
Abstract

 This article introduces a novel approach to the
problem of collaborative planning. We present a method
that takes classical one-shot planning techniques - that
take a fixed set of goals, initial state, and a domain
theory - and adapts them to support the incremental,
hierarchical and exploratory nature of collaborative
planning that occurs between human planners, and that
multi-agent planning systems attempt to support. This
approach is planner-independent - in that it could be
applied to any classical planning technique - and recasts
the problem of collaborative planning as a search
through a space of possible inputs to a classical plan-
ning system. This article outlines the technique and
describes its application to the Mission Rehearsal Ex-
ercise, a multi-agent training system.

1. Introduction
This paper presents techniques to enhance the generality

and modularity of collaborative (e.g., mixed-initiative)
planning systems. By allowing human users and planning
systems to jointly develop plans, such systems increase
users’ trust in the end product as well as complement the
intuitive planning skills of human experts with the superior
bookkeeping capabilities of automated planning systems.
Indeed, collaborative planning systems have been applied
to a number of significant applications including disaster
planning [1], and tutoring systems for teaching people how
to plan and make decisions [14]. These systems differ in
terms of who has authority or initiative, what knowledge is
available to the agent and the high-level communicative
goals of the system (e.g., tutoring goals vs. task goals) [7].
But they share a great deal, in particular the need to plan,
including the ability to generate plans, provide feedbacks on
the feasibility of different options, monitor their execution,
and replan in response to unexpected events or user inter-
ventions.

These are large and complex systems that tightly inte-
grate a number of capabilities. Beyond plan generation,
they communicate with the user, often through natural
language, model aspects of the user’s mental state, recog-
nize user intentions, execute plans and monitor the external
environment. Further, users often demand flexible control

over the planning process, at times micromanaging and at
other times expecting the system to handle all the details.
Facilitating this close and varying level of control over the
planning process complicates the problem of cleanly sepa-
rating the communication module from the planning proc-
ess. For example, rather than simply accepting a goal and
initial state, the planner must support a wide range of pos-
sible inputs. This lack of modularity limits the generality of
these methods and contributes to the obsolescence of their
component technologies. This is most obvious with regard
to the planning techniques that underlie these systems,
arguably their most essential component technology.

Due to this tight connection between planning and
communication components, most planning techniques
underlying collaborative planning systems are antiquated or
rudimentary. Planning techniques are, on the other hand,
evolving rapidly. A quick review of the recent AI Planning
system competitions illustrates that the top performing
planners are in constant flux. For example, in 1998, IPP was
the winner of the ADL track and also showed good per-
formance in the STRIPS track, and HSP solved the most
problems in the STRIPS track [12]. In 2000, IPP was re-
placed by FF (faster but total order) [4]. In 2002, MIPS
solved the highest number of problems in the fully auto-
mated track, and was the only system that produced solu-
tions in each track, while FF also out-performed its com-
petitors in the numeric and STRIPS domains [11]. To our
knowledge, none of these techniques have been incorpo-
rated into state-of-the-art collaborative planning systems.

Tying a collaborative planner to a specific planning al-
gorithm can also significantly limit its generality. The de-
velopers of planning systems point to the domain
-independence of their planning techniques as an argument
for their wide applicability. There is a strong reason to
doubt this claim. Planning performance varies dramatically
across application domains. Different planning systems
excel on different domains and some, supposedly do-
main-independent, planners cannot even represent distinc-
tions essential for certain domains. For example, at the AI
planning system competition in 2002, FF planner exhibited
outstanding performance against its competitors in most of
the Numeric and STRIPS problems, but it didn't compete in
the temporal domains. On the other hand, TALPlanner

A Planner-Independent Collaborative Planning Assistant

Hyeok-Soo Kim Jonathan Gratch
Institute for Creative Technologies
University of Southern California

13274 Fiji Way, Marina del Rey, CA, 90292, USA
kimhs@ict.usc.edu gratch@ict.usc.edu

Appears in the proceedings of the 3rd international joint conference on autonomous agents and multi agent systems

out-performed its competitors in the temporal domains, but
didn't participate in the numeric domains [11].

We argue that planner-independence is a far more crucial
design goal than domain-independence in the design of
collaborative planning systems, though is not immediately
obvious how to achieve this goal. A planner-independent
system embodies the design philosophy that the planner
should be a modular component that can be easily replaced
depending on the characteristics of the application or as
improved techniques become available. Unfortunately, due
to close input a user has over the planning process, planning
and user-interface modules are tightly intertwined in col-
laborative planning systems. In contrast, the typical inter-
face to conventional planning system is at the level of
specifying a domain theory, initial state and a set of goals,
which is really an inappropriate level to separate planning
and communicative functions.

