
Abstract 

 This article introduces a novel approach to the 
problem of collaborative planning.  We present a method 
that takes classical one-shot planning techniques - that 
take a fixed set of goals, initial state, and a domain 
theory - and adapts them to support the incremental, 
hierarchical and exploratory nature of collaborative 
planning that occurs between human planners, and that 
multi-agent planning systems attempt to support. This 
approach is planner-independent -  in that it could be 
applied to any classical planning technique - and recasts 
the problem of collaborative planning as a search 
through a space of possible inputs to a classical plan-
ning system. This article outlines the technique and 
describes its application to the Mission Rehearsal Ex-
ercise, a multi-agent training system.   

1. Introduction 
This paper presents techniques to enhance the generality 

and modularity of collaborative (e.g., mixed-initiative) 
planning systems. By allowing human users and planning 
systems to jointly develop plans, such systems increase 
users’ trust in the end product as well as complement the 
intuitive planning skills of human experts with the superior 
bookkeeping capabilities of automated planning systems. 
Indeed, collaborative planning systems have been applied 
to a number of significant applications including disaster 
planning [1], and tutoring systems for teaching people how 
to plan and make decisions [14].  These systems differ in 
terms of who has authority or initiative, what knowledge is 
available to the agent and the high-level communicative 
goals of the system (e.g., tutoring goals vs. task goals) [7].  
But they share a great deal, in particular the need to plan, 
including the ability to generate plans, provide feedbacks on 
the feasibility of different options, monitor their execution, 
and replan in response to unexpected events or user inter-
ventions.  

These are large and complex systems that tightly inte-
grate a number of capabilities. Beyond plan generation, 
they communicate with the user, often through natural 
language, model aspects of the user’s mental state, recog-
nize user intentions, execute plans and monitor the external 
environment. Further, users often demand flexible control 

over the planning process, at times micromanaging and at 
other times expecting the system to handle all the details. 
Facilitating this close and varying level of control over the 
planning process complicates the problem of cleanly sepa-
rating the communication module from the planning proc-
ess. For example, rather than simply accepting a goal and 
initial state, the planner must support a wide range of pos-
sible inputs. This lack of modularity limits the generality of 
these methods and contributes to the obsolescence of their 
component technologies. This is most obvious with regard 
to the planning techniques that underlie these systems, 
arguably their most essential component technology.  

Due to this tight connection between planning and 
communication components, most planning techniques 
underlying collaborative planning systems are antiquated or 
rudimentary. Planning techniques are, on the other hand, 
evolving rapidly. A quick review of the recent AI Planning 
system competitions illustrates that the top performing 
planners are in constant flux. For example, in 1998, IPP was 
the winner of the ADL track and also showed good per-
formance in the STRIPS track, and HSP solved the most 
problems in the STRIPS track [12]. In 2000, IPP was re-
placed by FF (faster but total order) [4]. In 2002, MIPS 
solved the highest number of problems in the fully auto-
mated track, and was the only system that produced solu-
tions in each track, while FF also out-performed its com-
petitors in the numeric and STRIPS domains [11]. To our 
knowledge, none of these techniques have been incorpo-
rated into state-of-the-art collaborative planning systems. 

Tying a collaborative planner to a specific planning al-
gorithm can also significantly limit its generality. The de-
velopers of planning systems point to the domain 
-independence of their planning techniques as an argument 
for their wide applicability. There is a strong reason to 
doubt this claim. Planning performance varies dramatically 
across application domains. Different planning systems 
excel on different domains and some, supposedly do-
main-independent, planners cannot even represent distinc-
tions essential for certain domains. For example, at the AI 
planning system competition in 2002, FF planner exhibited 
outstanding performance against its competitors in most of 
the Numeric and STRIPS problems, but it didn't compete in 
the temporal domains. On the other hand, TALPlanner 
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out-performed its competitors in the temporal domains, but 
didn't participate in the numeric domains [11].  

