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Abstract

Recent advances in technology for abductive reasoning, or
inference to the best explanation, encourage the application
of abduction to real-life commonsense reasoning problems.
This paper describes Etcetera Abduction, a new implementa-
tion of logical abduction that is both grounded in probabil-
ity theory and optimized using contemporary linear program-
ming solvers. We present a Weighted Max-SAT formulation
of Etcetera Abduction, which allows us to exploit highly ad-
vanced technologies developed in the field of SAT and Op-
erations Research. Our experiments demonstrate the scalabil-
ity of our proposal on a large-scale synthetic benchmark that
contains up to ten thousand axioms, using one of the state-
of-the-art mathematical optimizers developed in these fields.
This is the first work to evaluate a SAT-based approach to
abductive reasoning at this scale. The inference engine we
developed has been made publicly available.

Introduction
Logical abduction is a form of automated reasoning that
searches for hypotheses that, if they were true, would log-
ically entail a set of input observations given a knowledge
base of inference rules. Unlike logical theorem-proving,
where the task is to identify the truth value of a logical
sentence, logical abduction is well suited to artificial intel-
ligence problems of explanation and commonsense reason-
ing, i.e., where the search is for the best set of assumptions
that explain what we observe given what we know. Hobbs
et al. (1993) proposed “interpretation as abduction,” cast-
ing the natural language understanding problem in terms of
logical abduction, where the search is for the best repre-
sentation that accounts for the observable text. Others have
applied logical abduction to non-textual interpretation prob-
lems, e.g., the interpretation of agent behavior (Meadows,
Heald, and Langley 2015; Gordon 2016).

Automating the process of logical abduction requires both
generating candidate hypotheses and ranking hypotheses ac-
cording to their quality. Recent research has seen substan-
tial improvements in the efficiency and scalability of cost-
based logical abduction, where the combinatorial search is
managed by optimized linear programming solvers (Inoue
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and Inui 2014; Yamamoto et al. 2015). In parallel, oth-
ers have pursued probabilistic formulations of logical ab-
duction based on uncertain inference (Blythe et al. 2011;
Ovchinnikova, Gordon, and Hobbs 2013).

In this paper, we describe a new implementation of log-
ical abduction that is both grounded in probability the-
ory and optimized using contemporary linear programming
solvers. This solution, named Etcetera Abduction, combines
ideas from two previous formulations: Weighted Abduc-
tion (Hobbs et al. 1993) and Probabilistic Horn Abduc-
tion (Poole 1993). We provide a SAT formulation of Etcetera
Abduction for propositional logic that enables abductive rea-
soning problems to be addressed using a weighted maximum
satisfiability solver (Weighted Max-SAT), with a straightfor-
ward translation as an Integer Linear Programming (ILP)
problem. Using a high-performance ILP solver, we eval-
uated our approach compared to a reference implementa-
tion of Etcetera Abduction, using synthetic knowledge bases
consisting of hundreds of thousands of axioms.

Background
Abduction
Abduction is inference to the best hypothesis (or explana-
tion). In this paper, we assume propositional logic as the
meaning representation of abduction. Abduction on propo-
sitional logic (henceforth, propositional abduction) is gen-
erally defined as follows:

• Given: (i) Background knowledgeB, (ii) observationsO,
(iii) setA of propositional atoms, and (iv) evaluation func-
tion eval, where B is a set of propositional logic formu-
lae, and O is a set of propositional literals.

• Find: Among a set H of hypotheses, where H ≡ {H ⊆
A | H ∪ B |= O,H ∪ B 6|=⊥}, find the best hypoth-
esis H∗ ∈ H that maximizes eval(H∗) (i.e., H∗ =
argmaxH∈H eval(H)).

We refer to a ∈ A as an abducible, H ∈ H as a candidate
hypothesis, and h ∈ H as an elemental hypothesis.

To model eval, a wide variety of methods have been pro-
posed in the literature, ranging from a probabilistic mea-
sure to a cost-based measure (Charniak and Goldman 1991;
Hobbs et al. 1993; Poole 1993, etc.). The probabilistic mea-
sure used in this paper is described in the next section.