The question we address in this paper is what is the right
level of abstraction (what is the right API) to separate the
planning system from other modules in a collaborative
planning system, specifically focusing on the connection to
the user-interaction module, which tends to have the tightest
interaction. Our approach is to consider the generic plan-
ning services necessary to support collaboration, define a
level of abstraction in terms of these basic services, and
map between these services and the low-level API of plan-
ning systems in a planner-independent fashion.

Section 2 lays out a high-level description of collabora-
tive planning systems and section 3 elaborates our basic
approach and describes how we map from the basic plan-
ning services necessary for collaboration to low-level calls
to a conventional planning system. We conclude by dis-
cussing evaluation and direction for future research in sec-
tion 4 and 5.

2. Collaborative Planning Systems
Collaborative planning systems allow a human user and

an intelligent system to closely interact during the process
of plan generation, execution, and repair. Such systems
have been explored in the research community under a
variety of titles including mixed-initiative planning
systems, human interactive planning systems, planning
systems with adjustable autonomy, and tutoring systems.
They differ in many respects but they share two tightly
intertwined capabilities: they must communicate with the
user about the planning processes, and they must be able to
develop and reason about plans. Here we review this work
in terms of terminology we will use in this article.

2.1 Communication
The interaction between a user and a system can be seen

as a dialogue, and researchers in this area have been heavily
influenced by linguistic theories, regardless of whether the
system actually communicates via natural language or
through a more stylized interface. In such systems, the

interaction is controlled by a dialogue manager and the
content of the interaction is frequently characterized in
terms of speech acts [3], a formulism for characterizing and
classifying natural language utterances. For example, a
request like “where is the helicopter” is represented as an
“information request” about some attribute of a domain
entity. Speech acts have a certain structure and impose
certain communicative obligations on the listener. For
example, upon receiving an information request, the system
is obligated to respond to the request with some assertion.
Standard speech acts include inform, order, request, accept,
reject, and counter-propose. Depending on the system’s
capabilities, these are frequently augmented with dialogue
acts that manage turn-taking and shifts in initiative between
the system and the user [17].

Speech acts provide an abstract structure, but by ana-
lyzing human-to-human collaborative planning dialogues,
collaborative planning researchers have also classified
general features of the content of these conversations.
Human interactive planning dialogues revolve around as-
pects of planning process, including the development and
refinement of plans, the evaluation and comparison of al-
ternatives, the clarification of features of the environment,
the identification of plan problems or threats, and the clari-
fication of aspects of the planning dialogues. By combining
these aspects with speech acts, these systems can classify a
range of utterances. For example, a user might inform the
system of a course of actions, order the system to adopt it,
request the system to develop an alternative, accept the
alternative, order its execution, etc.

2.2 Planning and Planning Service Requests
Speech act theory facilitates understanding, but to service

such speech acts, the system must also support a range of
plan reasoning capabilities. The classic definition of the
planning problem is simple to generate a satisfying plan
given a set of goals and initial state. However, researchers
in collaborative planning recognize this definition is far too
restrictive. In terms of plan generation, users frequently
demand tighter and incremental control over the planning
process. As in many real-world collaborative planning
domains, plans are typically hierarchical and users interact
with the system to refine their plans, explore or get advice
about different courses of action, and receive assistance in
initiating and monitoring the execution of the plan. If a user
requests a course of actions, the system must be able to
develop one. If the user requests a comparison of alterna-
tives, the system must have the means to provide it. If the
system wishes to take initiative this must be motivated by
some inferences concerning the planning process.

Consider the following hypothetical interchange from the
Mission Rehearsal Exercise (MRE), a multi-agent training
system [14]:

USER: How can I reinforce the platoon in downtown
Celic?

SYSTEM: There are two feasible options. Send two
squads forward or send one squad to secure our route and
speed our subsequent movement.
USER: What is the disadvantage of sending two squads?
SYSTEM: It will fracture our forces and limit our future
options.
USER: Send first squad to secure the route.
SYSTEM: Sir. First squad needs to secure the landing
zone. I suggest we send forth squad.
USER: We don’t need to secure the landing zone anymore.
Send first squad.