We argue that planner-independence is a far more crucial 
design goal than domain-independence in the design of 
collaborative planning systems, though is not immediately 
obvious how to achieve this goal. A planner-independent 
system embodies the design philosophy that the planner 
should be a modular component that can be easily replaced 
depending on the characteristics of the application or as 
improved techniques become available. Unfortunately, due 
to close input a user has over the planning process, planning 
and user-interface modules are tightly intertwined in col-
laborative planning systems. In contrast, the typical inter-
face to conventional planning system is at the level of 
specifying a domain theory, initial state and a set of goals, 
which is really an inappropriate level to separate planning 
and communicative functions.   

The question we address in this paper is what is the right 
level of abstraction (what is the right API) to separate the 
planning system from other modules in a collaborative 
planning system, specifically focusing on the connection to 
the user-interaction module, which tends to have the tightest 
interaction. Our approach is to consider the generic plan-
ning services necessary to support collaboration, define a 
level of abstraction in terms of these basic services, and 
map between these services and the low-level API of plan-
ning systems in a planner-independent fashion. 

Section 2 lays out a high-level description of collabora-
tive planning systems and section 3 elaborates our basic 
approach and describes how we map from the basic plan-
ning services necessary for collaboration to low-level calls 
to a conventional planning system. We conclude by dis-
cussing evaluation and direction for future research in sec-
tion 4 and 5. 

2. Collaborative Planning Systems 
Collaborative planning systems allow a human user and 

an intelligent system to closely interact during the process 
of plan generation, execution, and repair.  Such systems 
have been explored in the research community under a 
variety of titles including mixed-initiative planning 
systems, human interactive planning systems, planning 
systems with adjustable autonomy, and tutoring systems. 
They differ in many respects but they share two tightly 
intertwined capabilities: they must communicate with the 
user about the planning processes, and they must be able to 
develop and reason about plans. Here we review this work 
in terms of terminology we will use in this article. 

2.1  Communication 
The interaction between a user and a system can be seen 

as a dialogue, and researchers in this area have been heavily 
influenced by linguistic theories, regardless of whether the 
system actually communicates via natural language or 
through a more stylized interface. In such systems, the 

interaction is controlled by a dialogue manager and the 
content of the interaction is frequently characterized in 
terms of speech acts [3], a formulism for characterizing and 
classifying natural language utterances. For example, a 
request like “where is the helicopter” is represented as an 
“information request” about some attribute of a domain 
entity. Speech acts have a certain structure and impose 
certain communicative obligations on the listener. For 
example, upon receiving an information request, the system 
is obligated to respond to the request with some assertion.  
Standard speech acts include inform, order, request, accept, 
reject, and counter-propose. Depending on the system’s 
capabilities, these are frequently augmented with dialogue 
acts that manage turn-taking and shifts in initiative between 
the system and the user [17]. 

Speech acts provide an abstract structure, but by ana-
lyzing human-to-human collaborative planning dialogues, 
collaborative planning researchers have also classified 
general features of the content of these conversations. 
Human interactive planning dialogues revolve around as-
pects of planning process, including the development and 
refinement of plans, the evaluation and comparison of al-
ternatives, the clarification of features of the environment, 
the identification of plan problems or threats, and the clari-
fication of aspects of the planning dialogues. By combining 
these aspects with speech acts, these systems can classify a 
range of utterances. For example, a user might inform the 
system of a course of actions, order the system to adopt it, 
request the system to develop an alternative, accept the 
alternative, order its execution, etc. 

2.2  Planning and Planning Service Requests 
Speech act theory facilitates understanding, but to service 

such speech acts, the system must also support a range of 
plan reasoning capabilities. The classic definition of the 
planning problem is simple to generate a satisfying plan 
given a set of goals and initial state. However, researchers 
in collaborative planning recognize this definition is far too 
restrictive. In terms of plan generation, users frequently 
demand tighter and incremental control over the planning 
process. As in many real-world collaborative planning 
domains, plans are typically hierarchical and users interact 
with the system to refine their plans, explore or get advice 
about different courses of action, and receive assistance in 
initiating and monitoring the execution of the plan. If a user 
requests a course of actions, the system must be able to 
develop one.  If the user requests a comparison of alterna-
tives, the system must have the means to provide it. If the 
system wishes to take initiative this must be motivated by 
some inferences concerning the planning process. 

