move types: ask, answer, request, confirm, greet and quit. In addition,
it distinguishes an extensive set of dialogue moves related to grounding
(Traum, 1994).

The main division in the information state is between information
that is PRIVATE to the system and that which is assumed to be SHARED
between the dialogue participants. What we mean by shared infor-
mation here is that which has been explicitly established during the
conversation.?

The sHARED field is divided into several subfields. The first subfield
(com) is a set of propositions which the system assumes that the dia-
logue participants are jointly committed to. The second subfield, 1SsuEs,
represents all questions which have been raised in a dialogue (explicitly
or implicitly) but not yet resolved. It thus contains a collection of cur-
rent, or “live” issues. The data structure used is an open stack, i.e.
a stack where non-topmost elements can be accessed. This allows a
non-rigid modeling of current issues and task-related dialogue structure.
For handling action-oriented dialogue, an additional field containing re-
quested but not yet completed actions is included. The data structure
used is the same as for global issues, for the same reasons. Another sub-
field contains a more local stack of questions under discussion (QUD),
which can be used to resolve elliptical answers. The final two SHARED
sub-fields, Pu and LU contain information about the previous and latest
utterances, respectively. This information includes speaker and dialogue
moves (type and content).

The PRIVATE field contains five subfields. The BEL field contains
propositions that the system holds to be true. The AGENDA field con-
tains the system’s short term intentions for the next turn. The PLAN
field is a list of actions that are longer-term dialogue goals. This plan
can, however, be changed during the course of the conversation. We also
have a field TMP that mirrors the shared fields. This field keeps track of

Information State approach 17

the shared information prior to the integration of the latest utterance.
This makes it easy to delete information which the agent has optimisti-
cally assumed to have become shared if it should turn out that the other
dialogue participant does not perceive, understand or accept it. If a
low reliability score is assigned to an utterance, the system will use a
cautious rather than optimistic strategy with respect to grounding. The
final private subfield is a queue of as yet non-integrated moves (NIM),
possibly including moves performed in utterances previous to the latest
one.

The update rules in GoDiS include an ability to perform several kinds
of accommodation when the appropriate expected structures needed to
fully integrate a new utterance are not on ISSUES, QUD or PLAN. In
real human-human dialogues, dialogue participants can address ques-
tions that have not been explicitly raised in the dialogue. However, the
question is still needed, to allow interpretation of elliptical utterances.
An example from a travel agency dialogue® ls shown in (6).

(6) J: what month do you want to go
P: well around 3rd 4th april / some time there
P: as cheap as possible

The strategy we adopt for interpreting elliptical utterances is to think
of them as short answers to questions on QUD (in the sense of (Ginzburg,
1996a; Ginzburg, 1996b; Ginzburg, 1998)). A suitable question here
is What class (economy, business, or first class) does P want for the
ticket?. 'This question is not under discussion at the point when the
customer says “as cheap as possible”, but it can be inferred from the
context. In fact J will have as part of his plan the action of raising this
question. On our analysis it is this fact which enables J to interpret
the ellipsis. He finds the matching question on his plan, accommodates
by placing it on QUD and then continues with the integration of the
information expressed by as cheap as possible as normal.

A similar situation arises when there is no current plan to use as
context for interpretation. For example, if a travel agent discovers that
his customer wishes to get information about a flight he will adopt a
plan to ask her where she wants to go, when she wants to go, what price
class she wants and so on. In cases where the customer does not state
her errand explicitly, but rather answers some question(s) (e.g. about
destination and means of transport), the agent must infer what the task
is. We call this process task accommodation, and it is closely related to
question accommodation.

A sample dialogue with GoDiS (as “Sys”) is shown in (7).