…

This example illustrates several planning capabilities that
aren’t obviously mapped to traditional planning problems.
The planning process is hierarchical and incremental.
Rather than generating a complete plan, the system pro-
poses single step refinements. Rather than generating a
single satisfying plan, multiple qualitatively different op-
tions are explored in parallel (e.g., sending one versus two
squads). Rather than receiving a simple list of plan steps,
the user may ask for evaluative information (e.g., what is
the disadvantage), and the system may take the initiative to
offer advice (e.g., first squad is preoccupied). Finally, rather
than accepting a fixed goal state, planning requirements
may be changed in mid-stream (e.g., as when the user drops
the goal that the landing zone must be secure). Collabora-
tive planners typically also incorporate functions to execute
plan steps, monitor their execution, and detect when plan
repairs are necessary.

We use the term planning service requests to refer to the
collection of planning capabilities like the above that are
necessary to address a user’s plan-related speech acts and to
inform the systems inferences about dialogue initiative.
Collectively, planning service requests define an API that
the underlying plan reasoning system must support.

3. Planner-Independent Collaborative
Planning Assistant (PICOPA)

Figure 1 illustrates our view of how to impose greater
modularity between the planning and the communicative
modules in a collaborative planning system. The key idea is
to define a set of abstract planning service requests that can
serve as a bridge between the dialogue manager and a tra-
ditional planning system. Under this view, the question we
must address is how to provide a general and planner
-independent mapping between these service requests and
the capabilities of planning systems.

 Our approach is motivated by the “in practice” effi-
ciency of recent planning techniques within the context of
collaborative planning domains. Although planning in
general is hard (indeed, undecidable), for suitably con-
strained applications recent planning techniques can, in
practice, “solve” the planning problem. This is particularly
true for the relatively constrained propositional domain
theories used by many collaborative planning systems.

Our admittedly strong assumption in this paper is that
planning is decidable and relatively efficient in practice,
though we discuss how to relax this assumption later in the
paper. If plans can be generated in milliseconds, however, it
opens up new possibilities for collaborative planning. One
could imagine repeatedly calling a planner to solve varia-
tions of a planning problem to explore features of a domain.
For example, if the user wanted to consider the differences
between evacuating injured personnel with a helicopter
versus an ambulance, one could simply solve the planning
problem twice - once with the domain theory only with the
helicopter-related actions and once only with the ambu-
lance-related actions - and summarize the outcomes to the
user.

 User

Dialogue manager

User speech act System speech act

Planning service
requests

Find
plan

Refine
plan

Abstract
plan

request
state info

Check
interaction

API

PICOPA

Domain
theory

Initial
state

Goal
state

Acting Sensing &
Monitoring

Environment

Replies about
the requests

API

API

Planner

Add/drop
goals

Figure 1: PICOPA architecture

We build on this observation, showing how a more
flexible repertoire of planning service requests can be con-
structed by solving a set of suitably varied planning prob-
lems. By systematically varying a traditional planner’s
domain theory, initial state and goal state, the system can,
by brute force, provide planner-independent mappings
between the planning service requests demanded by col-
laborative planning systems and the capabilities of tradi-
tional planners. The planning system itself can be treated as
a black box and alternative planners could be incorporated,
assuming they all take as input an initial and goal state
description and a domain theory consisting of a set of
primitive actions.

In the remaining of this section, we describe how
PICOPA maps high-level planning service requests (e.g.,
refine the current plan or check interaction) onto a sequence
of traditional planning problems. To handle such requests,
the system needs a mechanism that maps them into appro-

priate inputs for a classical planning system and also pro-
vides the dialogue manager interpretable feedback from the
result of the planning system. First we introduce new rep-
resentational constructs, hierarchical action sets and the
current plan set, to facilitate this mapping.

3.1 Hierarchical action set
A hierarchical action set is a novel domain representation

that takes advantage of the speed of modern
non-hierarchical planning algorithms but retains the control
and flexibility of collaborative hierarchical planning. It is an
AND/OR graph that consists of both abstract and primitive
actions and it represents hierarchical decomposition rules
that refine a high-level action to a set or multiple alternative
sets of lower-level ones.

Though superficially similar to hierarchical action
structures in conventional hierarchical planning systems
[6], there are significant differences. An abstract action
represents an unordered set of primitive actions that are
potentially useful for achieving a goal rather than a high
level sequence of actions to perform. Decomposing an
abstract action corresponds to building the set of primitive
actions into several more focused subsets, rather than
yielding a more detailed lower level description.