Consider the following hypothetical interchange from the 
Mission Rehearsal Exercise (MRE), a multi-agent training 
system [14]: 
 
USER: How can I reinforce the platoon in downtown 
Celic? 



SYSTEM:  There are two feasible options. Send two 
squads forward or send one squad to secure our route and 
speed our subsequent movement. 
USER: What is the disadvantage of sending two squads? 
SYSTEM: It will fracture our forces and limit our future                              
options. 
USER: Send first squad to secure the route. 
SYSTEM: Sir. First squad needs to secure the landing 
zone.  I suggest we send forth squad. 
USER: We don’t need to secure the landing zone anymore.  
Send first squad. 

… 
 

This example illustrates several planning capabilities that 
aren’t obviously mapped to traditional planning problems.  
The planning process is hierarchical and incremental. 
Rather than generating a complete plan, the system pro-
poses single step refinements. Rather than generating a 
single satisfying plan, multiple qualitatively different op-
tions are explored in parallel (e.g., sending one versus two 
squads). Rather than receiving a simple list of plan steps, 
the user may ask for evaluative information (e.g., what is 
the disadvantage), and the system may take the initiative to 
offer advice (e.g., first squad is preoccupied). Finally, rather 
than accepting a fixed goal state, planning requirements 
may be changed in mid-stream (e.g., as when the user drops 
the goal that the landing zone must be secure).  Collabora-
tive planners typically also incorporate functions to execute 
plan steps, monitor their execution, and detect when plan 
repairs are necessary.  

We use the term planning service requests to refer to the 
collection of planning capabilities like the above that are 
necessary to address a user’s plan-related speech acts and to 
inform the systems inferences about dialogue initiative. 
Collectively, planning service requests define an API that 
the underlying plan reasoning system must support.   

3. Planner-Independent Collaborative 
Planning Assistant (PICOPA) 

Figure 1 illustrates our view of how to impose greater 
modularity between the planning and the communicative 
modules in a collaborative planning system. The key idea is 
to define a set of abstract planning service requests that can 
serve as a bridge between the dialogue manager and a tra-
ditional planning system. Under this view, the question we 
must address is how to provide a general and planner 
-independent mapping between these service requests and 
the capabilities of planning systems. 

  Our approach is motivated by the “in practice” effi-
ciency of recent planning techniques within the context of 
collaborative planning domains. Although planning in 
general is hard (indeed, undecidable), for suitably con-
strained applications recent planning techniques can, in 
practice, “solve” the planning problem. This is particularly 
true for the relatively constrained propositional domain 
theories used by many collaborative planning systems.  

Our admittedly strong assumption in this paper is that 
planning is decidable and relatively efficient in practice, 
though we discuss how to relax this assumption later in the 
paper. If plans can be generated in milliseconds, however, it 
opens up new possibilities for collaborative planning. One 
could imagine repeatedly calling a planner to solve varia-
tions of a planning problem to explore features of a domain. 
For example, if the user wanted to consider the differences 
between evacuating injured personnel with a helicopter 
versus an ambulance, one could simply solve the planning 
problem twice - once with the domain theory only with the 
helicopter-related actions and once only with the ambu-
lance-related actions - and summarize the outcomes to the 
user. 
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Figure 1: PICOPA architecture 

We build on this observation, showing how a more 
flexible repertoire of planning service requests can be con-
structed by solving a set of suitably varied planning prob-
lems. By systematically varying a traditional planner’s 
domain theory, initial state and goal state, the system can, 
by brute force, provide planner-independent mappings 
between the planning service requests demanded by col-
laborative planning systems and the capabilities of tradi-
tional planners. The planning system itself can be treated as 
a black box and alternative planners could be incorporated, 
assuming they all take as input an initial and goal state 
description and a domain theory consisting of a set of 
primitive actions.  

In the remaining of this section, we describe how 
PICOPA maps high-level planning service requests (e.g., 
refine the current plan or check interaction) onto a sequence 
of traditional planning problems. To handle such requests, 
the system needs a mechanism that maps them into appro-



priate inputs for a classical planning system and also pro-
vides the dialogue manager interpretable feedback from the 
result of the planning system.  First we introduce new rep-
resentational constructs, hierarchical action sets and the 
current plan set, to facilitate this mapping. 

