Glossary terms:
Affective brain-computer interfaces (aBCl): devices that allow the detection of the affective state of their

users based on the neurophysiological activity associated with such states.

Brain-computer interfaces (BCI): devices that allow for the control of devices and applications based on the

neurophysiological activity of a user, thereby bypassing muscular pathways.

Electroencephalography (EEG): a portable neuroimaging method for the temporally high-resolved

recording of variations in electrophysiological brain activity from the scalp.

Event-related potentials (ERP): a stereotyped electrophysiological response to a specific stimulus or event
that is estimated by averaging the recorded EEG traces recorded immediately after several occurrences of

the same event.

Functional magnetic resonance imaging (fMRI): a neuroimaging method for the spatially high-resolved

recording of brain activity by detecting associated changes in blood flow.

Functional near-infrared spectroscopy (fNIRS): a portable neuroimaging method for the recording of brain

activity by detecting associated changes in blood flow via magnetic impulses.

Magnetoencephalography (MEG): a neuroimaging method for the temporally high-resolved recording of

variations in electric brain activity by detecting associated changes in the magnetic fields.

Positron emission tomography (PET): a neuroimaging method for the spatially high-resolved recording of

brain activity by detecting associated changes in blood flow via radioactive tracers.
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Abstract
The brain is involved in the registration, evaluation, and representation of emotional events, and
in the subsequent planning and execution of adequate actions. Novel interface technologies — so-
called affective brain-computer interfaces (aBCl) - can use this rich neural information, occurring
in response to affective stimulation, for the detection of the affective state of the user. This chapter
gives an overview of the promises and challenges that arise from the possibility of
neurophysiology-based affect detection, with a special focus on electrophysiological signals. After
outlining the potential of aBCl relative to other sensing modalities, the reader is introduced to the
neurophysiological and neurotechnological background of this interface technology. Potential
application scenarios are situated in a general framework of brain-computer interfaces. Finally,
the main scientific and technological challenges that have to be solved on the way toward reliable

affective brain-computer interfaces are discussed.
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1. Introduction

Affect-sensitive human-computer interaction (HCI), in order to provide the choice
of adequate responses to adapt the computer to the affective states of its user, requires a
reliable detection of these states, that is, of the user’s emotions. A number of behavioural

cues, such as facial expression, posture, and voice, can be informative about these states.



Other sources, less open to conscious control and therefore more reliable in situations
where behavioural cues are concealed, can be assessed in the form of physiological
responses to emotional events, for example changes in heart rate and skin conductance. A
special set of physiological responses is that originating from the most complex organ of
the human body, the brain. These neurophysiological responses to emotionally significant
events can, alone or in combination with other sources of affective information, be used
to detect affective states continuously, clarify the context in which they occur, and help to
guide affect-sensitive HCI. In this chapter, we will elucidate the motivation and
background of affective brain-computer interfaces (aBCl) — the devices that enable the
transformation of neural activity into affect-sensitive HCI -- outline their working
principles and their applications in a general framework of BCI, and discuss main

challenges of this novel affect-sensing technology.

1.1 The motivation behind affective BCI

The brain is an interesting organ for the detection of cues about the affective state.
Numerous lesion studies, neuroimaging evidence, and theoretical arguments have
strengthened the notion that the brain is not only the seat of our rational thought, but also
heavily involved in emotional responses that often are perceived as disruptive to our
rational behaviour (Damasio, 2000). Scherer’s Component Process Model (Scherer,
2005) postulates the existence of several components of affective responses that reside in
the central nervous system, including processes of emotional event perception and

evaluation, self-monitoring, and action planning and execution®.

! See also Kemp and colleagues’ chapter in the current handbook, which highlights the importance of brain
and body responses and their integration.



Therefore, the brain seems to possess great potential to differentiate affective states in
terms of their neurophysiological characteristics, mostly of the neural responses that
occur after encountering an emotionally salient stimulus event. Such emotional responses
occur within tens of milliseconds; they are not under the volitional control of a person
and hence are reliable in terms of their true nature. Such fast and automatic
neurophysiological responses are contrasted by slower physiological responses in the
range of seconds after the event and with behavioural cues that are more amenable to
conscious influence.

In addition to the promises for a fast and reliable differentiation of affective states, the
complexity of the brain also holds the potential to reveal details about an on-going
emotional response elicited by emotional stimulus events. Visual or auditory cortices
reflect the modality-specific processing resources allocated to emotionally salient events
(Muhl et al., 2011) allowing for conscious identification of the object which elicited the
emotional response. Similarly, motor regions might reveal behavioural dispositions, that
is, planned and prepared motor responses, to an emotional stimulus event.

Finally, certain patient populations that lose the capability to communicate with the
outside world due to the loss of musculature or its control, need alternative
communication channels — using the information available from unimpaired
physiological and neurophysiological processes -- that are able to reflect their emotions to
loved ones as well as to caretakers.

However, the realisation of all this potential, including the advantages of
neurophysiological signals over other sources of information on affect, are dependent on

the advancement of research within several disciplines: psychology, affective
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neuroscience, and machine learning. We will start with the introduction of relevant sensor
technologies, before discussing the neurophysiological basis, the technological principles

and applications of aBCI.

1.2 Sensor modalities assessing neurophysiological activity

Several sensor technologies enable the assessment of neurophysiological activity. Two
types of methods can be distinguished by the way they function: one measures cortical
electric or magnetic fields, directly resulting from the nerve impulses of groups of
pyramidal neurons, while the other one measures metabolic activity within cortical
structures, for example blood oxygenation resulting from increased activity of these
structures.

The first type of electrophysiological methods, including sensor modalities such as
electroencephalography (EEG) and magnetoencephalography (MEG), has a high
temporal resolution of neural activity recordings (instantaneous signals with millisecond
resolution), but lacks high spatial resolution due to the smearing of the signals on their
way through multiple layers of cerebrospinal fluid, bone, and skin. Most of the methods
of the second type, including sensor modalities such as functional magnetic resonance
imaging (fMRI) or positron emission tomography (PET), have a high spatial resolution
(in the range of millimeters), but are slow due to the dependence on metabolic changes
(resulting in a lag of several seconds) and due to their working principle (resulting in
measurement rhythms of seconds rather than milliseconds).