For example, consider the hierarchical action set for ob-
taining a shelter shown in Figure 2. Two different decom-
positions of the root action, rent an apartment and buy a
house, subdivide the entire set of six primitive actions to
two smaller and qualitatively distinct subsets, {searching
classified ads, visiting apartments, placing deposit} and
{getting a real estate agent, getting loan pre-approval, vis-
iting open houses}, respectively. If one prefers to rent an
apartment, the system retains the primitive actions under
rent an apartment in the current domain and excludes the
primitive actions related to buying a house. At any point in
the plan refinement process, the current set of primitive
actions is passed to a non-hierarchical classical planning
system to check the existence of a complete plan. This
process allows a user to hierarchically construct a plan
under his/her control and preference while continually
reorganizing the domain theory to reflect to his/her choices.
This hierarchical action set also makes it easy to transform a
requested planning service into a set of conventional plan-
ning problems by generating appropriate inputs, especially
domain theories, for traditional planning systems.

For a given domain, there can be multiple hierarchical
action sets, each of which has its own goals. These goals are
used for selecting appropriate hierarchical action sets ac-
cording to the given goals. For example, let’s assume there
are four actions sets, A, B, C, and D, and each has a goal, a,
b, c, and d respectively. When a user wants to generate a
plan to achieve b and d, the system will automatically select
B and D as initial hierarchical action sets. To avoid redun-
dancy and ambiguity in selecting initial action sets, a set of
goals associated with an action set cannot be a subset of
goals of another action set, but two action sets can have

goals in common. Hierarchical action sets satisfy the
downward and the upward solution properties, so once an
abstract solution is found all other abstract plans can be
pruned away and all the descendents of any inconsistent
abstract plan can be pruned away as well [15].

 Obtaining a shelter

Rent an apt. Buy a house

Searching
classified

ads.

Visiting
apts.

Placing
a

deposit

Getting a
real estate

agent

Getting
loan pre-
approval

Visiting
open

houses

Figure 2: An example of a hierarchical action set
for obtaining a shelter

3.2 Current plan set
To keep track of development of a plan while exploring

hierarchical action sets and frequently changing the current
domain theory, the system uses an array, the current plan
set, to represent the current plan developed so far. Initially,
it consists of the root actions of selected hierarchical action
sets, such that the union of the effects of the root actions
should contain all of the user’s goals. If different combina-
tions of action sets could satisfy these goals, these are con-
sidered potential choice points for the user. The system first
checks whether or not each combination has a consistent
and complete solution by sending the planner a new domain
theory that consists of all the primitive actions in each
combination in turn. If the planner finds a solution with a
combination, the hierarchical action sets in the combination
will be considered as valid candidate hierarchical action
sets. The dialogue manager then informs the survived can-
didates to the user and lets him/her choose one among them.
The root actions of the selected hierarchical action sets
become initial members of the current plan set.

The current plan set is updated whenever each abstract
action is replaced by one of its refinements after checking
consistency between the newly introduced actions and the
existing ones. This process continues until all the actions in
the current plan set become primitive.

The above two new domain representations also make it

possible for users to select their own strategies rather than
the system imposing a specific refinement strategy, such as
least commitment or fewest alternative first (FAF) [13]. The
system just provides the necessary information to imple-
ment these strategies, i.e., existence of alternative refine-
ments or the consistency of each refinement with the rest of
the current plan.

3.3 Solution matrix
PICOPA handles planning service requests by systemi-

cally solving variants of the current plan set and combining
the results in formulating an answer to the request. The
solution matrix represents this computation.

For example, in Figure 3, the user wishes to decompose
two abstract actions, A1 and C2, in parallel (a user can de-
compose them simultaneously). PICOPA must infer which
combinations of refinements are consistent with each other.
The solution matrix in Table 1 illustrates how this service
request is translated into a series of planning problems that
are specializations of the current plan set. To check the
consistency of each problem, PICOPA constructs a domain
theory for each possible combination of refinement with
primitive actions and the primitive descendents of the ab-
stract actions in the combination. For example, the first row
corresponds to specializing A1 into (A111, A112) and C2 into
(C211, C212), remaining B3 and D1. After examining each
domain theory by passing it to a conventional planning
system along with initial and goal state, PICOPA generates
a solution matrix that summarizes the results. If the user
chooses one among possible candidates, the current plan set
is updated to reflect this choice. Table 1 shows the first
three of four possible combinations are found to be con-
sistent. If the user chooses the second one - (A111, A112) and
(C221, C222) - the current plan set is specialized from {A1, B3,
C2, D1} to {A111, A112, B3, C221, C222, D1}. By showing if a
part of the plan has a strong connection with its other part
(e.g., (A121, A122) is inconsistent with (C221, C222), namely,
(A121, A122) should be only with (C211, C212)), or if a decision
limits the future development of the plan (e.g., selecting
(A121, A122) restricts to decomposing C2 only into (C211,
C212)), the solution matrix prevent users from bad decisions
as well as provides useful information for users to make
right decisions.