3.1  Hierarchical  action set 
A hierarchical action set is a novel domain representation 

that takes advantage of the speed of modern 
non-hierarchical planning algorithms but retains the control 
and flexibility of collaborative hierarchical planning. It is an 
AND/OR graph that consists of both abstract and primitive 
actions and it represents hierarchical decomposition rules 
that refine a high-level action to a set or multiple alternative 
sets of lower-level ones.  

Though superficially similar to hierarchical action 
structures in conventional hierarchical planning systems 
[6], there are significant differences. An abstract action 
represents an unordered set of primitive actions that are 
potentially useful for achieving a goal rather than a high 
level sequence of actions to perform. Decomposing an 
abstract action corresponds to building the set of primitive 
actions into several more focused subsets, rather than 
yielding a more detailed lower level description.  

For example, consider the hierarchical action set for ob-
taining a shelter shown in Figure 2. Two different decom-
positions of the root action, rent an apartment and buy a 
house, subdivide the entire set of six primitive actions to 
two smaller and qualitatively distinct  subsets, {searching 
classified ads, visiting apartments, placing deposit} and 
{getting a real estate agent, getting loan pre-approval, vis-
iting open houses}, respectively. If one prefers to rent an 
apartment, the system retains the primitive actions under 
rent an apartment in the current domain and excludes the 
primitive actions related to buying a house. At any point in 
the plan refinement process, the current set of primitive 
actions is passed to a non-hierarchical classical planning 
system to check the existence of a complete plan. This 
process allows a user to hierarchically construct a plan 
under his/her control and preference while continually 
reorganizing the domain theory to reflect to his/her choices. 
This hierarchical action set also makes it easy to transform a 
requested planning service into a set of conventional plan-
ning problems by generating appropriate inputs, especially 
domain theories, for traditional planning systems.  

For a given domain, there can be multiple hierarchical 
action sets, each of which has its own goals. These goals are 
used for selecting appropriate hierarchical action sets ac-
cording to the given goals. For example, let’s assume there 
are four actions sets, A, B, C, and D, and each has a goal, a, 
b, c, and d respectively. When a user wants to generate a 
plan to achieve b and d, the system will automatically select 
B and D as initial hierarchical action sets. To avoid redun-
dancy and ambiguity in selecting initial action sets, a set of 
goals associated with an action set cannot be a subset of 
goals of another action set, but two action sets can have 

goals in common. Hierarchical action sets satisfy the 
downward and the upward solution properties, so once an 
abstract solution is found all other abstract plans can be 
pruned away and all the descendents of any inconsistent 
abstract plan can be pruned away as well [15].  
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Figure 2: An example of a hierarchical action set 
for obtaining a shelter 

3.2  Current plan set 
To keep track of development of a plan while exploring 

hierarchical action sets and frequently changing the current 
domain theory, the system uses an array, the current plan 
set, to represent the current plan developed so far. Initially, 
it consists of the root actions of selected hierarchical action 
sets, such that the union of the effects of the root actions 
should contain all of the user’s goals. If different combina-
tions of action sets could satisfy these goals, these are con-
sidered potential choice points for the user. The system first 
checks whether or not each combination has a consistent 
and complete solution by sending the planner a new domain 
theory that consists of all the primitive actions in each 
combination in turn. If the planner finds a solution with a 
combination, the hierarchical action sets in the combination 
will be considered as valid candidate hierarchical action 
sets. The dialogue manager then informs the survived can-
didates to the user and lets him/her choose one among them. 
The root actions of the selected hierarchical action sets 
become initial members of the current plan set.  

The current plan set is updated whenever each abstract 
action is replaced by one of its refinements after checking 
consistency between the newly introduced actions and the 
existing ones. This process continues until all the actions in 
the current plan set become primitive.  

 
The above two new domain representations also make it 

possible for users to select their own strategies rather than 
the system imposing a specific refinement strategy, such as 
least commitment or fewest alternative first (FAF) [13]. The 
system just provides the necessary information to imple-
ment these strategies, i.e., existence of alternative refine-
ments or the consistency of each refinement with the rest of 
the current plan.     



