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ABSTRACT
In natural outdoor environments, the shape of the surface terrain is
an important factor in selecting a traversal path, both when operat-
ing off-road vehicles and maneuvering on foot. With the increased
availability of digital elevation models for outdoor terrain, new op-
portunities exist to exploit this contextual information to improve
automated path prediction. In this paper, we investigate predictive
neural network models for outdoor trajectories that traverse terrain
with known surface topography. We describe a method of encoding
digital surface models as vectors in latent space using Wasserstein
Autoencoders, and their use in convolutional neural networks that
predict future trajectory positions from past trajectory data. We
observe gains in predictive performance across three experiments,
using both synthetic and recorded trajectories on real-world terrain.

CCS CONCEPTS
• Information systems → Geographic information systems;
•Computingmethodologies→Dimensionality reduction and
manifold learning.
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1 INTRODUCTION
In the task of predicting a person’s future trajectory given recent
observations, the surrounding environmental context can be infor-
mative. When walking in urban settings, for example, people may
be more likely to follow the route of sidewalks, or keep a consistent
distance from the walls of buildings. Likewise, when traversing
wilderness areas, people will adjust their paths in consideration
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of the features of the terrain, based on how quickly, safely, or ef-
ficiently they aim to reach their intended destination. With the
increased availability of digital surface models for arbitrary loca-
tions on Earth, new opportunities exist for using the physical shape
of the terrain improve prediction for GPS-encoded paths. Needed
are methods for representing terrain features for arbitrary locations,
and an approach to path prediction that can directly exploit the
information in these representations for improved accuracy.

As in other prediction tasks, machine learning methods based
on neural networks are well-suited to path prediction, and offer
several approaches to the integration of terrain information. In the
simplest approach, network architectures could include the nearby
raw digital surface model as an additional set of input features
alongside the available time-series GPS data. With infinite training
data and computational resources, such an architecture could learn
generalized features of the terrain that are most informative. In
seeking a more practical approach, we note the relative discrepancy
in the size of available geospatial terrain data (huge) compared to
GPS-encoded path data (modest). Given the imbalance, we see an
opportunity to divide the machine learning task into two parts,
first learning task-independent terrain representations from the
ubiquitous data, then exploiting them in the specific task of path
prediction.

In this paper, we investigate an approach to neural path predic-
tion incorporating latent terrain representations, divided into two
parts. First, we train a low-dimensional encoder for raw height val-
ues in digital surface model data using a Wasserstein Autoencoder.
Second, we train a trajectory prediction model using convolutional
neural networks, concatenating input trajectory offsets with en-
coded representations of their surrounding terrain. We evaluate
the prediction accuracy of our model as compared with an ablated
model trained using only the trajectory offsets. Three datasets are
used for our evaluation, consisting of synthetic data, recorded data
of hikers, and recorded data from both vehicles and people on foot
in a desert military exercise.

2 RELATED RESEARCH
The analysis of path information in wilderness areas is an active
area of ecology research, where GPS tracking devices have been
attached to animals in a wide variety of studies for different pur-
poses. Traditionally seen as a tool for habitat range identification,
paths from high-frequency sampling of animal location create new
opportunities to study other aspects of behavior such as habitat
use and diet [Weber et al. 2015]. In analyzing animal path data, a
central concern in ecology research is path segmentation rather
than prediction [Edelhoff et al. 2016], typically for the purpose of
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identifying the behavioral state of the tracked animal. State-space
models for the analysis of animal tracking data [Patterson et al.
2008] have some similarities to the neural path prediction approach
we pursue in this paper, as their latent encoding of intrinsic context
(behavioral state) is analogous to our latent encoding of extrinsic
context (terrain).

Learning a useful representation and concentrating the data
on low dimensional manifolds are important for machine learn-
ing tasks. For self-supervised learning, the classical auto-encoder
produces a lower-dimensional representation by minimizing re-
construction errors of original data. The pioneering work of varia-
tional autoencoder [Kingma et al. 2014] aims to improve the latent
space by adding a regularizer that minimizes the KL-divergence. It
produces a more structured latent space with better interpolation
results in the unseen areas. Wasserstein Autoencoder [Tolstikhin
et al. 2018] proposes a regularizer with optimal transport diver-
gence between two distributions. It matches the data distribution
in latent space with a prior distribution, and can generate samples
with better reconstruction quality.

Trajectory prediction aims to predict future movements based
on past trajectories. However, using only the previously observed
movement as input ignores the factors contributed by surrounding
environments. The work in SocialLSTM [Alahi et al. 2016] assumes
that the nearby pedestrian movements also affect the future trajec-
tory of an agent. The follow-up work incorporates nearby scene
information implicitly by using common historic movements within
a grid cell to predict future trajectory [Manh and Alaghband 2018].
The work by Zhang et al [Zhang et al. 2018] integrates low-level
LiDAR statistics to learn feature representations for motion predic-
tion.

