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ABSTRACT simulators has also begun to address the influence of emotions on
behavior (Hudlicka and Billingsley, 1999). Indeed, a panel of the

Eﬁ?;ho?altorfgsog'nng tf:r;].ge ?slzrggt?’n;'scorgrlgytéj%gct?b?;%m]e National Research Council conducted a survey of this topic and
utoring Ining Sy - IS pap : : ’c%ncluded that the lack of “behavioral moderators” such as emo-

model of emotional reasoning that builds upon existing approacht?%n substantially limits the capabilities of existing military simu-

o serty g g xrcs e cepites Tl R S0 a1 prt T e i o4 -
search institute to investigate such issues.

lows a more general treatment of several stages of the reasoning

process. The model supports educational applications by allowinghis article takes as given that modeling affect is important, and

agents to appraise the emotional significance of events as th&gts forth one proposal for how this mightaeseomplished in the

relate to students’ (or their own) plans and goals, model and predi@ntext of dynamic, interactive, and non-scripted training envi-

the emotional state of others, and alter behavior accordingly. ronments. The goal is to create autonomous agents that populate
so-called "constructive simulations" where the trajectory of a
1 INTRODUCTION training exercise arises from the interactions between participants

Emotional computers mav seem an oxvmoron but recent ea{geal or synthetic). This imposes strong requirements on the emo-
P Y S€ y o Yealdnal models. Agents must automatically appraise the environ-
have seen a flurry of computation accounts of emotion in a variet

of applications. This paper describes Emile. a model of emotion ent, derive a plausible emotional state, and modulate their be-
PPl ' pap L ’ . ; Havior accordingly. Training simulations place other requirements
reasoning that extends and significantly generalizes prior work[

g e . hat differ from entertainment-oriented applications. On one hand,
Emile illustrates how an e.Xp“C't plann_lng mode_l_suppor_ts a mor?pe focus is more constrained as one only needs to model typical
general treatment of _emotlonal reasoning (_speuflcally .W'th "SP4 man behavior, not Micky Mouse as well, and not the richness of
to ‘pros_pec_tlve’ emotions, th_e treatment of inter-agent InteractionSup - racter necessary for entertainment applications. On the other
the (_ierlvatlon O.f emotional |r_1ten5|ty, and management of the dyF1and as the goal is to create operational systems, there is more
hamics of emotl_onal e>_<pr¢_55|on). The model allows agents to aleed for generality, scalability, and the ability to support the con-
praise the emotional significance of events as they relate to pla

and goals, model and predict the emotional state of other agen%;s%?nt fluxin equipment and tactics.

and alter behavior accordingly. Emile is particularly suited to apEmile builds on prior computational models of emotion, notably
plications where agents must plan as well as react (as in Rickel aftgal Reilly's (1996) Em algorithm and Clark Elliott's (1992) Af-
Johnson, 1998; Hikt al., 1997; Pelket al., 1998). fective Reasoner. Like many models it traces its lineage back to the

But why model emotion? Emotions have received the most atte influential theory proposed by Ortony, Clore, and Collins (1988).

tion for their strength in creating engaging and believable charac-m”e differs in emphasizing the role of plans in emotional rea-
9 g engaging soning, and thus draws significantly on the work of Lazarus

ters in entertainment and art. Though somewhat less obwouglggl), Oatley and Johnson-Laird (1987), Sloman (1987) and

emotional reasoning can play a key role in educational tools. Ps eaudoin (1995). As with Sloman, Beaudoin, and Neal Reilly, my
chological and neuroscience research indicates that emotions haf €us is on undérstanding the ir;teraction (‘)f emotion deciéion-

a powerful influence on human behavior, both through their use aking and action selection (so-called “broad-agents”). | therefore

ig%%r)]-;ﬁ:jb?llqr?)?jrgrr:]?hné(i:rag\?vr;ycg?/zrilégrﬁtrzzyaigdai%gzsgg[é_gli:%escribe emotional reasoning in the context of other forms of rea-
(de Souza, 1987 Damasio, 1994Ecant work on tutoring sys- oning: the overall system addresses the issues of how to develop

and execute plans to achieve goals, model the plans and emotional

? sponses of other (human or synthetic) agents, guide the presen-

ﬁ;ﬁgupeltgémsnkcljngtetz(teorgtr;ggsiig%?;risu%?g;ﬁnzS;;us?reunctti)ﬁr?t)::tg?ﬂon of information through emotional expressions or gestures,
. o N nd influence the process of plan generation and action selection.
et al., 1999; Johnsoet al., 2000). Research into military training P plang

2 PLANNING

Many psychological theories of emotion emphasize the relation-
ship between plans and emotions. Nevertheless, the vast majority
of computational approaches do not explicitly represent plans
(even approaches derived from psychological theories that do).
This is partly pragmatic — when they were developed, planning
algorithms had a number of limitations that precluded their easy
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inclusion into real-time intelligent agents (Agre and Chapman, Current State \

1987). Instead, pricgiccounts used &active planning” approaches @(Jack,home)) (al(ca,,home))
that maintain an implicit model of plans. Such systems execute

actions in the service of goals, but don’'t represent how actions (atack,home)) (at(car,home) )
contribute to goal achievement, can’t predict future states of the Drive(home.store) ‘

world, and don’t recognize interactions between steps in different (Cattack,store) ) (_at(car,store) )

plans — three properties that are critical for supporting a more gen-

eral model. Planning research has advanced significantly in recent

years and planning algorithms now reside at the core of a humber
M ake-money(Jack)

of complex real-time autonomous systems in domains such as in-
M ake-money (Jack)

O Precondition / effect

D Action

[1 Protection constraint

telligent tutoring (Rickel and Johnson, 1998)asgxraft naviga-
tion (Pell et al.), information retrieval (Knoblock, 1995), and
command and control modeling (Hill, et al.). The time seems ripe
to reexamine the commitment to purely reactive models.