Each of the neuroimaging methods mentioned above has its advantages and their use

depends on researchers’ goals. Regarding affective computing scenarios, EEG seems to



be the most practicable method: EEG has the advantage of being relatively unobtrusive
and can be recorded using wearable devices, increasing the mobility and options for
locations in which data is collected. Furthermore, the technology is affordable for private
households and relatively easy to set up, especially the cheaper commercial versions for
the general public, although these have limitations for research. Comparable wearable
sensor modalities that are based on the brain metabolism, such as functional near-infrared
spectroscopy (fNIRS), are currently neither affordable, nor featuring a high spatial
resolution.

To focus on the technologies relevant for aBCI in the normal, healthy population, in the
next section we will briefly review the affect-related neural structures of the central
nervous system and then introduce the neurophysiological correlates of affect that are the

basis for aBCI systems using EEG technology as their sensor modality.

2 Neurophysiological Measurements of Affect

2.1 The Neural Structures of Affect

The brain comprises a number of structures that have been associated with affective
responses by different types of evidence. Much of the early evidence of the function of
certain brain regions comes from observations of the detrimental effects of lesions in
animals and humans. More recently, functional imaging approaches, such as PET or
fMRI, have yielded insights into the processes occurring during affective responses in
normal functioning (for reviews see Barrett, Mesquita, Ochsner, & Gross, 2007,
Lindquist, Wager, Kober, Bliss-moreau, & Barrett, 2011). Here we will only briefly

discuss the most prominent structures that have been identified as central during the



evaluation of the emotional significance of stimulus events and the processes that lead to
the emergence of the emotional experience. The interested reader can refer to Barrett et
al. (2007) for a detailed description of the structures and processes involved.

The core of the system involved in the translation of external and internal events to the
affective state is a set of neural structures in the ventral portion of the brain: medial
temporal lobe (including the amygdala, insula, and striatum), orbitofrontal cortex (OFC),
and ventromedial prefrontal cortex (VMPFC). These structures compose two related
functional circuits, which represent the sensory information about the stimulus event and
its somatovisceral impact, as remembered or predicted from previous experience.

The first circuit, comprised of the basolateral complex of the amygdala, the ventral and
lateral aspects of the OFC, and the anterior insula, is involved in the gathering and
binding of information from external and internal sensory sources. Both the amygdala
and the OFC structures possess connections to the sensory cortices, enabling information
exchange about perceived events and objects. While the amygdala is coding the original
value of the stimulus, the OFC creates a flexible experience- and context-dependent
representation of the object’s value. The insula represents interoceptive information from
the inner organs and skin, playing a role in forming awareness about the state of the body.
By the integration of sensory information and information about the body’s state, a value-
based representation of the event or object is created.

The second circuit, composed of the VMPFC (including the anterior cingulate cortex
(ACC)) and the amygdala, is involved in the modulation of parts of the value-based
representation via its control over autonomous, chemical, and behavioural visceromotor

responses. Specifically, the VMPFC links the sensory information about the event, as



integrated by the first circuit, to its visceromotor outcomes. It can be considered as an
affective working memory, which informs judgments and choices, and is active during
decisions based on intuitions and feelings.

Both circuits project directly and indirectly to the hypothalamus and brainstem, which are
involved in a fast and efficient computation of object values, and influence autonomous
chemical and behavioural responses. The outcome of the complex interplay of ventral
cortical structures, amygdala, hypothalamus, and brainstem establishes the “core
affective” state that the event induced: an event-specific perturbation of the internal
milieu of the body that directs the body to prepare for the responses necessary to deal
with the event. These responses include the attentional orienting to the source of the
stimulation, the enhancement of sensory processes, and the preparation of motor
behaviour. The perturbation of the visceromotor state is also the basis of the conscious
experience of the pleasantness and physical and cortical arousal that accompany affective
responses. However, as stated by Barrett et al. (2007), the emotional experience is
unlikely to be the outcome of one of the structures involved in establishing the “core
affect,” but rather emerges on the system level, as the result of the activity of many or all

of the involved structures?.

2.2 Correlates of Affectin EEG

2 This constructivist position, readily compatible with functional appraisal models of emotion and with
evidence collected by neuroimaging meta-analyses (Lindquist et al., 2011), is opposed by the localist
position, which is defended by the proponents of basic emotion models. For a neuroimaging meta-analysis
supporting the localist position see (Vytal & Hamann, 2010). The interested reader is also referred to the

chapter by Kemp and colleagues contained in the current handbook.



Before reviewing the electrophysiological correlates of affect, we shall note that due to
the working principles and the resulting limited spatial resolution of the EEG, a simple
measurement of the activation of affect-related structures, as obtainable by fMRI, is not
possible. Furthermore, most of the core-affective structures are located in the ventral part
of the brain (but see Davidson, 1992; Harmon-Jones, 2003), making a direct assessment
of their activity by EEG, focusing on signals from superficial neocortical regions,
difficult. Hence, we concentrate on electrophysiological signals that have been associated

with affect and on their cognitive functions, but mention their neural origins if available.

Time-domain Correlates. A significant body of research has focused on the time
domain and explores the consequences of emotional stimulation on event-related
potentials. Event-related potentials (ERP) are prototypical deflections of the recorded
EEG trace in response to a specific stimulus event, for example a picture stimulus.

ERPs are computed by (sample-wise) averaging of the traces following multiple
stimulation events of the same condition, which reduces sporadic parts of the EEG trace
not associated with the functional processes involved in response to the stimulus but
originating from artefacts or background EEG.

Examples of ERPs responsive to affective manipulations include early and late potentials.
Early potentials, for example P1 or N1, indicate processes involved in the initial
perception and automatic evaluation of the presented stimuli. They are affected by the
emotional value of a stimulus; differential ERPs are observed in response to negative and

positive valence as well as low and high arousal stimuli (Olofsson, Nordin, Sequeira, &



Polich, 2008). However, the evidence is far from parsimonious as the variety of the
findings shows.