18

(7) Sys: Welcome to the travel agency!
Usr: flights to paris
Sys: Okay, you want to know about price. A flight.
To Paris. Let’s see. What city do you want to go
from?
Usr: london
Sys: Okay, from London. When do you want to travel?
Usr: in april, as cheap as possible
Sys: Okay, in April, economy class. What day do you
want to travel?
Usr: the fifth
Sys: Okay. The price is $300

The first user utterance (“flights to paris”) is interpreted by the
system as realizing two answer-moves, potentially resolving two ques-
tions (means of transport and destination city). However, no task or
plan has yet been established and no questions have been raised. To be
able to integrate the utterance, the system must find a task (in the form
of an issue) associated with a plan which includes the raising of ques-
tions which match the answers given. Once this issue (in this case the
issue of the price of a trip) has been accommodated and the plan entered
into the PLAN field, the questions matching the user’s answers can be
accommodated and the answers integrated. As a consequence of this pro-
cess, the information state now contains a plan which guides the system
behavior. The system explicitly indicates acceptance (Okay), accommo-
dation (you want to know about price),integration (A flight. To
Paris.)% loading a new plan (Let’s see.), and then proceeds to ask
the next question in the plan (What city do you want to go from).
The resulting information state is shown (partially) in (9).

[BEL = {} 1
AGENDA = ()
findout(?x.dept-month(x)),
_ _ findout(?x.dept-day(x)),
PRIVATE = PLAN - < findout(?x.class(x)), >
consult DB(?x.price(x))
(8) T™MP =
L NIM = e _
[com = {dest-city(paris),how(plane)}
1SSUES = (?z.dept-city(z), ?z.price(z))
SHARED = QUD = (?wx.dept-city(z)
PU = -
| LU = (ask(sys, 7z.dept-city(z)), ...)

Given the kind of information state illustrated in (8), we can pro-
vide update rules which accommodate questions. A formalization of

Information State approach 19

the accommodateQuestion move is given in (9)7. When interpret-
ing the latest utterance by the other participant, the system makes the
assumption that it was an answer move with content A. This assump-
tion requires accommodating some question) such that A is a relevant
answer to (). The condition “relevant(A,Q)” is true if A is a rele-
vant answer to () given the current information state, according to some
(possibly domain-dependent) definition of question-answer relevance.

(9) U-RULE: accommodateQuestion(Q,A)

in(SHARED.LU, answer(usr,A)),
PRE: in(PRIVATE.PLAN, findout(Q))
domain :: relevant(A,Q)

del(PRIVATE.PLAN, findout(Q))
EFF: °
push(SHARED.QUD, Q)

GoDiS uses an update algorithm where different types of rules are
applied at different stages of the update process. There are currently 7
rule types and 49 rules in the most complex version of the system:

» grounding: handles optimistic or cautious grounding (1 rule)

» integrate: integrates the effects of the latest move (19 rules)

» accommodate: handles question (and task) accommodation (7 rules)
» downdate_issues: removes resolved issues and actions (4 rules)

» downdate_qud: removes questions from QUD (1 rule)

» [oad_plan: loads plans for dealing with issues and actions (2 rules)
m ezec_plan: executes dialogue plans (8 rules)

m in addition, there are 7 rules for miscellaneous purposes, with no
class assigned

A short outline of the update algorithm goes as follows: First, any
dialogue moves that result from interpretation are incorporated into the
NIM queue in the information state proper. The system then goes into an
“integration loop” where it tries to integrate the effects of these moves in
the order they were performed, while keeping track of new and obsolete
issues, and possibly loading a plan for dealing with some new issue. If
any moves are still left after this loop, accommodation is tried. If any
accommodation rule succeeds, the integration loop is entered again to
see if accommodation has enabled any remaining moves to be integrated.
This procedure is repeated until no moves can be integrated and no ac-
commodation rules can trigger. After this, the current plan is executed,

20

which typically leads to one or several actions being put on the agenda.
Finally, questions which are judged to be no longer available for ellipsis
resolution are removed from QUD.

The basic strategy for the selection algorithm is that not more than
one issue should be raised by each system utterance. The selection
algorithm first checks if some question-raising action is already on the
agenda; if not, it tries to select a new action. After this, it selects
dialogue moves (including grounding moves) based on the actions on
the agenda repeatedly until no more moves can be selected.