Etcetera Abduction
Etcetera Abduction, introduced by Gordon (2016), provides
a means of ordering abductive proofs by the probability of
their assumptions, while adhering to strict notions of logi-
cal entailment, rather than uncertain inference. In terms of
probability theory, abduction can be viewed as a Maximum
A Posteriori (MAP) estimation for which we find the most
likely hypothesis given the input observations:

argmax
H∈H

eval(H) = Pr(H|O) =
Pr(O|H)Pr(H)

Pr(O)
(1)

In abduction, this maximization problem can be simply re-
duced to argmaxH∈H Pr(H) because H logically entails
O (i.e., Pr(O|H) = 1) and Pr(O) is constant in the maxi-
mization problem.

The approach of Etcetera Abduction expands on
Poole (1993)’s Probabilistic Horn Abduction, where abduc-
tion proceeds by backchaining from observables by using
axioms of Horn clauses, and where the joint probability
Pr(H) of any set of assumptions that logically entail the ob-
servables is naı̈vely calculated as the product of their priors,
i.e., by assuming conditional independence over elemental
hypotheses h ∈ H:

Pr(H) =
∏
h∈H

Pr(h) (2)

Etcetera Abduction adds to this idea by introducing a means
of authoring defeasible axioms with clear probabilistic se-
mantics. Following Hobbs et al. (1993), special literals are
included in the antecedents of defeasible axioms, called
etcetera literals, that represent all of the unspecified con-
ditions that must also hold for the axiom to be logically true.

happy → smile not always true. (3)
happy ∧ etcn → smile always true! (4)

These etcetera literals are specific to a single axiom in a
knowledge base, and are here uniquely identified by a sub-
script number. Appearing only in antecedents, their truth
cannot be proved, only assumed via logical abduction. They
are related to McCarthy’s abnormal predicates (Ab), used in
his proposal for circumscription as a means of commonsense
reasoning (McCarthy 1980), except with positive seman-
tics. From the Latin “et cetera,” meaning “and other things,”
etcetera literals stand in for all of the other conditions of the
universe that would have to also be true for the remainder of
the antecedent to logically imply the consequent. Formally,
an etcetera literal E for a definite clause A ∧ E → C is de-
fined as a disjunction of all possible conjunctions e where
A∧ e→ C, such that A∧C → E. Or informally, whenever
we have both A and C, the other conditions must have also
been right for them both to be true.

In this definition, (A∧C) is true exactly when (A∧E) is
true, giving us a means of specifying probabilistic semantics
for etcetera literals. In situations where truth values repre-
sent the occurrence or non-occurrence of events, we have
this equality between their joint probabilities.

Pr(A,E) = Pr(A,C) (5)

Following Poole (1993), we assume etcetera literals are con-
ditionally independent from all other literals, such that:

Pr(A)Pr(E) = Pr(A,C) (6)

Solving for Pr(E) gives us a conditional probability:

Pr(E) = Pr(C|A) (7)

That is, the prior probability of an etcetera literal is equal to
the conditional probability of the consequent given the rest
of the antecedent. Likewise, when an etcetera literal E is the
only antecedent for a consequentC, as in the axiomE → C,
then the prior probability of the etcetera literal E is equal to
the prior probability of the consequent C.

In Etcetera Abduction, a knowledge base of definite
clauses is constructed such that every axiom includes a
unique etcetera literal in its antecedent, and every non-
etcetera literal is a consequent in an axiom where a solitary
etcetera literal is its antecedent. Each of these etcetera lit-
erals is assigned a probability, encoding the prior and con-
ditional probabilities in the domain. Abduction proceeds
by backchaining from input observations using this knowl-
edge base to identify sets of assumptions consisting only
of etcetera literals that logically entail the observations, and
then ordering these sets by their joint probability assuming
conditional independence (the product of their priors).