3.3  Solution matrix 
PICOPA handles planning service requests by systemi-

cally solving variants of the current plan set and combining 
the results in formulating an answer to the request. The 
solution matrix represents this computation. 

For example, in Figure 3, the user wishes to decompose 
two abstract actions, A1 and C2, in parallel (a user can de-
compose them simultaneously). PICOPA must infer which 
combinations of refinements are consistent with each other. 
The solution matrix in Table 1 illustrates how this service 
request is translated into a series of planning problems that 
are specializations of the current plan set. To check the 
consistency of each problem, PICOPA constructs a domain 
theory for each possible combination of refinement with 
primitive actions and the primitive descendents of the ab-
stract actions in the combination. For example, the first row 
corresponds to specializing A1 into (A111, A112) and C2 into 
(C211, C212), remaining B3 and D1.  After examining each 
domain theory by passing it to a conventional planning 
system along with initial and goal state, PICOPA generates 
a solution matrix that summarizes the results. If the user 
chooses one among possible candidates, the current plan set 
is updated to reflect this choice. Table 1 shows the first 
three of four possible combinations are found to be con-
sistent. If the user chooses the second one - (A111, A112) and 
(C221, C222) - the current plan set is specialized from {A1, B3, 
C2, D1} to {A111, A112, B3, C221, C222, D1}. By showing if a 
part of the plan has a strong connection with its other part 
(e.g., (A121, A122)  is inconsistent with (C221, C222), namely, 
(A121, A122) should be only with (C211, C212)), or if a decision 
limits the future development of the plan (e.g., selecting 
(A121, A122) restricts to decomposing C2 only into (C211, 
C212)), the solution matrix prevent users from bad decisions 
as well as provides useful information for users to make 
right decisions. 

  
 

A1 

A111 A112 

B3 C2 D1 

The current plan set
{ A1, B3, C2, D1 } 

A121 A122 C211 C212 C221 C222  
Figure 3: Decompositions of A1 and C2 

 
A1 B3 C2 D1 

consis-
tency 

(A111, A212) (C211, C212) Yes 
(A111, A112) (C221, C222) Yes 
(A121, A122) (C211, C212) Yes 
(A121, A122) 

All the 
primitive 
descen-

dents of B3 (C221, C222) 

All the 
primitive 
descen-

dents of D1 No 

Table 1: A solution matrix (A1 and C2) 

3.4  Planning service requests 
There are a wide range of planning service requests that 

are necessary to support collaborative plan-related interac-
tions between human users and the system. Collectively, 
planning service requests define an API that cleanly sepa-
rate the underlying planner from other system components. 
Several researchers in the collaborative planning commu-
nity have proposed particular APIs. For example, Allen and 
Ferguson formalized a set of planning service requests – 
they call them “problem solving operations”, - necessary for 
collaborative planning in terms of a well defined API shown 
in Table 2 [2]. Here we describe how to map these 
high-level planning service requests into classical planning 
problems in terms of hierarchical action set, current plan 
set, and solution matrix. In order to facilitate the evaluation 
of our approach and easily compare it with other related 
works, the planning service requests contain all the problem 
solving operations that Allen and Ferguson marshaled in 
their recent paper, and several supplementary ones. Up to 
now we’ve focused on decomposition. Now we’ll general-
ize this discussion to a number of planning service requests.  
 

Introduce/Refine objective 

Modify/correct goal or solution 

Evaluate plan 

Specify/Extend solution 

Create/Compare/Reject option/solution 

Undo operation 

Cancel plan 

Table 2: Collaborative problem solving operations 
(Allen and Ferguson) 

Introduce objective: when the system gets a set of goals 
from a user to generate a plan, PICOPA first identifies 
hierarchical action sets relevant to the stated user goals. The 
union of the goals of selected hierarchical action sets should 
contain all of the user’s goals, and their root actions become 
the initial current plan set. In the example in Figure 4, if the 
given goals are to achieve q and z, then there exist two 
possible hierarchical action sets, {A, B} or {A, C}. Note 
that there may be multiple consistent combinations of hi-
erarchical action sets that are treated as alternatives for the 
user to select amongst. 