Late event-related potentials are supposed to reflect higher-level processes, which are
already more amenable to the conscious evaluation of the stimulus. The two most
prominent potentials that have been found susceptible to affective manipulation are the
P300 and the late positive potential (LPP). The P300 has been associated with attentional
mechanisms involved in the orientation toward an especially salient stimulus, for
example very rare (deviants) or expected stimuli (Polich, 2007). Coherently, P300
components show a greater amplitude in response to highly salient emotional stimuli,
especially aversive ones (Briggs & Martin, 2009). The LPP has been observed after
emotionally arousing visual stimuli (Schupp et al., 2000), and was associated with a
stronger perceptive evaluation of emotionally salient stimuli as evidenced by increased
activity of posterior visual cortices (Sabatinelli, Lang, Keil, & Bradley, 2006).

As in real-world applications the averaging of several epochs of EEG traces with respect
to the onset of a repeatedly presented stimulus is not feasible; the use of such time-
domain analysis techniques is limited for affective BCls. An alternative to ERPs - more
feasible in a context without known stimulus onsets or repetitive stimulation - are effects

on brain rhythms observed in the frequency domain.

Frequency-domain Correlates The frequency domain can be investigated with two
simple, but fundamentally different power extraction methods, yielding evoked and
induced oscillatory responses to a stimulus event (Tallon-Baudry, Bertrand, Baudry, &

Bertrand, 1999). Evoked frequency responses are computed by a frequency
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transformation applied to the averaged EEG trace, yielding a frequency-domain
representation of the ERP components. Induced frequency responses, on the other hand,
are computed by applying the frequency transform on the single EEG traces before then
averaging the frequency responses. Induced responses therefore capture oscillatory
characteristics of the EEG traces that are not phase-locked to the stimulus onset and
averaged out in the evoked oscillatory response. In an everyday context, where the mental
states or processes of interest are not elicited by repetitive stimulation, with a known
stimulus onset and short stimulus duration, the use of evoked oscillatory responses is
equally limited as the use of ERPs. Therefore, the induced oscillatory responses are of
specific interest when attempting the detection of affect based on a single and unique
emotional event or period.

The analysis of oscillatory activity in the EEG has a tradition that reaches back over
almost 90 years to the 20s of the last century, when Hans Berger reported the existence of
certain oscillatory characteristics in the EEG, now referred to as alpha and beta rhythms
(Berger, 1929). The decades of research since then led to the discovery of a multitude of
cognitive and affective functions that bear influence upon the oscillatory activity in
different frequency ranges. Below we will briefly review the frequency ranges of the
conventional broad frequency bands, namely delta, theta, alpha, beta, and gamma, their

cognitive functions and their association with affect.

The delta frequency band comprises the frequencies between 0.5 and 4 Hz. Delta
oscillations are especially prominent during the late stages of sleep (Steriade,

McCormick, & Sejnowski, 1993). However, during waking they have been associated
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with motivational states such as hunger and drug craving (see Knyazev, 2012). In such
states, they are supposed to reflect the workings of the brain reward system, some of the
structures of which are believed to be generators of delta oscillations (Knyazev, 2012).
Delta activity has also been identified as a correlate of the P300 potential, which is seen
in response to salient stimuli. This has led to the belief that delta oscillations play a role
in the detection of emotionally salient stimuli. Congruously, increases of delta band
power have been reported in response to more arousing stimuli (Aftanas, Varlamov,

Pavlov, Makhnev, & Reva, 2002; Balconi & Lucchiari, 2006; Klados et al., 2009).

The theta rhythm comprises the frequencies between 4 to 8 Hz. Theta activity has been
observed in a number of cognitive processes, and its most prominent form, fronto-medial
theta, is believed to originate from limbic and associated structures (i.e., ACC) (Basar,
Schiirmann, & Sakowitz, 2001). It is a hallmark of working memory processes and has
been found to increase with higher memory demands in various experimental paradigms
(see Klimesch, Freunberger, Sauseng, & Gruber, 2008). Specifically, theta oscillations
subserve central executive function, integrating different sources of information, as
necessary in working memory tasks (Kawasaki, Kitajo, & Yamaguchi, 2010).
Concerning affect, early reports mention a “hedonic theta” that was reported to occur
with the interruption of pleasurable stimulation. However, studies in children between 6
months and 6 years of age showed increases in theta activity upon exposure to
pleasurable stimuli (see Niedermeyer, 2005). Recent studies on musically induced
feelings of pleasure and displeasure found an increase of fronto-medial theta activity with

more positive valence (Lin, Duann, Chen, & Jung, 2010; Sammler, Grigutsch, Fritz, &
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Koelsch, 2007), which originated from ventral structures in the ACC. For emotionally
arousing stimuli, increases in theta band power have been reported over frontal (Balconi
& Lucchiari, 2006; Balconi & Pozzoli, 2009) and over frontal and parietal regions
(Aftanas et al., 2002). Congruously, a theta increase was also reported during anxious
personal compared to non-anxious object rumination (Andersen, Moore, Venables, Corr,

& Venebles, 2009).

The alpha rhythm comprises the frequencies between 8 and 13 Hz. It is most prominent
over parietal and occipital regions, especially during the closing of the eyelid, and
decreases in response to sensory stimulation, especially during visual, but in a weaker
manner also during auditory and tactile stimulation, or during mental tasks. More anterior
alpha rhythms have been specifically associated with sensorimotor activity (central mu-
rhythm; Pfurtscheller, Brunner, Schlégl, & Lopes da Silva, 2006) and with auditory
processing (tau-rhythm; Lehteld, Salmelin, & Hari, 1997). The observed decrease of the
alpha rhythm in response to (visual) stimulation, the event-related desynchronisation in
the alpha band, is believed to index the increased sensory processing, and hence has been
associated with an activation of task-relevant (sensory) cortical regions. The opposite
phenomenon, an event-related synchronization in the alpha band, has been reported in a
variety of studies on mental activities, such as working memory tasks, and is believed to
support an active process of cortical inhibition of task-irrelevant regions (see Klimesch,
Sauseng, & Hanslmayr, 2007).