The current control algorithm in GoDiS simply calls each module in
turn in a serial fashion.

GoDiS has been adapted to several domains including travel agency,
autoroute and VCR interface, and there are lexicon resources for both
English and Swedish. GoDiS is also being used in teaching and stu-
dent projects, including adaptations to domains such as cinema ticket
booking, handheld computer agenda, and mobile phone interface.

5.2 EDIS

The EDIS system (Matheson et al., 2000), uses a notion of information
state based on (Poesio & Traum, 1997; Poesio & Traum, 1998), using
the record representation used for coding information states in (Cooper
et al., 1999; Poesio et al., 1999). Like GoDiS, the informational compo-
nents of EDIS consist of a common ground part, a semi-public part, and
a private part. The common part includes four types of information:
obligations of dialogue participants to perform actions (OBL), social
commitments that participants have that propositions hold (SCP), a di-
alogue history of acts that have been performed (DH), and conditional
statements that will establish obligations or commitments, given the
performance of appropriately typed dialogue acts (COND). The semi-
public part, analogous to TMP in GoDiS, is a collection of discourse units
(DUs) (Traum & Hinkelman, 1992), which represent coherent bundles of
information that are grounded (added to the common ground (Clark &
Schaefer, 1987)) together. Private information includes the intentions of
the agent being modeled. The formal representations of EDIS are shown
in (10), where PT-R is a record containing the type of information con-
tained in common ground, shown to the right. G represents the common
ground. Two DU pointers are represented, CDU for current, and PDU,
the previous one. UDUs is a list of the DUs (which may include the
ones identified by PDU and/or CDU) that are not grounded.

Information State approach 21

G : PT-R
C : PT-R

ChU [ID DU_ID] DH : List(Action)

.] OBL : List(Action)
(10) PDU [C : PT-R] PT-R= 4 gep . List(Prop)

1D+ DU-ID COND : List(Action)

UDUs : List(DU-ID)

L INT : List(Action)]

EDIS uses a modified version of the dialog acts from the DRI cod-
ing scheme (Discourse Resource Initiative, 1997), giving them precise
effect conditions according to aspects of the information state in (10).
A summary of the main effects of dialogue acts is shown in (11). Act
observations are represented as an ID, a confidence level (1 for partially
understood, 2 for well understood), and an act schema, (including a dis-
course participant (DP) as speaker and other content fields depending
on the act: either previous dialogue acts, propositions, questions, acts
(not necessarily dialogue acts), or discourse units), For each act obser-
vation the effects on the information state are shown. Several shorthand
functions are used: o(DDP) means the other dialogue participant in the
interaction, Q(ID) and P(ID) mean the question and proposition part
(respectively) of the content of dialogue act ID.

act ID:2, accept(DP,ID2)
effect accomplished via rule resolution
act ID:2, ack(DP,DU1)
effect peRec(G,DU1.C)
effect remove(DU1,UDUS)
act ID:2, agree(DP,1D2)
effect push(scp,sep(DP,P(1D2)))
act ID:2, answer(DP,ID2,1D3)
effect push(scp,ans(DP,Q(ID2),P(ID2)))
act 1D:2, assert(DP,PROP)
(11) effect push(scp,scp(DP,PROP))
effect push(coNp,accept(o(DP),ID)— sep(o(DP),PROP))
act ID:1, assert(DP,PROP)
effect push(conp,accept(o(DP),ID)— sep(o(DP),PROP))
act _ ID:2, check(DP,PROP)
effect push(oBL,address(o(DP),ID))
effect push(conp,agree(o(DP),ID) — sep(DP,PROP))
act ID:2, direct(DP,Act)
effect push(oBL,address(o(DP),ID))
effect push(conp,accept(o(DP),ID) — obl(o(DP),Act))
act ID:2, info_request(DP,Q)
effect push(oBL,address(o(DP),ID))

EDIS uses the same general pipelining of modules as GoDiS, however
the update algorithm is a bit different. Whenever a set of dialogue acts

22

are placed in latest_moves, the algorithm in (12) is applied, where each
step includes the application of a set of update rules.