A1

A111 A112

B3 C2 D1

The current plan set
{ A1, B3, C2, D1 }

A121 A122 C211 C212 C221 C222
Figure 3: Decompositions of A1 and C2

A1 B3 C2 D1

consis-
tency

(A111, A212) (C211, C212) Yes
(A111, A112) (C221, C222) Yes
(A121, A122) (C211, C212) Yes
(A121, A122)

All the
primitive
descen-

dents of B3 (C221, C222)

All the
primitive
descen-

dents of D1 No

Table 1: A solution matrix (A1 and C2)

3.4 Planning service requests
There are a wide range of planning service requests that

are necessary to support collaborative plan-related interac-
tions between human users and the system. Collectively,
planning service requests define an API that cleanly sepa-
rate the underlying planner from other system components.
Several researchers in the collaborative planning commu-
nity have proposed particular APIs. For example, Allen and
Ferguson formalized a set of planning service requests –
they call them “problem solving operations”, - necessary for
collaborative planning in terms of a well defined API shown
in Table 2 [2]. Here we describe how to map these
high-level planning service requests into classical planning
problems in terms of hierarchical action set, current plan
set, and solution matrix. In order to facilitate the evaluation
of our approach and easily compare it with other related
works, the planning service requests contain all the problem
solving operations that Allen and Ferguson marshaled in
their recent paper, and several supplementary ones. Up to
now we’ve focused on decomposition. Now we’ll general-
ize this discussion to a number of planning service requests.

Introduce/Refine objective

Modify/correct goal or solution

Evaluate plan

Specify/Extend solution

Create/Compare/Reject option/solution

Undo operation

Cancel plan

Table 2: Collaborative problem solving operations
(Allen and Ferguson)

Introduce objective: when the system gets a set of goals
from a user to generate a plan, PICOPA first identifies
hierarchical action sets relevant to the stated user goals. The
union of the goals of selected hierarchical action sets should
contain all of the user’s goals, and their root actions become
the initial current plan set. In the example in Figure 4, if the
given goals are to achieve q and z, then there exist two
possible hierarchical action sets, {A, B} or {A, C}. Note
that there may be multiple consistent combinations of hi-
erarchical action sets that are treated as alternatives for the
user to select amongst.

Refine plan (objective): After a set of user goals are in-
troduced and the relevant high-level tasks are decided, the
user and PICOPA should concretize the tasks until they
have a satisfiable plan in an executable level by navigating
the hierarchical action sets from part to part according to
their current concern and the degree of exigency of the tasks.
When the user requests to expand an abstract action in the

current plan set, PICOPA shows the possible decomposi-
tions of the action and checks if each decomposition is
consistent with remaining part of the current plan. This
process can be done by generating planning problems that
differ only in their domain theories (they share the same
initial and goal states) and sending them to the underlying
planner. Each domain theory consists of the primitive de-
scendents of the selected alternative and ones of the re-
maining actions in the current plan set. The user can then
select one among the alternatives that passed the consis-
tency check. From the example in Figure 4, let’s assume
that the current plan set is {A11, A12}. If the user would like
to expand A12 first, then the system checks the consistency
of two alternative refinements of A12 with the remaining
part in the current plan set (in this case, only with the step
A11). PICOPA constructs primitive planning problems for
each of these alternatives by specializing the domain theo-
ries - {A1111, A1112, A1121, A1122, A1211, A1212} and {A1111,
A1112, A1121, A1122, A1221, A1222}. The solution matrix in
Table 3 shows the consistency of the two different de-
compositions of A12 with the remaining plan steps. This
table illustrates that (A1221, A1222) is inconsistent with A11,
meaning that the user can choose only (A1211, A1212) as a
decomposition of A12. After the user chooses one of the
consistent options, the current plan set is replaced to the
newly selected one, i.e., from {A11, A12} to {A11, A1211,
A1212}.

A Initial state: p
Goal state: q, r

q
r

B r
z

C g
z

A2111 p f

A2112 f q

A21

A2121 p d

A2122 d q

A2211 q u

A2212u r

A22

A2221 f w

A2222w r

A1111 p t

A1112 t q

A11

A1121 p k

A1122 k q

A1211 q m

A1212 m r

A12

A1221 z s

A1222 s r

Figure 4: Hierarchical Action Sets. The preconditions
appear left of the action, and the effects right.