Refine plan (objective): After a set of user goals are in-
troduced and the relevant high-level tasks are decided, the 
user and PICOPA should concretize the tasks until they 
have a satisfiable plan in an executable level by navigating 
the hierarchical action sets from part to part according to 
their current concern and the degree of exigency of the tasks. 
When the user requests to expand an abstract action in the 



current plan set, PICOPA shows the possible decomposi-
tions of the action and checks if each decomposition is 
consistent with remaining part of the current plan. This 
process can be done by generating planning problems that 
differ only in their domain theories (they share the same 
initial and goal states) and sending them to the underlying 
planner. Each domain theory consists of the primitive de-
scendents of the selected alternative and ones of the re-
maining actions in the current plan set. The user can then 
select one among the alternatives that passed the consis-
tency check. From the example in Figure 4, let’s assume 
that the current plan set is {A11, A12}. If the user would like 
to expand A12 first, then the system checks the consistency 
of two alternative refinements of A12 with the remaining 
part in the current plan set (in this case, only with the step 
A11). PICOPA constructs primitive planning problems for 
each of these alternatives by specializing the domain theo-
ries - {A1111, A1112, A1121, A1122, A1211, A1212} and {A1111, 
A1112, A1121, A1122, A1221, A1222}. The solution matrix in 
Table 3 shows the consistency of the two different de-
compositions of A12 with the remaining plan steps. This 
table illustrates that (A1221, A1222) is inconsistent with A11, 
meaning that the user can choose only (A1211, A1212) as a 
decomposition of A12. After the user chooses one of the 
consistent options, the current plan set is replaced to the 
newly selected one, i.e., from {A11, A12} to {A11, A1211, 
A1212}. 
 

A Initial state: p 
Goal state: q, r 
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Figure 4: Hierarchical Action Sets. The preconditions 
appear left of the action, and the effects right. 

 
A11 A12 Consistency 

(a1211 a1212) Yes All the primitive 
descendents of A11 (a1221, a1222) No 

Table 3: Solution matrix for refining A12 

Check interaction (Compare/Evaluate options): A key 
difficulties in collaborative planning is detecting and 
communicating interdependencies between different por-
tions of the plan. For example, how a user decides to obtain 
a shelter may constrain his or her options for obtaining 
transportation due to the limited budget. A novel feature of 
PICOPA allows users to systematically explore interactions 

among alternative plan refinements by evaluating the con-
sistency of combinations of possible refinements. For ex-
ample, the solution matrix in Table 1 evaluates the 
pair-wise interactions between refinements of A1 and C2.  
The results indicate interactions between these tasks (how 
the user chooses one as a refinement of A1 will limit his or 
her options for refining C2). Although the system cannot 
detect exactly why the interaction occurred (the planner 
only informs “no plan” with the inputs, not why the failure 
occurred), it provides useful feedback to the user: e.g., “if 
you refine A1 into A121 and A122, you will constrain your 
options for refining C2”.  Depending on the time available, 
PICOPA can progressively deepen its interaction checks, 
initially exploring pair-wise interactions, moving on to 
3-way interactions, etc. 

Modify/Correct solution (Undo operation): In addition to 
refinement, the system allows non-chronological back-
tracking over refinement decisions. When the system can-
not develop a plan anymore from the current plan set due to 
some new constraints or circumstantial changes created in 
the middle of plan generation or when a user changes 
his/her previous decision, the related actions in the current 
plan set are replaced by their parent action for reconsidera-
tion by reverting to the previous decision point in the 
planning process, as well as any siblings that were previ-
ously pruned away from the hierarchical action sets are 
recalled into the sets. 