Etcetera Abduction has several advantages over other
popular frameworks for logical abduction, most notably
Weighted Abduction as proposed by Hobbs et al. (1993).
Weighted Abduction proceeds by propagating the cost of
leaving input observations unexplained back through a
knowledge base of axioms, where each antecedent literal is
annotated with a weight, a multiplier that pays the cost of
the consequent with the assumption of the antecedent literal.
Ovchinnikova, Gordon, and Hobbs (2013) showed that this
cost propagation mechanism cannot be interpreted in terms
of probabilities, and proposed instead an approach based on
uncertain inference using Bayesian Networks. Etcetera Ab-
duction takes a different approach, retaining Poole (1993)’s
notion of strict logical entailment of input observations
(rather than uncertain inference) by incorporating Hobbs
et al. (1993)’s idea for etcetera literals, and by providing
the probabilistic semantics for etcetera literals that affords
a simple means of ordering sets of entailing assumptions.

However, technologies for the implementation of
Weighted Abduction have improved dramatically in recent
years. Inoue and Inui (2014) demonstrated that Weighted
Abduction could be cast as an Integer Linear Program-
ming problem, allowing the combinatorial search space to
be efficiently explored using contemporary ILP solvers.
For practical applications, Etcetera Abductions needs a
comparably efficient implementation.

SAT-based Propositional Etcetera Abduction
Abductive reasoning is a constrained combinatorial opti-
mization problem over abducibles. Given an abduction prob-
lem 〈B,O,A, eval〉, the task is to find the best hypothesis
among a prohibitively large number of candidate hypothe-
ses, where the number of candidate hypotheses is expressed



by O(2|A|). A propositional Etcetera Abduction problem is
a special case of an abduction problem where A is a set
of etcetera literals in B and eval is

∏
h∈H Pr(h). Unfortu-

nately, the exponentially large search space prevents us from
relying on exhaustive combinatorial search.

To address this issue, we show how to exploit a state-of-
the-art mathematical optimizer developed in Operations Re-
search for Etcetera Abduction. Specifically, we show how to
recast an Etcetera Abduction problem as an ILP problem,
preserving the correctness of the translation. We first show
how to represent an abduction problem as a Weighted Max-
SAT problem, and then present a clear translation from a
Weighted Max-SAT problem into an ILP problem.

Weighted Max-SAT formulation
We begin with representing a purely logical abduction prob-
lem as a SAT problem, where the preference of hypothesis is
not considered. The core idea is as follows. Let A be a truth
assignment over abducibles A, and φsc be a logical formula
that represents a sufficient condition of A entailing a dis-
junction of candidate hypotheses, i.e., φsc |=

∨
H∈HH . An

abduction problem is then reduced to finding a truth assign-
ment A that satisfies φsc, i.e., a SAT problem.

The important question is how to represent φsc. Console,
Dupre, and Torasso (1991) formally discuss the relationship
between abduction and deduction through Clark (1978)’s
predicate completion. The Clark completion is a transforma-
tion procedure of background knowledge, assuming that all
possible reasons are completely described in the background
knowledge. The key result is that an abduction problem
can be reduced to a deduction problem if Clark-completed
background knowledge with respect to non-abducible pred-
icates and input observations are given as premises. Let
compna(B) be a knowledge base obtained by the Clark
completion of non-abducible predicates in B. They showed
that the following relationship holds:

compna(B) ∪O |=
∨
H∈H

H (8)

We leverage this key result as the sufficient condition φsc:

φsc = compna(B) ∧O (9)

Following Console, Dupre, and Torasso (1991), we as-
sume B to be a set of the following clauses:

h← b1 ∧ b2 ∧ ... ∧ bn(n ≥ 0), (10)

where h is an atom termed the head and each bi is a literal.
The literal is either an atom or a negated atom. We requireB
to be “hierarchical” (Clark 1978) and abducibles not to ap-
pear in the head of any clauses in B and input observations.