The most prominent association between affective states and neurophysiology has been

reported in the form of frontal alpha asymmetries (Coan & Allen, 2004), which vary as a
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function of valence (Silberman, 1986) or motivational direction (Davidson, 1992;
Harmon-Jones, 2003). The stronger rightward-lateralization of frontal alpha power during
positive or approach-related emotions compared to negative or withdrawal-related
emotions is believed to originate from the stronger activation of left compared to right
prefrontal structures involved in affective processes. Despite fMRI studies (e.g., Engels et
al., 2007) suggesting that such simple models of lateralization underestimate the
complexity of the human brain, evidence for alpha asymmetry has been found in response
to a variety of different induction procedures, using pictures (Balconi & Mazza, 2010;
Huster, Stevens, Gerlach, & Rist, 2009), music pieces (Altenmller, Schirmann, Lim, &
Parlitz, 2002; Schmidt & Trainor, 2001; Tsang, Trainor, Santesso, Tasker, & Schmidt,
2006), or film excerpts (Jones & Fox, 1992).

The alpha rhythm has also been associated with a relaxed and wakeful state of mind
(Niedermeyer, 2005). Coherently, increases of alpha power are observed during states of
relaxation, as indexed by physiological measures (Barry, Clarke, Johnstone, & Brown,
2009; Barry, Clarke, Johnstone, Magee, & Rushby, 2007) and subjective self-report

(Nowlis & Kamiya, 1970; Teplan & Krakovska, 2009).

The beta rhythm comprises the frequencies between 13 and 30 Hz. Central beta activity
has been associated with the sensory-motor system as it is weak during motor activity,
motor imagination or tactile stimulation, but increases afterwards (Neuper et al., 2006).
That has led to the view that the beta rhythm is a sign of an “idling” motor cortex
(Pfurtscheller et al., 1996). A recent proposal for a general theory of the function of the

beta rhythm, however, suggests that beta oscillations impose the maintenance of the
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sensorimotor set for the upcoming time interval (or “signals the status quo”; see Engel &
Fries, 2010). Concerning affect, increases of beta band activity have been observed over
temporal regions in response to visual and self-induced positive, compared to negative
emotions (Cole & Ray, 1985; Onton & Makeig, 2009). A general decrease of beta band
power has been reported for stimuli that had an emotional impact on the subjective
experience, compared with those that were not experienced as emotional (Dan Glauser &
Scherer, 2008; see gamma rhythm for elaboration). A note of caution for the
interpretation of high frequency bands of beta and gamma is in order, as their power
increases during the tension of (scalp) muscles (Goncharova et al., 2003), which are also

involved in frowning and smiling.

The gamma rhythm comprises the frequencies above 30 Hz. Gamma band oscillations are
supposed to be a key mechanism in the integration of information represented in different
sensory and non-sensory cortical networks (Fries, 2009). Accordingly, they have been
observed in association with a number of cognitive processes, such as attention (Gruber,
Miller, Keil, & Elbert, 1999), multi-sensory integration (Daniel Senkowski, Schneider,
Tandler, & Engel, 2009), memory (Jensen, Kaiser, & Lachaux, 2007), and even
consciousness (Ward, 2003).

Concerning valence, temporal gamma rhythms have been found to increase with
increasingly positive valence (Muller, Keil, Gruber, & Elbert, 1999; Onton & Makeig,
2009). For arousal, posterior increases of gamma band power have been associated with
the processing of high versus low arousing visual stimuli (Aftanas, Reva, Varlamov,

Pavlov, & Makhnev, 2004; Balconi & Pozzoli, 2009; Keil et al., 2001). Similarly,
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increases of gamma activity over somatosensory cortices have also been linked to the
awareness to painful stimuli (Gross, Schnitzler, Timmermann, & Ploner, 2007,
Senkowski, Kautz, Hauck, Zimmermann, & Engel, 2011). However, Dan Glauser and
Scherer (2008) found lower (frontal) gamma power for emotion for stimuli with
compared to those without an emotional impact on the subjective experience. They
interpreted their findings as a correlate of the on-going emotional processing in those
trials that were not (yet) identified as having a specific emotional effect, and hence
without impact on subjective experience. In general, increases in gamma power are often

interpreted as synonymous with an increase of activity in the associated region.

Taken together, the different frequency bands of the EEG have been associated with
changes in the affective state as well as with a multitude of cognitive functions.
Consequently, it is rather unlikely to find simple one-to-one mappings between any
oscillatory activity and a given affective or cognitive function. In Section 4 we will
elaborate on the challenge that many-to-one mappings pose for aBCI. Nevertheless, there
is an abundance of studies evidencing the association of brain rhythms with affective
responses. Affective brain-computer interfaces can thus make use of the frequency
domain as a source of information about their users’ affective states. In the following
section, we will introduce the concept of affective brain-computer interfaces in more

detail.
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3 Affective Brain-Computer Interfaces

The term affective brain-computer interfaces (aBCl) is a direct result of the nomenclature
of the field that motivates their existence: affective computing. aBClI research and
affective computing aim at the same ends with different means: the detection of the user’s
emotional state for the enrichment of human-computer interaction. While affective
computing tries to integrate all the disciplines involved in this endeavour, from sensing of
affect to its effective integration into human-computer interaction processes, affective
brain-computer interface research is mainly concerned with the detection of the affective
state from neurophysiological measurements. Information about successfully detected
affective states can then be used in a variety of applications, ranging from unobtrusive
mental state monitoring and the corresponding adaptation of interfaces to neurofeedback-
guided relaxation.