A11 A12 Consistency

(a1211 a1212) Yes All the primitive
descendents of A11 (a1221, a1222) No

Table 3: Solution matrix for refining A12

Check interaction (Compare/Evaluate options): A key
difficulties in collaborative planning is detecting and
communicating interdependencies between different por-
tions of the plan. For example, how a user decides to obtain
a shelter may constrain his or her options for obtaining
transportation due to the limited budget. A novel feature of
PICOPA allows users to systematically explore interactions

among alternative plan refinements by evaluating the con-
sistency of combinations of possible refinements. For ex-
ample, the solution matrix in Table 1 evaluates the
pair-wise interactions between refinements of A1 and C2.
The results indicate interactions between these tasks (how
the user chooses one as a refinement of A1 will limit his or
her options for refining C2). Although the system cannot
detect exactly why the interaction occurred (the planner
only informs “no plan” with the inputs, not why the failure
occurred), it provides useful feedback to the user: e.g., “if
you refine A1 into A121 and A122, you will constrain your
options for refining C2”. Depending on the time available,
PICOPA can progressively deepen its interaction checks,
initially exploring pair-wise interactions, moving on to
3-way interactions, etc.

Modify/Correct solution (Undo operation): In addition to
refinement, the system allows non-chronological back-
tracking over refinement decisions. When the system can-
not develop a plan anymore from the current plan set due to
some new constraints or circumstantial changes created in
the middle of plan generation or when a user changes
his/her previous decision, the related actions in the current
plan set are replaced by their parent action for reconsidera-
tion by reverting to the previous decision point in the
planning process, as well as any siblings that were previ-
ously pruned away from the hierarchical action sets are
recalled into the sets.

Add or drop goal (Modify/Correct goal): Users can add
or drop goals even in the middle of plan generation. When
users want to drop goals, it doesn’t invalidate the current
plan set, though it may now contain unnecessary plan steps.
These plan steps are automatically removed through the
process of eliminating unnecessary plan steps that will be
explained right after. In the example in Figure 4, let’s as-
sume that the original goals are [q, r] and the current plan
set is {A11, A12}. After dropping a goal, [r], A12 becomes
unnecessary and is automatically removed from the current
plan set.
On the other hand, if a user requests to add a goal, PICOPA
finds an appropriate hierarchical action set, the goals (ef-
fects) of which contain the goal desired to be added, and
then adds the root of the hierarchical action set into the
current plan set. In the example in Figure 4, if a user wants
to add a goal, [g], PICOPA adds the root action (C) to the
current plan set. However, this may cause unnecessary
processing when the goal can be achieved from the current
plan without adding any additional plan steps. For example,
let’s assume the original goal is [q] and the current plan set
consists of {A11, A12}. If PICOPA is requested to add a new
goal [r], it will reorganize the current plan set by adding the
root action (B) that has [r] as an effect. Since there are
duplicated plan steps that achieve [r], one of them, A12 or B,
should be removed from the current plan set. To prevent
this problem, whenever the system gets a request to add a
goal, it first checks if the system can achieve the added goal

from the current plan set without any change. If not, then
PICOPA finds an appropriate hierarchical action set that
contains the added goal as an effect and adds the root ac-
tions into the current plan set.

 There are two additional services that are applied re-
gardless of user requests. The following two services are
performed whenever a current plan set is updated and a plan
step is executed respectively.

Eliminate unnecessary plan steps: In many cases, goals of
one part of the plan can be achieved fortuitously by some
other portion of the plan, in other words, there may exist
redundant plan steps to achieve a same goal. It may also
happen that a goal can be achieved by an unexpected event
in the middle of plan execution. In some other cases, a
hierarchical action set may contain unnecessary actions for
a certain circumstance since a hierarchical action set defines
a very general way to achieve a set of goals. From the above
two cases, it is intuitively realized that PICOPA is required
to detect and eliminate redundant or unnecessary plan steps
so as not to produce inefficient plans. Let’s consider the
following two situations in a planning problem to build a
house. First, a house generally needs to be air-conditioned
and winterized. However, if the user wants to build a house
in Hawaii he doesn’t need to spend extra money for pro-
tection against the cold. Second, if he goes to buy a bath tub,
and the store also sells lawn and garden products, he doesn’t
need to go to a lawn and garden store. When only a part of
the selected hierarchical action set is required for the given
problem or a goal (sub-goal) is fortuitously achieved, it can
makes a part of the current plan set superfluous. PICOPA
detects the existence of these plan steps, that have no
primitive descendent in the implicitly returned plan and
remove them from the current plan set. . For example, in
Figure 1, let’s assume that the goal state is [q] instead of [q,
r]. Since there is no hierarchical action set that achieves
only [q] the system inevitably selects {A} as an initial
current plan set that is to additionally achieve r as well as q.
Then, the user chooses {A11, A12} as the decomposition of
{A}. Since A12 is just to achieve [r], the implicitly returned
plan from the underlying planning system doesn’t contain
any action that is descent of A12. So, A12 is identified to be
unnecessary and removed from the current plan set i.e., the
current plan set is changed from {A11, A12} to {A11}.