Consider the following Etcetera Abduction problem:

B = {p← a ∧ etcpa, p← b ∧ etcpb,
q ← a ∧ etcqa, q ← c ∧ etcqc,
a← etca, b← etcb, c← etcc} (11)

O = p ∧ q (12)

φsc is then compna(B) ∧ p ∧ q, where:

compna(B) = {p↔ (a ∧ etcpa) ∨ (b ∧ etcpb),
q ↔ (a ∧ etcqa) ∨ (c ∧ etcqc),
a↔ etca, b↔ etcb, c↔ etcc} (13)

We can easily see that any truth assignment satisfying
φsc entails a disjunction of candidate hypotheses (i.e.,
{etca, etcpa, etcqa} ∨ {etca, etcpa, etcc, etcqc} ∨ ...).

We introduce relevant reasoning as a technique to reduce
φsc. Recall that the search in Etcetera Abduction is over a set
of candidate hypotheses that logically entail input observa-
tions. Thus, it is sufficient to include axioms relevant to input
observations in φsc. Imagine the same abduction problem as
that mentioned above exceptO = p. It is not necessary to in-
clude c↔ etcc in compna(B) because any truth assignment
satisfying the remaining axioms already entails the disjunc-
tion of candidate hypotheses. Therefore, instead of comput-
ing compna(B), we compute compna(B′), where B′ is a
minimal knowledge baseB′ such thatB′ ⊆ B,B′∪H |= O.
We obtain B′ by collecting a set of axioms including literals
reachable from input observations O by backward chaining.

Representing evaluation function. We extend the SAT
problem as a Weighted Max-SAT problem. Given a
weighted logical formula F (e.g., p23.0 ∧ (p → q)0.8), the
Weighted Max-SAT problem is to find the best truth assign-
ment for atoms in F that satisfies F , where the goodness is
defined by the sum of weights of satisfied clauses. We rep-
resent the evaluation function Pr(H) =

∏
h∈H Pr(h) of

Etcetera Abduction by introducing a weighted logical for-
mula φev as follows. For each a ∈ A, we add a weighted
clause to state that the inclusion of a into a hypothesis con-
tributes to the satisfiability by logPr(a):

φev =
∧
a∈A

alogPr(a) (14)

We then solve the Weighted Max-SAT problem of φsc∧φev .
Clearly, this is equivalent to finding the best hypothesis H
that maximizes the log of Pr(H).

ILP translation
We can use an arbitrary off-the-shelf solver for solving the
Weighted Max-SAT problem. In this paper, we leverage the
state-of-the-art technology of ILP, which has already been
proven to be efficient for solving the Weighted Max-SAT
problem (Ansótegui and Gabàs 2013, etc.).

To represent the Weighted Max-SAT problem as a linear
programming problem, we first pre-process the translated
formula φsc to represent the Weighted Max-SAT problem as
a linear programming problem. One approach is to convert
φsc into a conjunctive normal form (CNF) with De Mor-
gan’s law, where each clause can be represented by a linear
constraint. However, it is well known that this conversion
yields a CNF with an exponentially large number of clauses.
We thus exploit the Tseytin transformation (Tseytin 1983).
Given a logical formula φ, we first apply the following pro-
cedures for each subformula F in φ: (i) introduce a new vari-
able x, (ii) replace F with x, and (iii) add x ↔ F to φ. In



terms of an Etcetera Abduction problem, given n explana-
tions withm literals for q (i.e., q ↔

∨n
i (li,1∧li,2∧...∧li,m)),

it generates 1 + n clauses (i.e. q ↔
∨n
i xi and for all i ∈

{1...n}, xi ↔ li,1 ∧ li,2 ∧ ...∧ li,m), whereas the naı̈ve CNF
conversion generates n + mn clauses. For example, given
φ = p∧ q∧ ((p↔ etcp)∧ (q ↔ etcq ∨ (a∧ etcqa))∧ (a↔
etca)), T (φ) = x1 ∧ (x1 ↔ p∧ q ∧ x2 ∧ x3 ∧ x4)∧ (x2 ↔
(etcp ↔ p))∧ (x3 ↔ (x3,1 ↔ q))∧ (x3,1 ↔ etcq ∨x3,2)∧
(x3,2 ↔ a ∧ etcqa) ∧ (x4 ↔ (etca ↔ a)). We then directly
map each clause in T (φ) into a linear constraint as follows.