(12) a. Create a new DU and push it on top of UDUs (and point CDU
to this one, while updating the PDU pointer to the old value
of CDU).

b. Perform updates on the basis of backwards grounding acts, such
as merging the contents of PDU.Cinto G for an acknowledgement.

c. If any other type of act is observed, record it in the dialogue
history in CDU and apply the update rules for this kind of act
(invoking the effects shown in (11)).

d. Apply update rules to all parts of the IS which contain newly
added acts.

There is also a deliberation step, applied for each system turn, which
leads to the system developing new intentions on the basis of obliga-
tions, potential obligations that would result from conditions (in the
COND field of G or CDU) if an intended act were performed, as well as
insufficiently understood dialogue acts and intentions to perform com-
plex acts. Following deliberation, dialogue acts are selected to fulfill
any intentions, and placed in the next_moves interface variable, for the
generation module to act on.

5.3 Other TrindiKit Systems

We briefly mention two other TrindiKit systems that were developed
as part of the TRINDI project. More details on the theories of infor-
mation state underlying these systems can be found in (Traum et al.,
1999), while details of the systems themselves can be found in (Bos et al.,
1999).

The MIDAS system uses the DRS structures of DRT (Kamp & Reyle,
1993) as a major component of its information state. As part of the root
DRS will be subordinate DRSes representing events mentioned in the di-
alogue, as well as tracking of grounding, using a simplified version of the
theory proposed in (Poesio & Traum, 1998). Multiple theorem provers
are used both for pragmatic aspects of dialogue act interpretation and
to implement some of the conditional tests on the update rules. An ex-
ample of a MIDAS information state can be seen in (13), in which the
DRS represents a question the system has asked. This is one of a set of
questions, with other future questions remaining on an agenda.

Information State approach 23

x1x2 x3

x4 ask(x3, x2, x1)

question(x1)

Agenda= DRS= the_user(x2)
. x5 the_system(x3
query(Where do you want to start?) XL - Q | go(x4x2) inf(;rs;ynativeg(xl))

query(When do you want to travel?) location(x5) leven?(x4) 4
calculate(r.outa) ocation(x4,x5) UDUS: [x1]
(1 3) query(Which route do you want?)

Another system focuses on conversational game theory, recasting a
previous Autoroute system (Lewin, 1998) in the current framework.
Conversational games are formalized as recursive transition networks.
The top-level information state type is a record, as shown in (14). The
top level distinguishes a dialogue participant’s role as rational agent from
that of conversational game-player, with the intuition that the details
of the latter should not be major factors in the former. Actions and
agenda-items are themselves records with multiple fields.

PLAN : STACK(ACTION)
RATIONAL_AGENT
SCOREBOARD : SET(PROP)
(14) AGENDAITEM : STACK(AGENDAITEM)
GAME_PLAYER CURRTOKEN : 'TOKEN
ALLTOKENS : STACK(SET(PROP))
6. Reusing dialogue management components

The previous section illustrated that TrindiKit has been successfully
used as a foundation for implementing several quite different theories of
dialogue. In addition, the implementations of the dialogue theories have
also successfully been re-used in the design of alternate versions of the
systems to deal with different tasks and domains. Figure 6 shows a sort
of “family tree” of some of the re-use of implementations over the past
few years, relating systems to their components and theories, using the
layers described in Section 3.