3 METHODOLOGY
The main issue in trajectory prediction based only on the observed
path in the past is that the given information may not be enough
to accurately model the future path. For example, if the observed
trajectory is heading toward a fixed direction, there is little informa-
tion to indicate whether the future path will continue in the same
direction or making a turn at some point. We propose to improve
this information gap by adding nearby terrain information into the
prediction of future trajectory.

Our method is separated into two steps: terrain latent space
generation and trajectory prediction. For the first stage, we apply
Wasserstein Autoencoder [Tolstikhin et al. 2018] to obtain the latent
space from nearby terrain digital elevation models (DEM). The
latent variables obtained from the DEM patch centered at each
trajectory point are then concatenated with the corresponding
trajectory coordinates to form the input vector for the next stage.
For the second stage, instead of using RNNs such as LSTM, we learn
a convolutional neural network to predict the future trajectory
positions from past trajectory and corresponding terrain latent
space.

3.1 Terrain Latent Space Generation
Based on all of the trajectory points in the training dataset, we
calculate the bounding area in latitude/longitude and then obtain
its corresponding DEM. The DEM imagery is obtained from Bing

map [Rischpater and Au 2013] and we use the zoom level 13, which
equates to 19 meters per pixel. Then a sliding window of 64 by
64 pixels is used to sample DEM patches from the terrain DEM,
which covers about the 1.2km by 1.2km area. These patches are
then used to train a Wasserstein Autoencoder (WAE) to compute a
latent space representation for the terrain. Here we set the size of
the latent vector to 8. Compared to Variational Autoencoder (VAE),
WAE tend to produce a sharper image reconstruction, and thus can
preserve the local geometry changes better.

To help visualize what is being learned by the WAE network,
we trained the model on DEM data from the deserts of Southern
California, and applied a four-color overlay representing clusters of
similarly-represented patches, as shown in Figure 1. To assign each
patch to one of the four clusters, the k-means clustering (where
K=4) is applied on DEM patches using the Euclidean distances of the
height values in each pixel or latent vectors, shown on the left and
the right sides of Figure 1, respectively. We observe that clustering
with raw values distribute patches based on absolute height values
and thus produce large clusters across both sloped and flat areas. On
the other hand, latent vector encodes local geometry features better
and the resulting clusters tend to align with local slope directions.

3.2 Trajectory Prediction
Using the learned WAE, a corresponding DEM patch centered at
each trajectory point is extracted and its latent vector is computed.
The latent vectors are then concatenated with trajectory offsets to
form the input data. To train the trajectory prediction model, we
use the CNN architecture similar to the one proposed in [Nikhil
and Morris 2019] instead of a typical recurrent neural network such
as LSTM. Recent research has shown that convolutional architec-
ture could outperform the recurrent neural network for modeling
sequence data [Bai et al. 2018] and therefore we choose convolu-
tional network as our starting point for experiments. Specifically,
the network contains 4 layers of 1D CNN with kernel size 10 and
output channel size 32, followed by a fully connected layer with
output size 20. The network is trained with the mean absolute error
loss using the RMSProp optimizer. To produce training data, the
offset vector from the previous time step is first computed for each
trajectory at each time step. Then we use a sliding window of size
30 across these offsets to extract samples with equal size and apply
zero padding for the missing data. For each sample, the offsets and
terrain latent vectors from the first 10 time steps will be used as
the input and the trajectory offsets for the next 20 time steps are
the output. At testing time, the predicted offsets are then used to
reconstruct trajectory positions.

4 EXPERIMENTS
We use three different data set to test our trajectory prediction
model with terrain latent space. Among them, one is a synthesized
trajectory dataset and the other two are real-world datasets. For
each dataset, we train on 75% of the trajectories and validate on the
remaining 25%.

4.1 Synthetic Trajectories
The synthetic data is created by following the slope descending
direction from randomly selected starting points in the terrain. To
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Figure 1: K-means clustering of terrain patches based on height values at each pixel (left) and latent representations (right).
The terrain covers the area of approximately 60 × 55 km2.

Figure 2: Examples of trajectories used in the experiments
from the Synthetic dataset (left), the Hiking dataset (mid-
dle), and theDesert dataset (right). The synthetic trajectories
follow the descending directions and are highly correlated
to the nearby terrains. The Hiking and Desert trajectories
consist of recorded GPS tracks of hikers and military units
(infantry and vehicles), respectively.

generate the data, we choose the terrain DEM data from the region
of Ibiza island, Spain (N39°1′12.04′′ E1°28′55.73′′). The goal is to
create trajectories that will have a strong correlation to nearby
terrain environments to validate the usage of terrain latent space
for prediction. The examples of synthesized trajectories are shown
in Figure 2. As shown in Table 1, using latent space terrain as part of
input in the model improves the prediction accuracy significantly in
the synthetic dataset. This validates the usage of terrain information
when the trajectories are correlated with nearby geometries.