Originally, the term brain-computer interface was defined as “a communication system
in which messages or commands that an individual sends to the external world do not
pass through the brain’s normal output pathways of peripheral nerves and muscles”
(Wolpaw, Birbaumer, McFarland, Pfurtscheller, & Vaughan, 2002). The notion of an
individual (volitionally) sending commands directly from the brain to a computer,
circumventing standard means of communication, is of great importance considering the
original target population of patients with severe neuromuscular disorders. More recently,
the human-computer interaction community developed great interest in the application of
BCI approaches for larger groups of users that are not dependent on BCls as their sole
means of communication. This development and the ensuing research projects hold great

potential for the further development of devices, algorithms, and approaches for BCI, also
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necessary for its advancement for patient populations. Simultaneously to the development
of this broad interest for BCI, parts of the BCI community slowly started to incorporate
new BCI approaches, such as aBCl, in its research portfolio, softening the confinement of
BCI to interfaces serving purely volitional means of control (Nijboer, Clausen, Allison, &
Haselager, 2011).

Below, we will briefly introduce the parts of the affective BCI: signal acquisition, signal
processing (feature extraction and translation algorithm), feedback, and protocol. Then
we will give an overview of the various existing and possible approaches to affective

BCI, based on a general taxonomy of BCI approaches.

3.1 Parts of an Affective BCI

Being an instance of general BCI systems (Wolpaw et al., 2002), the affective BCl is
defined by a sequence of procedures that transform neurophysiological signals into
control signals. We will briefly outline the successive processing steps that a signal has to
undergo in a BCI (see Figure 1.1), starting with the acquisition of the signal from the

user, and finishing with the application feedback given back to the user.

feature extraction | |translation algorithm

BCI
acquisition output
user < application|

sensory stimulation & feedback

Figure 1.1: The schematic of a general BCI system as defined by Wolpaw et al. (2002). The

neurophysiological signal is recorded from the user, and the relevant features, those that are informative
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about user intent or state, are extracted. They are then translated into the control parameters that are used by

the application to respond adequately to the user’s state or intent.

Signal Acquisition BCls can make use of several sensor modalities that measure brain
activity. Roughly, we can differ between invasive and non-invasive measures. While
invasive measures, implanted electrodes or electrode grids, enable a more direct
recording of neurophysiological activity from the cortex, and have therefore a better
signal-to-noise ratio, they are currently reserved for patient populations — and hence are
less relevant for the current overview. Non-invasive measures, on the other hand, as
recorded with EEG, fNIRS, or fMRI, are also available for the healthy population.
Furthermore, some of the non-invasive signal acquisition devices, especially EEG, are
already available for consumers in the form of easy-to-handle and affordable headsets®.
The present work focuses on EEG as a neurophysiological measurement tool, for which
we will detail the following processing steps in the BCI pipeline. A further distinction in
terms of the acquired signals can be made, differing between those signals that are
partially dependent of the standard output pathways of the brain (e.g. moving the eyes to
direct the gaze toward a specific stimulus), and those that are independent on these output
pathways, merely registering user intention or state. These varieties of BCI are referred to
as dependent and independent BCls, respectively. Affective BCIs, measuring the

affective state of the user, are usually a variety of the latter sort of BCls.

Signal Processing - Feature Extraction From the signals that are captured from the

scalp, several signal features can be computed. We can differentiate between features in

3 Examples of such consumer EEG devices are the Emotive headset with 14 sensors
(http://www.emotiv.com) and the Neurosky headset with 1 sensor (http://www.neurosky.com).
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the time and in the frequency domain. An example for features in the time domain is
amplitude of stimulus-evoked potentials occurring at well-known time points after a
stimulus event was observed. One of the event-related potentials used in BCI is the P300,
occurring in the interval between 300 to 500 ms after an attended stimulus event. An
example for signal features in the frequency domain is the power of a certain frequency
band. A well-known frequency band that is used in BCI paradigms is the alpha band,
which comprises the frequencies between 8 - 13 Hz. Both time- and frequency-domain
features of the EEG have been found to respond to the manipulation of affective states
and are therefore in principle interesting for the detection of affective states (see Section
2). However, aBClI studies almost exclusively use features from the frequency domain
(see Table 1.1 in Muhl, 2012). Conveniently, however, frequency-domain features, such
as the power in the lower frequency bands (< 13 Hz) are correlated with the amplitude of
event-related potentials, especially the P300, and hence partially include information
about time-domain features.

Standard BCI approaches focus on very specific features, for example the mu rhythm
over central scalp regions in case of motor-imagery paradigms (Pfurtscheller & Neuper,
2001), or the mean signal amplitude between 200 and 500 ms associated with each
attended stimulus in P300 spellers (Farwell & Donchin, 1988). Affective BCI
approaches, however, to date often lack such clear-cut information on affect-related
responses. Most of the current aBCI approaches make use of a wide spectrum of
frequency bands, as these have been found responsive to affect manipulation (see Section
2.2), resulting in a large number of potential features. However, large numbers of features

require a large number of trials to train a classifier (the “curse of dimensionality”; Lotte,
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Congedo, Lécuyer, Lamarche, & Arnaldi, 2007), which are seldom available due to the
limitations of affect induction (e.g., the habituation of the responses toward affective
stimulation with time). Therefore, one of the tasks on the road toward affective BCI is the
evaluation and identification of reliable signal features that carry information about the
affective state, especially in the complexity of real-world environments. Another
important task is the development of potent affect-induction procedures, for example
using naturally affect-inducing stimuli that increase the likelihood of inducing affective

responses.