Add or drop goal (Modify/Correct goal): Users can add 
or drop goals even in the middle of plan generation. When 
users want to drop goals, it doesn’t invalidate the current 
plan set, though it may now contain unnecessary plan steps. 
These plan steps are automatically removed through the 
process of eliminating unnecessary plan steps that will be 
explained right after. In the example in Figure 4, let’s as-
sume that the original goals are [q, r] and the current plan 
set is {A11, A12}. After dropping a goal, [r], A12 becomes 
unnecessary and is automatically removed from the current 
plan set.  
On the other hand, if a user requests to add a goal, PICOPA 
finds an appropriate hierarchical action set, the goals (ef-
fects) of which contain the goal desired to be added, and 
then adds the root of the hierarchical action set into the 
current plan set. In the example in Figure 4, if a user wants 
to add a goal, [g], PICOPA adds the root action (C) to the 
current plan set. However, this may cause unnecessary 
processing when the goal can be achieved from the current 
plan without adding any additional plan steps. For example, 
let’s assume the original goal is [q] and the current plan set 
consists of {A11, A12}. If PICOPA is requested to add a new 
goal [r], it will reorganize the current plan set by adding the 
root action (B) that has [r] as an effect. Since there are 
duplicated plan steps that achieve [r], one of them, A12 or B, 
should be removed from the current plan set. To prevent 
this problem, whenever the system gets a request to add a 
goal, it first checks if the system can achieve the added goal 



from the current plan set without any change. If not, then 
PICOPA finds an appropriate hierarchical action set that 
contains the added goal as an effect and adds the root ac-
tions into the current plan set. 

 There are two additional services that are applied re-
gardless of user requests. The following two services are 
performed whenever a current plan set is updated and a plan 
step is executed respectively.  

Eliminate unnecessary plan steps: In many cases, goals of 
one part of the plan can be achieved fortuitously by some 
other portion of the plan, in other words, there may exist 
redundant plan steps to achieve a same goal. It may also 
happen that a goal can be achieved by an unexpected event 
in the middle of plan execution. In some other cases, a 
hierarchical action set may contain unnecessary actions for 
a certain circumstance since a hierarchical action set defines 
a very general way to achieve a set of goals. From the above 
two cases, it is intuitively realized that PICOPA is required 
to detect and eliminate redundant or unnecessary plan steps 
so as not to produce inefficient plans. Let’s consider the 
following two situations in a planning problem to build a 
house. First, a house generally needs to be air-conditioned 
and winterized. However, if the user wants to build a house 
in Hawaii he doesn’t need to spend extra money for pro-
tection against the cold. Second, if he goes to buy a bath tub, 
and the store also sells lawn and garden products, he doesn’t 
need to go to a lawn and garden store. When only a part of 
the selected hierarchical action set is required for the given 
problem or a goal (sub-goal) is fortuitously achieved, it can 
makes a part of the current plan set superfluous. PICOPA 
detects the existence of these plan steps, that have no 
primitive descendent in the implicitly returned plan and 
remove them from the current plan set. . For example, in 
Figure 1, let’s assume that the goal state is [q] instead of [q, 
r]. Since there is no hierarchical action set that achieves 
only [q] the system inevitably selects {A} as an initial 
current plan set that is to additionally achieve r as well as q. 
Then, the user chooses {A11, A12} as the decomposition of 
{A}. Since A12 is just to achieve [r], the implicitly returned 
plan from the underlying planning system doesn’t contain 
any action that is descent of A12. So, A12 is identified to be 
unnecessary and removed from the current plan set i.e., the 
current plan set is changed from {A11, A12} to {A11}. 

Monitor execution and replan: PICOPA monitors the 
current world to detect external events. If the system detects 
any unexpected change in the current world, it examines the 
validity of the current plan with the change. When the plan 
is no longer consistent with the changed world state, the 
system must throw out the current plan and regenerate a 
new plan from scratch to achieve the user goals from the 
new situation. Though PICOPA cannot detect what caused 
the plan failure because it doesn’t have any knowledge 
about internal planning process of the base planning system, 
it can detect if the current plan is valid with the changed 
world by checking the interaction between the unexpected 

event and the remaining part of the plan (unexecuted plan 
steps). 

In addition to the planning service requests listed above, 
the system may meet a circumstance that needs to refor-
mulate domain theories rather than reconstructing domain 
theories with related actions.  