ILP variables. To represent a truth assignmentA to atoms
a1, a2, ..., an appearing in T (φsc), we introduce binary ILP
variables sa1 , sa2 , ..., san ∈ {0, 1}. The assignment 0, 1 in-
dicates a truth assignment of “false” or “true,” respectively.

For notational convenience, we define δ(l) as follows:

δ(l) =

{
sa if l ≡ a
1− sa if l ≡ ¬a, (15)

where l is a literal and a is an atom. That is, δ(l) returns 1 if
l is satisfied by a truth assignment A; otherwise, 0.

ILP constraints. For each clause C of T (φsc), we intro-
duce ILP constraints according to the following rules.
• If C ≡ l, then introduce δ(l) = 1.
• If C ≡ l ↔ l1 ∧ l2 ∧ ... ∧ ln, then introduce n · δ(l) ≤∑n

i=1 δ(li) and δ(l) ≥
∑n
i=1 δ(li)− n+ 1.

• If C ≡ l ↔ l1 ∨ l2 ∨ ... ∨ ln, then introduce δ(l) ≤∑n
i=1 δ(li) and n · δ(l) ≥

∑n
i=1 δ(li).

• If C ≡ l ↔ (l1 ↔ l2), then introduce (i) δ(l) ≤ 1 −
δ(l1) + δ(l2), (ii) δ(l) ≤ δ(l1) + 1 − δ(l2), (iii) 2δ(l) ≥
1− δ(l1) + δ(l2), and (iv) 2δ(l) ≥ δ(l1) + 1− δ(l2).

One can easily see the equivalence between the logical for-
mulae and their corresponding linear constraints.

ILP objective. We represent the satisfiability of a truth as-
signment as an ILP objective function:

max
∑

aw∈φev

w · sa (16)

Evaluation
We evaluated the scalability of the proposed method on
one hundred synthetic benchmark problems. We compared
our system with ETCABDUCTIONPY, the Python-based
reference implementation of Etcetera Abduction (Gordon
2016)1. ETCABDUCTIONPY uses exhaustive combinatorial
search to find the best hypothesis. For fair comparison, we
extended ETCABDUCTIONPY to implement our system so
that basic modules such as the logical form parser are shared
in both systems. We used the Gurobi Optimizer 7.02, a state-
of-the-art commercial mathematical programming solver. In

1https://github.com/asgordon/
EtcAbductionPy

2http://www.gurobi.com/

SMALLBENCH
Nodes Edges Axioms Branch Obs.

Min. 33 25 52 1.49 6
Max. 69 61 118 1.78 12
Avg. 54.4 45.9 89.0 1.6 9.0

LARGEBENCH
Nodes Edges Axioms Branch Obs.

Min. 2,518 3,667 7,460 1.62 6
Max. 37,741 290,278 134,753 26.39 12
Avg. 20,232.9 156,024.3 74,123.8 4.9 8.9

Table 1: Statistics of synthetic benchmark.

this experiment, we used a machine with Xeon E5-2430 v2
(2.5GHz) x 2 (12 core) and 96.0 GB memory. To simulate
a practical situation, the systems were given a 60 second
time limit and a 6.0 GB memory limit. The proposed system
has been made publicly available at https://github.
com/naoya-i/EtcAbductionPy.

Synthetic benchmark
We generate a synthetic benchmark in a manner similar to
Santos (1994). We first generate a random Directed Acyclic
Graph (DAG) as follows:

1. Choose N ∼ U(min n,max n), E ∼ U(N,max e), T ∼
U(6, 12), where U(a, b) is a discrete uniform distribution
ranging from a to b

2. Create a random directed graph G with N nodes and E
edges, and let G′ = {(u, v) | (u, v) ∈ G, u < v}

Note thatG′ is guaranteed to be a DAG. FromG′, we gener-
ate input observations O and background knowledge B, re-
garding nodes as propositional atoms and edges as axioms:

1. LetB be {}, andO be a set of randomly picked T terminal
nodes from G′

2. For each node n in G′, do:
(a) B ← B ∪ {n← etcn,0}
(b) Choose M ∼ U(1, 6), C ∼ U(0, 1)
(c) Let S be a set of predecessor nodes of n
(d) Pop M nodes, denoted by n1, n2, ..., nM , from S

(e) If C = 0: B ← B∪{n← n1∧n2∧ ...∧nM ∧ etcn,1}
(f) If C = 1: B ← B ∪ {n← ni ∧ etcn,i | 1 ≤ i ≤M}
(g) Go to line (d) unless S is empty

We generated two types of benchmark problems: (i)
SMALLBENCH: min n = 50,max n = 100,max e =
100 and (ii) LARGEBENCH: min n = 1000,max n =
40000,max e = 600000, which were motivated by previ-
ous applications of abductive reasoning (Ovchinnikova et al.
2011; Gordon 2016). The statistics of the generated bench-
mark problems are provided in Table 1.

We determined the prior probability of etcetera literals
by using a Gaussian distribution with mean µ and vari-
ance σ. The assigned probabilities were made realistic by
using different parameters according to the form of ax-
iom: µ = 0.1, σ = 0.05 for an axiom in which a solitary
etcetera literal is its antecedent (e.g., q ← etcq,0); otherwise
µ = 0.5, σ = 0.05 were used.



System Processing time (sec.) Accuracy
Avg. Min. Max.

ETCABDUCTIONPY 1.71 0.01 28.74 -
PROPOSED 0.03 0.01 0.08 100%

Table 2: Processing time and accuracy on SMALLBENCH.
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Figure 1: Rank-inference time distribution on
LARGEBENCH. R and T denote relevant reasoning
and Tseytin transformation, respectively.

Results
We first compared the efficiency of both systems on SMALL-
BENCH. For the proposed system, we also calculated the ac-
curacy of the solutions by considering the outputs produced
by ETCABDUCTIONPY as a gold standard. The results are
shown in Table 2. Both systems could find optimality-
guaranteed solutions for all 50 problems on SMALLBENCH.
The results indicate that the proposed system significantly
outperformed ETCABDUCTIONPY and obtained exactly the
same solutions as those of the reference implementation.

Next, we determined the scalability of the proposed ap-
proach by running both systems on LARGEBENCH. For each
problem, we plotted the inference time of three different in-
stantiations of each system (FULL: the proposed system, -T:
“without Tseytin transformation,” -R: “without relevant rea-
soning”) and its rank in Figure 1. Our best system (FULL-
R) could find optimal solutions for 64.0 % (32/50) of prob-
lems within the given resource limit, whereas ETCABDUC-
TIONPY achieved this for only 8.0 % (4/50) of problems.
Moreover, the processing time of the proposed system is sig-
nificantly shorter than that of ETCABDUCTIONPY. The re-
sults indicate that our system is significantly more scalable
than ETCABDUCTIONPY.

In addition, we conducted an ablation study to determine
the effect of relevant reasoning and the Tseytin transforma-
tion, the result of which is shown in Figure 1 (see FULL-
T, FULL-R). We observe that both techniques strongly con-
tribute to reducing the processing time, but relevant reason-
ing adversely affects the performance to some extent. This
led us to speculate that the cost of relevant reasoning some-
times becomes much higher for large-scale problems.

Our system can be decomposed into four modules: (i) rel:
relevant reasoning, (ii) com: Clark completion, (iii) I-gen:

System rel/com I-gen/I-opt Total Var. Constr.
FULL 3.4 / 1.1 4.4 / 3.0 12.0 53,397 76,716
FULL 3.3 / 0.8 3.3 / 2.0 9.4 39,500 56,426
FULL-R 0.4 / 2.7 14.4 / 6.4 23.8 176,629 251,892
FULL 0.3 / 0.2 1.0 / 0.4 2.0 13,183 18,953
FULL-T 0.2 / 1.9 2.1 / 0.5 4.7 22,716 25,887

Table 3: Average processing time of each module and aver-
age size of ILP problem.