Signal Processing - Translation Algorithms The core part of the BCI is the translation
of the selected signal features into a command for the application or device, such as a
cursor movement for active BCls or the creation of an emotion label for affective BCls.
The simple one-to-one mapping between feature and command requires a feature that
conveniently mirrors the state in such manner. Because such ideal features are rare in the
neurophysiological signal domain, most BCI studies use machine learning approaches
that are trained to find a mapping between a number of signal features and the labels for
two or more classes (see Lotte et al. (2007) for an overview of BCI classifiers). These
classifiers have to adapt to the signal characteristics of the particular user, adapt to
changes over time and changing contexts of interaction, and deal with the changes in
brain activity due to the user trying to learn and adapt to the system. Classifiers used for
affective BCI include linear discriminant analysis (Chanel et al., 2005; Chanel, Kierkels,
Soleymani, & Pun, 2009; Chanel, Rebetez, Bétrancourt, Pun, & Bétrancourt, 2011;

Makeig et al., 2011; Murugappan, 2010; Winkler, Jager, Mihajlovi¢, & Tsoneva, 2010)
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and support vector machines (Frantzidis et al., 2010; Horlings, Datcu, & Rothkrantz,
2008; Koelstra et al., 2010; Li & Lu, 2009; Y. P. Lin, Wang, Wu, Jeng, & Chen, 2009;
Petrantonakis & Hadjileontiadis, 2010; Soleymani, Lichtenauer, Pun, & Pantic, 2011;

Takahashi, 2004).

The Output Device / Feedback Depending on the application the affective BCI is
serving, the output can assume different forms. For BCI in general, the most prominent
output devices are a monitor and speakers, providing visual and auditory feedback about
the user and BCI performance. In a few cases robots (a wheelchair or car) have been
controlled (Hongtao, Ting, & Zhenfeng, 2010; Leeb et al., 2007). An exceptional
example of BCI output, however, is control of one’s own hand by the BCI-informed
functional electrical stimulation of a paralyzed hand (Pfurtscheller, Muller-Putz,
Pfurtscheller, & Rupp, 2005). In the case of standard BCls, the output has a major
function, relating to the adaptation of the user to the BCI mentioned above. As BCI
control can be considered to be a skill, any learning necessitates the provision of feedback
about successful and unsuccessful performance.

In the specific case of aBClI the same is possible, but the smaller proportion of
applications requiring active and volitional mental control, typical for standard BCI
systems, and the dominance of passive paradigms (see Section 3.2) make explicit
performance-based feedback an option rather than mandatory. Depending on their
function, aBClI systems will vary in the output device and the type of feedback employed.
For example, for implicit tagging or affect monitoring (for later evaluation), the feedback

is not immediate. It might take hours, days, or weeks until the information is used (e.g.
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during affect-tagged media replay) and then it might be in a subtle way that escapes the
user’s attention. Such cases, in which there is no clear relation between state and
feedback perceivable, make the notion of feedback in these aBCI applications almost
obsolete. However, in many other aBCI applications the feedback is still existent and
relevant, since the affective data is used to produce a system response in a reasonably
near future. Examples are the applications that reflect the current affective state (e.g., in a
game like “alpha World of Warcraft”, Plass-Oude Bos et al., 2010), any neurofeedback-
like application (e.g., warn of unhealthy states or reward healthy states), the active self-
induction of affective states (e.g., relaxation), or the adaptation of games or e-learning

applications to the state of the user.

The Operating Protocol The operating protocol guides the operation of the BCI system,
for example switching it on and off (how/when), if the actions are triggered by the system
(synchronous) or by the user (asynchronous), and when and in which manner feedback is
given to the user. Other characteristics of the interaction that are defined by the protocol
are whether the information is actively produced by the user or passively read by the
system and whether the information is gathered dependent of a specific stimulus event
(stimulus dependent/independent). These two characteristics of BCI, voluntariness and
stimulus-dependency, are also the basis for the characterization of different BCI
approaches in the next section.

Below, we will outline the different existing applications and approaches to affective

BCI, and try to locate affective BCI within the general landscape of BCI.

3.2 The Different aBCI Approaches
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There are several possible applications of neurophysiology-informed affect sensing that
can be categorized in terms of their dependence on stimuli and user volition. In the
following, a two-dimensional classification of some of these BCI paradigms will be
given. It is derived from the three-category classification for BCI approaches (active,
reactive, and passive BCI) suggested by Zander & Kothe (2011). The dimensions of this
classification are defined by (i) the dependence on external stimuli and (ii) the
dependence on an intention to create a neural activity pattern as illustrated in Figure 1.2.

active

A

induced
pa)oA8

Y

passive
Figure 1.2: A classification of BCI paradigms, spanning voluntariness (passive vs. active) and stimulus

dependency (user self-induced vs. stimulus-evoked).
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Axis (i) stretches from exogenous (or evoked) to endogenous (or induced) input. The
former covers all forms of BCI, which necessarily presuppose an external stimulus.
Steady-state visually-evoked potentials (Farwell & Donchin, 1988) as neural correlates of
(target) stimulus frequencies, for instance, may be detected if and only if evoked by a
stimulus. They are therefore a clear example of exogenous input. Endogenous input, on
the other hand, does not presuppose an external stimulus, but is generated by the user
either volitionally, as seen in motor-imagery based BClIs (Pfurtscheller & Neuper, 2001)
or involuntarily, as during the monitoring of affective or cognitive states. In the case of
involuntary endogenous input, for example during general affect monitoring, the
distinction between stimulus-dependent and -independent input might not always be
possible, as affective responses are often induced by external stimulus events, though
these might not always be obvious.

Axis (ii) stretches from active to passive input. Active input presupposes an intention to
control brain activity while passive input does not require any effort on the side of the
user. Imagined movements, for instance, can only be detected when users intend to
perform these, making the paradigm a prototypical application of active BCI. All
methods that probe the user’s mental state, on the other hand, can also be measured when
the users do not exhibit an intention to produce it. Affective BCI approaches can be
located in several of the four quadrants (categories) spanned by the two dimensions, as

quite different approaches to affective BCI have been suggested and implemented.

Q I. Induced-active BCIs. This category is well-known in terms of neurofeedback

systems, which encourage the user to attain a certain goal state. While neurofeedback
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approaches do not necessarily focus on affective states, a long line of this research is
concerned with the decrease of anxiety or depression by making the users more aware of
their bodily and mental states (Hammond, 2005). Neurophysiological features that have
been associated with a certain favourable state (e.g., relaxed wakefulness) are visualized
or sonified, enabling the users of such feedback systems to learn to self-induce them.
More recently, it has been shown that affective self-induction techniques, such as
relaxation, are a viable control modality in gaming applications (George, Lotte, Abad, &
Lecuyer, 2011; Hjelm, 2003; but see Mihl et al., 2010). Furthermore, induced-passive
approaches (see below) might also turn into active approaches, for example when players
realize that their affective state has an influence on game parameters, and therefore begin
to self-induce states to manipulate the gaming environment according to their

preferences.