Using TrindiKit (which implements the information state approach),
two different domain-independent dialogue move engines have been de-
veloped (GoDiS and EDIS(base)); the former implementing Issue-Based
Dialogue Management (which was developed starting from Ginzburg’s
KOS framework), and the latter implementing the “Poesio-Traum The-
ory” (PTT), as described in the previous section. From these basic
systems, genre-specific variants have been developed (more or less incre-
mentally) for dealing with inquiry-oriented dialogue (GoDiS-I, EDIS),
action-oriented dialogue (GoDiS-A), and tutorial dialogue (Beetle) (Core
et al., 2000). Finally, various domain-specific dialogue systems have been

[Xerox] VCR/]
TraveI][Auto-] MFD J|{Home

gencyl(route
route

electronics
tutor
®) iﬁ

developed by adding specific resources (databases, plans, lexicons) to
these systems.

This demonstrates several cases of reuse of implementations. Firstly,
all systems use IrindiKit to deal with low-level implementation details
related to the information state approach, and many also use modules
supplied with TrindiKit (e.g. for input and output). Second, the same
basic system can be used in several genres, given the appropriate addi-
tions and modifications. Thirdly, the same genre-specific system can be
used for several different applications given the appropriate resources. In
fact, the case of GoDiS and EDIS demonstrates a further type of reuse,
as some basic building blocks from GoDiS was used in the initial devel-
opment of EDIS. We also anticipate that domain specific resources could
be reused by systems embodying different information state based theo-
ries of dialogue, merely by adding some wrappers to access the resources
according to the datatypes of the new theory.

In addition to the SIRIDUS project, which involves directly extending
TrindiKit and the GoDiS system, a number of other projects aside from
TRINDI have built systems using TrindiKit and the information state
approach to do dialogue management for a variety of application ar-
eas, including tutoring (Core et al., 2000), embodied agents (Pelachaud
et al., 2002), and PDA control of robots (Burke et al., 2002). There

Information State approach 25

are as of this writing, over seventy registered downloaders of TrindiKit,
representing a heterogeneous population of users, from those who just
learned about dialogue systems in class and wanted to get some hands
on experience, to those slightly modifying existing systems like GoDiS
for their own purposes, to those actually using TrindiKit in new research
project implementations. While we have received explicit feedback from
only a small percentage of these downloaders, we can still make some
tentative conclusions about the utility of TrindiKit to the general user
population. The time to learn how to modify and build dialogue systems
using TrindiKit is reasonably short, (“a couple of weeks”, “a month or
two of five-ten hours a week”). Many users said that having an exam-
ple system distributed (GoDiS) was very helpful for learning how to use
TrindiKit. The ability to rapidly develop prototype systems was gener-
ally confirmed and appreciated, as was the “absolute freedom in defining
system behaviour”. However, some users reported that implementing a
new dialogue manager was not so easy. While this may be partly due
to the fact that dialogue management in itself is a fairly tricky busi-
ness, we are striving for further improvements regarding the usability
of TrindiKit for implementing new systems, both in terms of imple-
mentation and documentation. A GUI, improved debugging facilities,
and a tutorial would probably be useful additions. Some users also had
problems with the fact that TrindiKit requires SICStus Prolog, which
is not freeware. Generally, the use of Prolog was (unsurprisingly) ben-
eficial to Prolog programmers; however, a long-term goal is to provide
an implementation formalism which is less specific to Prolog or other
programming languages.

There have also been a number of projects who, for various reasons,
did not use the TrindiKit software, but used the information state ap-
proach as the guiding principle. These projects use other software as
the bottom implementation layer, while maintaining the notions of in-
formation state, dialogue moves, and updates. For example, the Mission
Rehearsal Project at University of Southern California’s Institute for
Creative Technologies includes a dialogue manager built using SOAR
(Laird et al., 1987), but contains at its core many of the same dia-
logue moves and update rules as the EDIS system, with minor syntactic
variations (Traum & Rickel, 2002). Similarly the MATCH system for
multimodal access to city help uses an information state design for its
dialogue manager (Johnston et al., 2002).