4.2 Real-World Trajectories
We selected two GPS trajectory datasets collected from rugged (non-
plain) areas to test the terrain latent space for trajectory prediction,
illustrated in Figure 2. The Hiking trajectory data is obtained from
[Lera 2017], which is a collection of 15,376 GPS tracks of hikers
in the Balearic Islands of Spain from 2009 to 2016, collected from
approximately 2,000 participants. The sample rate for this dataset
was about 0.04Hz to 0.06Hz. We use a subset of the data containing
1554 trajectories in our experiment.

The Desert trajectory data is collected during a military training
exercise held at the National Training Center at Ft. Irwin, California
using the Multiple Integrated Laser Engagement System (MILES)
[Data 2019]. These GPS trajectories were obtained from approxi-
mately 500 infantry and vehicle units, collected during 90 minutes

of the training exercise. The sample rate for this dataset was be-
tween 0.03Hz to 0.08Hz. To clean up these non-uniform sampling
rates, we resampled both datasets to 0.1 Hz as a pre-processing
step.

For each GPS coordinate in each track of each dataset, we com-
puted the latent representation of the surrounding terrain by crop-
ping a 64 by 64 pixels DEM patch centered at that location. The
WAE for each dataset is trained separately using the DEM data
from that region for simplicity. With enough DEM training images,
a single WAE could be trained to represent terrain feature space
across all datasets. The DEM data is obtained via Microsoft Bing
Map [Rischpater and Au 2013] with detailed level 13.

For each track in each test split, we predict the locations of the
next 20 timestamps that follow an input sequence of 10 timestamps,
and compute two accuracy metrics. The first is average offset error,
which is the average error between the predicted offset vector and
the ground truth offset at each time step, and the other is average dis-
placement error, which is the mean-square error between predicted
points to the true locations, following the previous experimental
paradigm of Social LSTM [Alahi et al. 2016].

Table 1 shows the comparison prediction accuracy with and
without latent space terrain. Accuracy gains in all three evaluations
are significant (p < 0.001), using stratified shuffling [Yeh 2000].
Although the improvements seen in the two real-world datasets are
not as substantial as in the Synthetic dataset, the results consistently
show around 5% decrease in mean-square errors when using terrain
information. Figure 3 shows a visual comparison example between
the two methods for the Hiking data. Using latent space terrain
benefits the path prediction the most near curvy turns, where there
are not enough information in the observed trajectory to predict
such a sharp turn.

5 DISCUSSION
The improvements observed in the aforementioned experiments
indicate that latent representations of terrain can improve the pre-
diction of future trajectories of people in outdoor, wilderness set-
tings. Unsurprisingly, improvements are most substantial in our
experiments with synthetic data, since nearby terrain is highly
correlated with the synthesized movements. Primarily, this exper-
iment with synthetic data serves to validate that the latent space
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Table 1: Accuracy of trajectory prediction, reported as mean-square error (lower is better). Both the reported offset and dis-
placement errors are in meters. All improvements are significant (p < 0.001).

Dataset Size Trajectory Only Trajectory + DEM Improvement
Offset Displacement Offset Displacement Offset Displacement

Synthetic 500 0.3647 23.848 0.2763 13.405 24.23% 43.78%
Hiking 1554 0.2887 19.926 0.2757 18.992 4.48% 4.68%
Desert 1332 1.0035 84.556 0.9535 79.119 4.99% 6.45%

Figure 3: Comparison of trajectory prediction with (Left)
and without (Right) latent space. Overall using latent space
helps to predict some sharp turns where the information
from partly observed trajectory is not enough to predict the
turn.

learned by the WAE is, indeed, encoding terrain features that are
descriptive of its surface shape. Our two experiments with recorded,
real-world trajectories also show reduced prediction error when
incorporating latent representations of terrain, albeit with smaller
improvements. We find it somewhat surprising that the improve-
ments in the Desert dataset were more pronounced than in the
Hiking dataset, as it included more variation in the types of tracked
entities (both mounted and dismounted military forces). We note,
however, that the mean square error is substantially lower in the
Hiking dataset in both conditions. This suggests more uniformity
in the types of paths traversed by these hikers across the dataset,
as well as the pace and behavior of the hikers themselves.

While our experiments validate the inclusion of latent terrain
representations in trajectory prediction, further investigations are
needed to better understand how these representations can best be
exploited. In this work, we choose to train the WAE as a separate
process, before training the CNN network. Combining the terrain
encoding and trajectory prediction into the same network would
allow end-to-end training, and could potentially improve the accu-
racy of the final network. We also believe that alternative network
architectures, e.g., LSTM, transformers, should be investigated. As
well, further insights can be gained through experimentation with
a wider range of trajectory datasets and varied terrain. In addition
to human movement datasets, tracks of wild animal movements
are also likely to be highly correlated to nearby terrain features,
opening up new applications of our approach in ecology research
and wildlife management. Although the majority of public datasets
we could find from the open repository [Bank 2017] do not record
GPS coordinates at sufficiently high sampling rates for use in tra-
jectory prediction, new datasets with high sampling rates will open
up new opportunities for future research.
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