Specify solution: When the user wants to specify a re-
source for an action (assigning the first squad to secure the 
landing zone) or prefers to execute an action before other 
action (pacifying the crowd before moving the injured boy 
to hospital) it is necessary to reformulate the definition of 
the action. For specifying a resource to an action, the target 
variable in the definition of the action should be replace by 
the specific instance rather than a planner instantiates the 
variable with arbitrary one of the possible resources. There 
is still the difficulty of mapping a variable binding in an 
abstract level into ones in the primitive level, but this am-
biguity can be clarified by additional interactions with the 
user to find which primitive actions should be assigned with 
the specific resource.  

When users want to post ordering constraints between 
actions, such a request could be handled by adding auxiliary 
constraints to the base planner’s domain theory.  For ex-
ample, one way to enforce abstract action A to occur before 
abstract action B is to add “A-complete” effects to each of 
A’s set of primitive actions and “A-complete” precondi-
tions to each of B’s actions. We believe that many addi-
tional requests can be covered by similar representational 
manipulations. 

4. Evaluation 
A primary empirical question for this work is whether the 

approach, given its emphasis on “in practice efficiency” of 
planning, will scale to practical collaborative planning 
domains. In the MRE team training system, a restricted plan 
scripting language sufficed to drive mixed-initiative inter-
action [14]. We discovered that IPP [9], a contemporary 
planning system, could do full plan generation on the same 
domain theory in less time than it took to find a scripted 
solution (typically less than 100 ms to generate a plan from 
scratch). FF [8] can also generate a plan in less time than 
IPP does, but the totally ordered plan from FF causes un-
necessary ordering constraints that limit the flexibility of its 
execution. Further, our early experiments with JADE [5], a 
complex collaborative force deployment planning domains, 
shows that IPP and FF can solve problems in at most a 
couple of seconds. This is not to say that planning is a 
solved problem, but for many of the domains considered by 
collaborative planning, the recent new planning techniques 
are far more than adequate. With this confidence, we have 
been applying HICOPA to MRE, expecting improvement 
of planning capability as well as independency of planning 
component. We will then contrast the coverage of API and 
speed against the current existing system. This possibility 
also encourages us to evaluate the HICOPA by testing it 



with other collaborative planning domains, such as ones in 
JADE or O-Plan2. Although due to the limitation in getting 
these systems we can only test it with their example do-
mains, it seems sufficient to verify our approach by vali-
dating that PICOPA can cover API across multiple do-
mains. Finally, we will verify the adaptability and com-
patibility of the PICOPA with diverse classical planning 
systems and apply it onto various types of planning domain.  

5. Conclusions 
This paper presented a collaborative plan assisting agent 
(PICOPA) allowing human users and planning systems to 
jointly develop plans by directly using classical AI plan-
ners. We proposed a mapping mechanism from planning 
service requests necessary for collaborative interaction into 
lower-level calls to a conventional planning system by 
generating appropriate inputs for the planning system. 
Therefore, PICOPA can utilize existing classical AI plan-
ners for collaborative planning problems according to the 
characteristics of the application or as new techniques be-
come available rather than developing a custom planner for 
a specific system or application. This approach can make 
classical planning researches relevant to the collaborative 
planning community. 
 The current system depends on the strong assumption 
that the base planner can quickly either solve a planning 
problem or detect that no solution exists. While this may be 
reasonable for simple domains, it could be unreasonable in 
general. We can relax this requirement by extending solu-
tion matrices of PICOPA to a 3-value logic (consistent, 
inconsistent, unknown) where "unknown" means that the 
planner could not terminate within some small pre-specified 
time limit. We would then have to suitably qualify the re-
sults of planning service requests, making responses, in 
essence, heuristics rather than definitive results. For exam-
ple, rather than stating that a refinement was inconsistent, 
PICOPA could state that it may be inconsistent. The user 
could increase the quality of this feedback by extending the 
time limit, or the system could periodically fill in solution 
matrices as time becomes available. 

PICOPA is being applied within the context of the Mis-
sion Rehearsal Exercise collaborative planning system, a 
rich virtual training environment that includes human 
trainees interacting with graphically embodied virtual 
agents that can communicate with through natural language 
about tactical decisions. PICOPA shows promise to extend 
the planning capabilities of the exiting MRE system while 
at the same time allowing the planning component to be 
more modular and easier to update with more advanced 
planning techniques as they become available. 
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