Q I1. Induced-passive BClIs. This category includes the typical affect-sensing method
for application in HCI scenarios where a response of an application to the user state is
critical. Information that identifies the affective state of a user can be used to adapt the
behaviour of an application to keep the user satisfied or engaged. For example, studies
found neurophysiological responses in the theta and alpha frequency bands to
differentiate between episodes of frustrating and normal game play (Reuderink, Mihl, &
Poel, 2013). Applications could respond to the frustration of the user with helpful advice
or clarifying information. Alternatively, parameters of computer games or e-learning

applications could be adjusted to keep users engaged in the interaction, for example by
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decreasing or increasing difficulty to counteract the detected episodes of frustration or
boredom, respectively (Chanel et al., 2011).

Another approach is the manipulation of the game world in response to the player’s
affective state, as demonstrated in “alpha World of Warcraft” (Plass-Oude Bos et al.,
2010), where the avatar shifts its shape according to the degree of relaxation the user
experiences. Such reactive games could strengthen the players’ association with their
avatars, leading to a stronger immersion and an increased sense of presence in the game

world.

Q I11. Evoked-passive BCls. BCI research has suggested that evoked responses can be
informative about the state of the user. Allison & Polich (2008) have used evoked
responses to simple auditory stimuli to probe the workload of a user during a computer
game, a measure that might reflect attentional and affective engagement. Similarly,
neurophysiology-based lie detection, assessing neurophysiological orientation responses
(P300) to compromising stimuli, has been shown to be feasible (Abootalebia et al. 2009).
A similar approach is the detection of error-potentials in response to errors in human-
machine interaction. It was shown that such errors evoke specific neurophysiological
responses, for example the error-related negativity (ERN), that can be detected and used
to trigger system adaptation (Buttfield, Ferrez, & Millan, 2006; Zander & Jatzev, 2009).
Given that goal conduciveness is a determining factor of affective responses, such error-
related potentials could be understood as being affective in nature (Scherer, 2005).

More directly related to affect, however, are those responses observed to media, such as

songs, music videos, or films. Assuming the genuine affective nature of the response to
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experiences delivered by such stimuli, it might be possible to detect the user states that
are associated with them. A possible use for such approaches are media recommendation
systems, which monitor the user response to media exposure and label or tag the media
with the affective state it produced. Later on, such systems could selectively offer or
automatically play back media items that are known to induce a certain affective state in
the user. Research toward such neurophysiology-based implicit tagging approaches of
multimedia content has suggested its feasibility (Koelstra et al., 2012; Soleymani et al.,
2011). Furthermore, assuming that general indicators of affect can be identified using
music excerpts or film clips for affect-induction protocols, such multi-modal and natural
media seem suited to collect data for the training of aBCls that detect affective states

occurring in rather uncontrolled, real-life environments.

Q IV. Evoked-(re-)active BCI. This category seems less likely to be used for aBClI
approaches, as the volitional control of affect in response to presented stimuli is as yet
unexplored. However, standard BCI paradigms that use evoked brain activity to enable
users to select from several choices were the first approaches to BCI and have been
thoroughly explored. A prominent example is the P300 speller, which relies on the
enhanced P300 potential observed in response to attended compared to unattended stimuli
(Farwell & Donchin, 1988). Similarly, BCI control via steady-state evoked potentials
relies on the increase of an EEG frequency response when a stimulus oscillating with the

same frequency (e.g., a flicker, vibration, or sound) is attended (Vidal, 1973).
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Summarizing, there are a multitude of possible applications for aBCI that can be
categorized according to the axes of induced/evoked and active/passive control. Main
applications, however, are those that cover the passive control of applications. The challenges
that have to be dealt with to move beyond proof-of-concept studies and toward aBCls

working reliably in the complexity of the real world are addressed in the final section.

4. Controversies, challenges, conclusion

Though the possibility of neurophysiology-based affect detection has been suggested by
theoretical and empirical works (see Section 2 and 3), several neuroscientific and

neurotechnological challenges remain on the way toward reliable aBCls.

4.1 Neuroscientific challenges

The primary neuroscientific challenge is the lack of reliable signal features that
characterize affective states in non-invasive electrophysiological measures, such as EEG.
It is often argued that EEG has neither the spatial resolution nor the necessary sensitivity
to register core affective neural activity from deep subcortical structures of the limbic
system. While this might partially be true, especially in comparison to techniques like
fMRI, many studies report electrophysiological correlates of emotion manipulations in
terms of amplitude changes of either potentials or oscillations (see Section 2.2). However,
it is indeed seldom assessed which parts of these responses to affective stimulation are
reflected within these differentiating signal features: core affective correlates versus
cognitive co-activations of affect. Modern emotion theories, for example the Component

Process Model of Scherer (2005), acknowledge the complex and interwoven nature of
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affective and cognitive concepts and processes that are present during emotional
responses. Therefore, it has to be acknowledged as well, that different affective states are
not only differentiated by the correlates of their core affective features, but also by
concurrent co-activations of regions and processes that can be observed independently of
affect as well. An example is enhanced sensory processing, which can be observed in
response to emotionally arousing stimuli as well as during heightened levels of attention
(see Muhl, 2012 for further elaboration).

Consequently, to avoid misclassification of cognitive state changes as affective state
changes, a major challenge for aBCl is the identification of the nature of affect correlates
and the development of methods that allow focus on reliable indicators of affect, while
still making use of the indicative power of those correlates that are not of purely affective
nature. As noted earlier, richer information about the response to an affective event, for
example its origin or its behavioural consequences, is one of the major promises of
aBCls. To resolve the uncertainties pertaining to the nature of neurophysiological
correlates of affect and to develop the next generation of affect-sensitive, but context-
aware aBCls, the design of affect-induction approaches needs special care*. Beside the
need to carefully balance all factors but the induced emotion to avoid confounds, affect-
induction designs should vary factors that are co-occurring with affective responses and
known to be reflected in brain activity. Examples are visual or auditory attention
processes as elicited by the use of stimuli in the respective sensory modalities (Mihl et

al., 2011).