We see the prospect for continued advancement at all three levels of
the conceptual architecture: tools for implementing information state di-
alogue managers such as new versions of TrindiKit and similar tools for
implementing information state theories, better and different informa-

26

tion state-based theories of dialogue (in general and for specific genres),
and domain theory “plug-ins” to allow existing systems to participate
in new tasks. This multi-level scheme can allow for much more rapid
progress in dialogue management development, since it will be possible
for a development team to fruitfully focus on only a part of the entire
problem, re-using other parts developed elsewhere.

Acknowledgments

This work was supported by the TRINDI (Task Oriented Instructional
Dialogue) project, EU TELEMATICS APPLICATIONS Programme,
Language Engineering Project 1LE4-8314. Other participants in the
TRINDI project were instrumental in developing the ideas and sys-
tems described here. Peter Ljunglof, Alexander Berman, and Johan
Bos helped develop the TrindiKit distribution. GoDiS was developed
by the second author and Ljunglof, Robin Cooper and Elisabet Eng-
dahl. EDIS was developed by Colin Matheson, Massimo Poesio, and
the first author. The MIDAS system was developed by Bos. lan Lewin
developed the SRI conversational game theory system. In addition, all
of the above and other TRINDI participants have contributed to the
development of the framework presented here. As usual, all mistakes
and misrepresentations are due to the authors of this paper. TrindiKit
and GoDiS have been further developed as part of the SIRIDUS Project
EC Project IST-1999-10516. The first author was supported during the
writing of this article by the Department of the Army under contract
number DAAD 19-99-D-0046. Any opinions, findings and conclusions or
recommendations expressed in this paper are those of the authors and
do not necessarily reflect the views of the Department of the Army.

Notes

1. TRINDI (Task Oriented Instructional Dialogue) EU TELEMATICS APPLICATIONS
Programme, Language Engineering Project LE4-8314

2. Information State is used both to denote the components of the theoretical approach
to dialogue modeling, and the specific blackboard-like system module that allows inspection
and update (via update rules) of the current state.

3. SIRIDUS (Specification, Interaction and Reconfiguration in Dialogue Understanding
Systems), EC Project IST-1999-10516

4. akin to the “conversational scoreboard” in (Lewis, 1979).
5. This dialogue, collected by the University of Lund, has been translated from Swedish.

6. If the user detects a system misunderstanding during this feedback phase, she may e.g.
respond “no” immediately after the feedback utterance from the system, thus prompting a
re-raising of the corresponding question. See Chapter 3 of (Larsson, 2002) for details.

7. The current GoDiS implementation uses a development version of TrindiKit 3.0, which
means that the actual syntax of the rule as imlemented is slightly different from that shown
here (using the 2.0 syntax).

References

AHRENBERG, LARS, DAHLBACK, NILS, & JONSSON, ARNE. 1990. Dis-
course representation and discourse management for a natural language
dialogue system. In: Proceedings of the second nordic conference on text
comprehension in man and machine.

ALLEN, JAMES F., FERGUSON, GEORGE, & STENT, AMANDA. 2001.
An architecture for more realistic conversational systems. Pages 1-8
of: Proceedings intelligent user interfaces 2001 (iui 01).

Brayrock, NATE, ALLEN, JAMES, & FERGUSON, (GEORGE. 2002.
Synchronization in an asynchronous agent-based architecture for di-
alogue systems. Pages 1-10 of: Proceedings of the 3rd sigdial workshop
on discourse and dialogue. Philadelphia: Association for Computational
Linguistics.

BouriNn, PETER, CooOPER, ROBIN, ENGDAHL, ELISABET, & LARS-
SON, STAFFAN. 1999. Information states and dialogue move engines.
Pages 25-31 of: Proceedings of the ijcai99 workshop: Knowledge and
reasoning in practical dialogue systems.

Bos, JonaN, BoHLIN, PETER, LARSSON, STAFFAN, LEWIN, IAN, &
MATHESON, COLIN. 1999. Fwaluation of the model with respect to re-
stricted dialogue systems. Tech. rept. Deliverable 1D3.2. Trindi.