Monitor execution and replan: PICOPA monitors the
current world to detect external events. If the system detects
any unexpected change in the current world, it examines the
validity of the current plan with the change. When the plan
is no longer consistent with the changed world state, the
system must throw out the current plan and regenerate a
new plan from scratch to achieve the user goals from the
new situation. Though PICOPA cannot detect what caused
the plan failure because it doesn’t have any knowledge
about internal planning process of the base planning system,
it can detect if the current plan is valid with the changed
world by checking the interaction between the unexpected

event and the remaining part of the plan (unexecuted plan
steps).

In addition to the planning service requests listed above,
the system may meet a circumstance that needs to refor-
mulate domain theories rather than reconstructing domain
theories with related actions.

Specify solution: When the user wants to specify a re-
source for an action (assigning the first squad to secure the
landing zone) or prefers to execute an action before other
action (pacifying the crowd before moving the injured boy
to hospital) it is necessary to reformulate the definition of
the action. For specifying a resource to an action, the target
variable in the definition of the action should be replace by
the specific instance rather than a planner instantiates the
variable with arbitrary one of the possible resources. There
is still the difficulty of mapping a variable binding in an
abstract level into ones in the primitive level, but this am-
biguity can be clarified by additional interactions with the
user to find which primitive actions should be assigned with
the specific resource.

When users want to post ordering constraints between
actions, such a request could be handled by adding auxiliary
constraints to the base planner’s domain theory. For ex-
ample, one way to enforce abstract action A to occur before
abstract action B is to add “A-complete” effects to each of
A’s set of primitive actions and “A-complete” precondi-
tions to each of B’s actions. We believe that many addi-
tional requests can be covered by similar representational
manipulations.

4. Evaluation
A primary empirical question for this work is whether the

approach, given its emphasis on “in practice efficiency” of
planning, will scale to practical collaborative planning
domains. In the MRE team training system, a restricted plan
scripting language sufficed to drive mixed-initiative inter-
action [14]. We discovered that IPP [9], a contemporary
planning system, could do full plan generation on the same
domain theory in less time than it took to find a scripted
solution (typically less than 100 ms to generate a plan from
scratch). FF [8] can also generate a plan in less time than
IPP does, but the totally ordered plan from FF causes un-
necessary ordering constraints that limit the flexibility of its
execution. Further, our early experiments with JADE [5], a
complex collaborative force deployment planning domains,
shows that IPP and FF can solve problems in at most a
couple of seconds. This is not to say that planning is a
solved problem, but for many of the domains considered by
collaborative planning, the recent new planning techniques
are far more than adequate. With this confidence, we have
been applying HICOPA to MRE, expecting improvement
of planning capability as well as independency of planning
component. We will then contrast the coverage of API and
speed against the current existing system. This possibility
also encourages us to evaluate the HICOPA by testing it

with other collaborative planning domains, such as ones in
JADE or O-Plan2. Although due to the limitation in getting
these systems we can only test it with their example do-
mains, it seems sufficient to verify our approach by vali-
dating that PICOPA can cover API across multiple do-
mains. Finally, we will verify the adaptability and com-
patibility of the PICOPA with diverse classical planning
systems and apply it onto various types of planning domain.

5. Conclusions
This paper presented a collaborative plan assisting agent
(PICOPA) allowing human users and planning systems to
jointly develop plans by directly using classical AI plan-
ners. We proposed a mapping mechanism from planning
service requests necessary for collaborative interaction into
lower-level calls to a conventional planning system by
generating appropriate inputs for the planning system.
Therefore, PICOPA can utilize existing classical AI plan-
ners for collaborative planning problems according to the
characteristics of the application or as new techniques be-
come available rather than developing a custom planner for
a specific system or application. This approach can make
classical planning researches relevant to the collaborative
planning community.
 The current system depends on the strong assumption
that the base planner can quickly either solve a planning
problem or detect that no solution exists. While this may be
reasonable for simple domains, it could be unreasonable in
general. We can relax this requirement by extending solu-
tion matrices of PICOPA to a 3-value logic (consistent,
inconsistent, unknown) where "unknown" means that the
planner could not terminate within some small pre-specified
time limit. We would then have to suitably qualify the re-
sults of planning service requests, making responses, in
essence, heuristics rather than definitive results. For exam-
ple, rather than stating that a refinement was inconsistent,
PICOPA could state that it may be inconsistent. The user
could increase the quality of this feedback by extending the
time limit, or the system could periodically fill in solution
matrices as time becomes available.