4Interested readers may wish to refer to the Handbook of Emotion Elicitation and its Assessment by Coan
& Allen in this regard.
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However, this requirement for a stringently controlled affect-induction protocol conflicts
with another condition for the study of reliable neurophysiological indicators: an
ecologically valid affect induction. To ensure the generalisation of the classifier from
training to real-world context, the training samples need to be collected in a context as
similar as possible to the envisioned application scenario. Unfortunately, this often means
that the affect-induction approach would be of a complex nature, either using complex
(e.g., multimedia) stimuli or complex interactive tasks. The many factors involved in
realistic scenarios in which affect detection would be used make the limitation of changes
to the factor that is to be manipulated (i.e., emotion) rather difficult, leading to the
occurrence of confounding variables (e.g., stimulus features, motor responses).
Furthermore, factoring out those variables that potentially reflect cognitive co-activations
(see above) underlies practical limitations of experiment design (e.g., time, number of
participants).

To satisfy these contradictory demands on affect-induction protocols, researchers need to
carefully analyse the factors implied in a given application scenario. Knowing these
factors, they can devise experiment designs that manipulate the affect-relevant factors
with as little variation in other factors, or that manipulate affective and non-affective
factors in an independent and counter-balanced manner to factor out the most prominent

cognitive co-activations.

Related to the search for reliable correlates of core affect is the exploration of novel
signal features that are informative of the affective state. As mentioned in Section 2, the

neurophysiological features that have been associated with affect manipulations are not
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uniquely affective in nature. These potentials and oscillations are also implied in
cognitive processes. Therefore, the discriminatory value of novel signal features, such as
cross-regional or cross-frequency coherence (Miskovic & Schmidt, 2010), assessing the
interaction between neural regions and mental processes, or the chronology of different
neural processes (Grandjean & Scherer, 2008), need to be explored in the context of
affect. Researchers can profit from existing neurophysiological databases (Koelstra et al.,

2012; Soleymani et al., 2011) when exploring such novel features.

4.2 Neurotechnological challenges

Neurotechnological challenges exist for software as well as for hardware components of
aBCls. Concerning software, the development of appropriate signal processing and
classification algorithms are key issues. Signal processing algorithms need to become
able to deconstruct the electrode signals into their components: neural activity originating
from within the skull, and so-called artefacts, originating from eyes, facial musculature
and other non-neural sources. One can differ between informative and destructive
artefacts. Muscular activity (EMG), for example, is treated as a potentially confounding
influence in conventional EEG studies and hence always removed. However, in an
applied context EMG can, though it is not of neural origin, inform about the user state,
especially taking into account how involved the facial musculature is during emotional
episodes. On the other hand, artefacts - independent of origin - might conceal much
smaller neural signals and therefore have to be removed. Nevertheless, it makes sense to
also examine these artefacts for their informativeness. Techniques like independent

component analysis (ICA; Onton & Makeig, 2009) are able to deconstruct the

32



electrophysiological signals into neural, ocular, and muscular components and might

allow an independent assessment of the information of these sources.

Classification algorithms have to be able to take the complexity of the
neurophysiological signals into account. Assuming a possible differentiation between
core affective and associated cognitive correlates, machine learning approaches that are
able to deal with these complex signals are needed. They need to be able to ignore or
penalize the learning of those features that are only co-varying with affect, thus avoiding
misclassifications due to the cognitive parts of the affective response (e.g., falsely
recognizing increased visual attention as visually-induced emotion). Alternatively, they
could learn to use these co-activations to differentiate contextual details of the emotional
episodes, such as its origin or its intended behavioural consequence.

Another challenge for learning algorithms is the capability to learn from relatively few
examples. The induction of affective states is limited by effects of habituation and the
requirement of ecological validity, leading to a restricted number of samples for training
and testing. A possible alternative is the development of classifiers that learn from a pool
of samples of several participants, rendering their results subject-independent, making

subject-specific training sessions thereby obsolete.

Concerning hardware, the main challenge concerns the wearability and ease of use of
aBCl systems. To ensure optimal user experience, the system should have as few sensors
as possible, reducing the time for setup and its intrusiveness during use. There are already

several commercial devices that enable the recording of EEG from a small number of
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sensors (1 to 16 compared to 32 to 256 electrodes in research devices) and function
without conductive gel. The small number of electrodes minimizes the laborious
optimization of electrode contacts to improve signal quality and thereby increases
usability. Furthermore, the achievable signal quality of dry or contact-less electrode
systems seems close to that of gel-based systems (Zander et al., 2011). However, signal
processing techniques like ICA require a certain number of electrodes to deconstruct
neural and non-neural signal components, posing problems for a reliable EEG/EMG
differentiation. Alternatively to EEG-only aBClI systems, such systems can be combined
with other affect-sensing modalities, assessing physiological or behavioural cues. Such
hybrid or multimodal BCI systems (Pfurtscheller et al., 2010) have the potential to assess
the constellation of different aspects of an affective response, for example preparatory
homeostatic or communicative aspects, but also to enable the use of redundant
information from these sources and therefore decrease the susceptibility to artefacts and
increase the reliability of the prediction. Please refer to the chapter of Kemp and

colleagues for information regarding the integration of signals from body and brain.

Taken together, the main challenges for reliable aBCls are affect-induction protocols that
allow the identification and differentiation of core affective correlates and cognitive co-
activations, pre-processing methods that can differentiate between neural and non-neural
signal sources, and classification methods that are able to automatically acquire that
information from a limited set of electrodes and samples. Should the development of

smaller and cheaper sensor technology continue, wearable and easy-to-use aBClI systems
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could soon become an effective alternative or addition to behaviour- and physiology-

based affect detection.
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