BRETIER, P., & SapeEk, M. D. 1996. A rational agent as the ker-
nel of a cooperative spoken dialogue system: Implementing a logical
theory of interaction. In: MULLER, J. P., WOOLDRIDGE, M. J., &
JENNINGS, N. R. (eds), Intelligent agents iii — proceedings of the third
international workshop on agent theories, architectures, and languages
(atal-96). Lecture Notes in Artificial Intelligence. Springer-Verlag, Hei-
delberg.

BURKE, CARL, HARPER, Lisa, & LoOEHR, DAN. 2002 (June). A di-
alogue architecture for multimodal control of robots. In: Proceedings

27

28

of the international class workshop on natural, intelligent and effective
interaction in multimodal dialogue systems.

CrLARK, HERBERT H., & ScHAEFER, EpwarD F. 1987. Collaborating
on contributions to conversation. Language and cognitive processes, 2,
1-23.

CoHEN, PHIL. 1996. Dialogue modeling. Chap. 6.3 of: CoLE, RoN,
MARIANI, JOSEPH, USZKOREIT, HANS, ZAENEN, ANNIE, & ZUE, VIC-
TOR (eds), Survey of the state of the art of human language technology.
Cambridge, MA: Cambridge University Press.

COOPER, R., LARssoN, S., MaTHESON, C., PoEsio, M., & Trauwm,
D. 1999. Coding instructional dialogue for information states. Deliver-
able D1.1. Trindi Project.

CooOPER, ROBIN, & LARssON, STarran. 1999. Dialogue moves and
information states. Pages 398-400 of: BunT, H.C., & THUSSE, E.
C. G. (eds), Proceedings of the third international workshop on com-
putational semantics.

CoRrg, M., Moore, J., & Zinn, C. 2000. Supporting constructive
learning with a feedback planner. In: Papers from the AAAI fall sym-
posium on building dialogue systems for tutorial applications. Technical
Report FS-00-01, American Association for Articial Intelligence, 445
Burgess Drive, Menlo Park CA 94025.

DiscoURSE RESOURCE INITIATIVE. 1997. Standards for dialogue coding
in natural language processing. Report no. 167. Dagstuhl-Seminar.

GINZBURG, J. 1996a. Dynamics and the semantics of dialogue. Pages
221-237 of: SELIGMAN, JERRY, & WESTERSTAHL, DAG (eds), Logic,
language and computation, vol. 1. CSLI Publications.

GINZBURG, J. 1996b. Interrogatives: Questions, facts and dialogue.
Pages 385-422 of: LapPIN, SHALOM (ed), The handbook of contempo-
rary semantic theory. Blackwell, Oxford.

GINZBURG, J. 1998. Clarifying utterances. Pages 11-30 of: HULSTIIN,
J., & Ninovrr, A. (eds), Proc. of the twente workshop on the formal
semantics and pragmatics of dialogues. Universiteit Twente, Faculteit
Informatica, Enschede.

JOHNSTON, MICHAEL, BANGALORE, SRINIVAS, VASIREDDY, GU-
NARANJAN, STENT, AMANDA, EHLEN, PATRICK, WALKER, MARILYN,

REFERENCES 29

WHITTAKER, STEVE, & MALOOR, PREETAM. 2002. Match: An archi-
tecture for multimodal dialogue systems. Pages 376-383 of: Proceed-
ings of the J0th annual meeting of the association for computational
linguistics (acl).

Kawmp, H., & REYLE, U. 1993. From discourse to logic. Dordrecht:
D. Reidel.

LairD, J. E., NEwELL, A.; & RosenNBLooM, P. S. 1987. SOAR: an
architecture for general intelligence. Artificial intelligence, 33(1), 1-64.

LARSSON, STAFFAN. 2002. [Issue-based dialogue management. Ph.D.
thesis, Goteborg University.