PICOPA is being applied within the context of the Mis-
sion Rehearsal Exercise collaborative planning system, a
rich virtual training environment that includes human
trainees interacting with graphically embodied virtual
agents that can communicate with through natural language
about tactical decisions. PICOPA shows promise to extend
the planning capabilities of the exiting MRE system while
at the same time allowing the planning component to be
more modular and easier to update with more advanced
planning techniques as they become available.

6. Acknowledgements
This paper was developed with funds of the Depart-

ment of the Army under contract number DAAD
19-99-D-0046. Any opinions, findings and conclusions

or recommendations in this paper are those of the authors
and do not necessarily reflect the views of the Depart-
ment of the Army.

7. References
[1] J. Allen, D. Byron, M. Dzikovska, G. Ferguson, L.

Galescu, and A. Stent. Towards conversational hu-
man-computer interaction. , AI Magazine, 22(4): 27--37,
2001.

[2] James Allen and George Ferguson. Human-machine
collaborative planning. Proceedings of the Third Inter-
national NASA Workshop on Planning and Scheduling
for Space, Houston, TX, October 27-29, 2002.

[3] J. A. Austin. How to do things with words. Harvard
University press, Cambridge, Massachusetts, 1962.

[4] Fahiem Bacchus. Results of AIPS-2000 planning com-
petition. 2000.
url:http://www.cs.toronto.edu/aips2000/SelfContainedAI
PS-2000.ps.

[5] Cox, M. T., and Veloso, M. M.. Controlling for unex-
pected goals when planning in a mixed-initiative setting.
In E. Costa & A. Cardoso (Eds.), Progress in Artificial
Intelligence: Eighth Portuguese Conference on Artificial
Intelligence: 309—318, Berlin: Springer, 1997.

[6] Kutluhan Erol, James Hendler, and Dana S. Nau. UMCP:
A sound and complete procedure for hierarchical
task-network planning. In AIPS-94, pages 249-254, 1994.

[7] Marti A. Hearst. Trends & Controversies:
Mixed-initiative interaction. IEEE Intelligent System,
14(5):14-23, 1999.

[8] Jorg Hoffmann and Bernhard Nebel. The FF Planning
System: Fast Plan Generation Through Heuristic Search.
Journal of Artificial Research, Volume 14: pages 253-302,
2001.

[9] J. Kohler, B. Nebel, J. Hoffmann, Y. Dimopoulos. Ex-
tending Planning Graphs to an ADL subset. ECP-97:
pages 273-285, Springer LNAI 1348, 1997.

[10] Hyeok-Soo Kim and Jonathan Gratch. A planner inde-
pendent approach to human interactive planning. Eight-
eenth International Conference on Artificial Intelligence,
Workshop on Mixed-Initiative Intelligent Systems, Pages
87--93, 2002.

[11] IPC, the results of 2002 International Planning Competi-
tion. 2002.
url:http://www.dur.ac.uk/d.p.long/competition.html

[12] Drew McDermott. The 1998 Planning system competi-
tion, Artificial Intelligence, 21(2):35--55, 2000.

[13] Reiko Tsuneto, Dana Nau, and James Hendler.
Plan-refinement strategies and search-space size. Pro-
ceedings of the European Conference on Planning, pages
414--426, 1997.

[14] J Riclel, S Marsella, J Gratch, R Hill, D Traum, and W
Swartout. Toward a new generation of virtual humans for
interactive experiences. IEEE Intelligent Systems
17(4):32--38, 2002.

[15] Stuart Russell and Peter Norvig. Artificial Intelligence A
Modern Approach. Prentice-Hall, Upper Saddle River,
New Jersey, 1995.

[16] W. Swartout, R. Hill, J. Gratch, W. Johnson, C. Kyri-
akakis, K. Labore, R. Lindheim, S. Marsella, D. Miraglia,
B. Moore, J. Morie, J. Rickel, M. Thiebaux, L. Tuch, R.
Whitney, and J. Douglas. Toward the holedeck: Inte-
grating graphics, sound, character and story. In Pro-
ceedings of 5th International Conference on Autonomous
Agents, 2001.

[17] David R. Traum. Speech acts for dialogue agents. In Rao,
A. and Wooldridge, M., editors, Foundations of Rational
Agency. Kluwer, 1999.