ILP translation, and (iv) I-opt: the optimization of Equa-
tion (16). Table 3 shows the average processing time of each
module and the average size of generated ILP problems. The
first row (FULL) indicates that our bottle neck is on relevant
reasoning and the generation of ILP problems.

Finally, we compared the average processing time and
size of ILP problems of our systems (FULL versus FULL-R,
FULL versus FULL-T). For fair comparison, we ran the sys-
tems on the same set of problems that were solved by both
systems within the given resource limit (24, 17 problems,
respectively). In this regard, for relevant reasoning (FULL
versus FULL-R), we observe that the improvement is at-
tributable to the Clark completion and ILP modules (com,
I-gen, I-opt), which reduces the computational cost of rele-
vant reasoning (rel). This indicates that identifying relevant
axioms helps to reduce the complexity of an ILP problem.
For the Tseytin transformation (FULL versus FULL-T), we
observe that the improvement can mainly be attributed to
the pre-processing modules (com, I-gen), but not to ILP op-
timization (I-opt). The Tseytin transformation did not help
reduce the complexity of ILP problems in our benchmark,
although it remains beneficial for the overall efficiency.

Related work
The SAT-based approach to abductive reasoning has not
been widely explored in the literature. As described above,
the translation of an abduction problem into deduction was
reported previously (Console, Dupre, and Torasso 1991). In
this paper, we present an extension of their result to translate
an Etcetera Abduction problem into a Weighted-Max SAT
problem, additionally representing the probabilistic evalua-
tion function of Etcetera Abduction. Furthermore, this is the
first time a large-scale evaluation of SAT-based abductive
reasoning is conducted.

In the area of Artificial Intelligence, a number of prior
studies were carried out to develop an efficient inference
method for abductive reasoning (Santos 1994; Abdelbar and
Hefny 2005; Inoue and Inui 2014, etc.). Unlike our work,
however, these methods were tailored for abductive reason-
ing. Thus, finding a way to extend these frameworks to en-
hance their expressive inference capability (e.g., integrating
forward reasoning) remains an open question. On the other
hand, our framework is SAT-based, which allows us greater
flexibility to extend the framework. For example, forward
reasoning with uncertainty is naturally incorporated into the
proposed framework by simply adding a weighted clause
into φ. In addition, SAT-based formulation enables us to use
highly advanced optimization algorithms developed in the



field of SAT and Operations Research.
The work that most closely resembles our proposal is

a series of studies that implemented abductive reason-
ing in Markov Logic Networks (Kate and Mooney 2009;
Singla and Mooney 2011; Blythe et al. 2011), which is a
popular well-developed probabilistic deduction framework
(Richardson and Domingos 2006). Basically, these studies
implemented abductive reasoning through the reverse impli-
cation of axioms in background knowledge, thereby sharing
the same spirit as our Clark completion-based translation.
The key difference is that they either do not model the eval-
uation function of Etcetera Abduction (Kate and Mooney
2009; Blythe et al. 2011), or they require a larger number
of clauses to represent an abduction problem (e.g., the pair-
wise mutual exclusivity constraints in (Kate and Mooney
2009)). In addition, they do not evaluate their translation
with a large-scale knowledge base.

Conclusions
We described Etcetera Abduction, a new implementation of
logical abduction. We showed that an Etcetera Abduction
problem can be translated into a Weighted Max-SAT prob-
lem, which enables us to leverage highly advanced technolo-
gies developed in the field of SAT and Operations Research,
and to flexibly extend the framework. In our research, we
used state-of-the-art mathematical optimizers developed in
these fields and demonstrated the scalability of our proposal
on a large-scale synthetic benchmark that contains up to
ten thousand axioms. This is the first work to evaluate a
SAT-based approach to abductive reasoning on such a large-
scale knowledge base. The inference engine presented in
this paper has been made publicly available at https://
github.com/naoya-i/EtcAbductionPy. Our fu-
ture work includes extending the proposed framework to ac-
commodate first-order logic, and applying Etcetera Abduc-
tion to large-scale interpretation problems with application-
specific knowledge bases.
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