[LARSSON, STAFFAN, BOHLIN, PETER, Bos, JoHAN, & TRAUM,
Davip. 1999. Trindikit manual. Tech. rept. Deliverable D2.2 - Manual.
Trindi.

LARSSON, STAFFAN, BERMAN, ALEXANDER, LJUNGLF, PETER, &
TrauM, DaviD. 2002. Implemented siridus system architecture
(trindikit 3.0 manual). Tech. rept. Deliverable D6.4 - Manual.
SIRIDUS.

LEwIN, 1AN. 1998. The autoroute dialogue demonstrator. Tech. rept.
CRC-073. SRI Cambridge Computer Science Research Centre.

Lewis, Davip K. 1979. Scorekeeping in a language game. Journal of
philosophical logic, 8(3), 339-359.

MARTIN, DaviD L., CHEYER, ADAM J., & MoRraN, DouGLASs B.
1999. The open agent architecture: A framework for building dis-
tributed software systems. Applied artificial intelligence, 13(1-2), 91—
128.

MaTHEsoN, CoriN, Porsio, Massimo, & Traum, Davin. 2000.
Modelling grounding and discourse obligations using update rules. In:
Proceedings of the first conference of the north american chapter of the
association for computational linguistics.

PELACHAUD, CATHERINE, CAROFIGLIO, VALERIA, CAROLIS, BERAD-
iINa DE, DE Rosis, FloreLLa, & Poagar, [saBELLA. 2002. Embodied
contextual agent in information delivering application. Pages 758-765
of: Proceedings of the first international joint conference on autonomous
agents and multiagent systems.

Pogsio, M., CooPER, R., LARssoON, S., MaTHEsON, C., & TrRaUM.,
D. 1999. Annotating conversations for information state update. In:

30

Proceedings of amstelogue’99 workshop on the semantics and pragmat-
ics of dialogue.

Pogrsio, MassiMo, & TrauM, DaviD R. 1997. Conversational actions
and discourse situations. Computational intelligence, 13(3).

Pogsio, Massivo, & Traum, Davip R. 1998. Towards an axiomati-
zation of dialogue acts. Pages 207-222 of: Proceedings of twendial’98,
13th twente workshop on language technology: Formal semantics and
pragmatics of dialogue.

SADEK, Davip, & DE Mori, RENATO. 1998. Dialogue systems. [In:
Mori, R. DE (ed), Spoken dialogues with computers. Academic Press.

SEARLE, JOHN R. 1969. Speech acts. New York: Cambridge University
Press.

SurToN, S., & CoLE, R. 1998. Universal speech tools: the cslu toolkit.
Pages 3221-322} of: Proceedings of the international conference on spo-
ken language processing (icslp).

TrauM, Davip, Bos, JoHAN, COOPER, ROBIN, LARSSON, STAFFAN,
LEWIN, IAN, MATHESON, COLIN, & PoEsio, MAssiMO. 1999. A model

of dialogue moves and information state revision. Tech. rept. Deliver-
able D2.1. Trindi.

TrauMm, Davip R. 1994. A computational theory of grounding in natu-
ral language conversation. Ph.D. thesis, Department of Computer Sci-
ence, University of Rochester. Also available as TR 545, Department
of Computer Science, University of Rochester.

Traum, Davip R. 2000. 20 questions for dialogue act taxonomies.
Journal of semantics, 17(1), 7-30.

Traum, Davip R.; & ArLeNn, James F. 1994. Discourse obligations
in dialogue processing. Pages 1-8 of: Proceedings of the 32*' annual
meeting of the association for computational linguistics.

Traum, Davip R., & HINKELMAN, EL1ZABETH A. 1992. Conversation
acts in task-oriented spoken dialogue. Computational intelligence, 8(3),
575-599. Special Issue on Non-literal language.

TraumMm, Davip R., & Ricken, Jerr. 2002. Embodied agents for
multi-party dialogue in immersive virtual worlds. Pages 766-773 of:
Proceedings of the first international joint conference on autonomous
agents and multiagent systems.