Adopting a plan-based approach has some key advantages. By
maintaining an explicit representation of an agent’s plans one can
easily reason about future possible outcomes — a key requiremesttpreconditions that must hold if the operation is to be performed,
for handling emotions like hope and fear that involve future exand a set of effects that describe how the world would change if
pectations. Explicit representations allow one to detect interadhe operator were executed. Plans consist of a set of actions and a
tions between plans, for example, as when the plans of one agemriety of constraints: such as temporal constraints (this operator
are incompatible with those of another — a key requirement fomust be executed before that operator; this goal is needed by this
handling emotions like anger or reproach which typically involvedeadline), binding constraints (this variable in this effect has the
multiple actors. Planning algorithms have general mechanisms f@ame value as that variable in that precondition), and protection
making these assessments and we can leverage this generalitycamstraints (this effect must stay true during some time interval).
creating a model of emotional reasoning. Protection constraints are typically used to keep track of the causal

A plan-based approach also allows a richer model of how cogn?—truﬁturT Of_ ahplaln. F:}Jr elxample',:_l mayi/wshl to (Ijrlve_ to the ”?a”l‘e‘
tion influence one’s emotional state. Most of us have experience t “abt Mg thp ay tke ”o_ttery ( |gur§_ : ): P Eanlnlngl; terminol-
a flash of insight in our research that leaves us with intense feef9Y, "DeINg at the market” is a precondition of the play-lotto action

ings of hope, only to be crestfallen seconds later by the realizatiofi’_'Pd it isestablished by an effect OT the drive act_ion. P_Ianning al_gg-
of some crucial flaw. We can model this dynamic by relating emo[lthms keep track of this establishment relationship by explicitly

tional appraisals to the current state of plans in an agent's memorg/(‘.ét'ng that the effect of the drive action is used to achieve the pre-

As plans grow and change through the planning process, so 0o t ndition of the play-lotto action and must be protected (i.e., |

emotional state will change as a reflection of this process — in ahouldnt leave the market before buying the ticket). ~Protection

sense providing a window into an agent's mental processes. constraints can also pe gsed to represent malntengnce goals (i.e.
some fact must be maintained over some interval of time).

Figure 1: An example plan

- Planning algorithms differ in many details, but all can be viewed as
3 EMILE ) . L ; .
s ’ ] ) ~incrementally refining some initial plan into one that achieves a set
Emile — after Rousseau’s (1762) treatise on education — consists f goals. A variety of planners could be integrated with the model,
five separate stages of processing, each of which is informed lyowever | assume that the planner can interleave planning and
plan representations. First, Emile must represent plans and magecution (Knoblock, 1995, Gratch, 1998) and explicitly represent
nipulate this representation to determine which actions will furthepjans of other agents in memory and reason about interactions

its goals. Second, it must qualitatively appraise how events (mepetween such plans (Gratch, 1998, Wilkins and Myers, 1998).
tal and physical) relate to its plans and goals. Third, it must assign

a quantity to the appraisal. Next, it must integrate a variety oé 2 A r aisal
appraisals into an overall emotional state. Finally, it must us& " pp _ _ _
appraisals to guide action selection and planning. Models of emotion typically use the temppraisal to refer to the

Whereas Emile is less developed that some models, it serves aProcess of (qualitatively) evaluating the emotional significance of

. S . -events. Several theories argue that appraisal involves relatin
comprehensive examination of how plan representations can in- 9 pp 9

form each state of emotional processing. The specific detail of hoegggs':rtig dfﬁg Savsg :ﬁgﬁtaﬁ'gg% (Ilziiaeﬂfr:; Ieor\}\;)hneynetosgervin
this is realized is less important than the generality that a plan- ) 9 ! : pe, 9

based view brings to the problem, a f_ootb_all score, opposing fa_ns observe the same event but have
quite different emotional reactions because of their differing goals.

; Many computational models of emotion are inspired by Ort&bny
3.1 Plan repr gsentatlon ) al.’s, detailed theory of appraisal. Emile builds on Clark Elliott’s
For plan-based appraisal | adopt the “classical” model of plans asggcount of this psychological theory, called construal theory, and
set of STRIPS operators (Fikes and Nilsson, 1971) plus a variefyjystrates how it can be generalized through an explicibuauting

of constraints. | adopt this representation, remaloise this is ideal, of plans. Construal theory assesses the relationship between events
but because it has received the most study and numerous planniggy an agent's disposition (described by its goals, social standards,
algorithms use it (or minor variants). STRIPS operators represenhq preferences) through a set of knowledge structures catied

the aCtiOnS that an agent may take in the WOrld and COI‘lSiSt Of a %tua' fran'es_ These frames do two jobs_ They first determine



W*?e“?e' arelaionship exists. I so, they charaf:terizg t_h_e rel a“"f?' FRAME: heroic-finish-god, isafootball-goal
ship in terms of a set of features called emotion-€liciting condi- ] h
tions. Emotions are define in terms of these features, which include event type: touchdown
S . . time-left: Aime-left
desirability (is the event desirable to the agent), expectation status team-1- 21
(does the event confirm or disconfirm an expectation), evaluation team-2: %2
(does the event uphold or violate a standard of behavior), etc. team-1-score 1S
team-2-score  A2s
.2.1 Plan-based Appraisal predicate: ZAime-left < 0.01
3.21 . bp . o L predicate 2ls = 2A2s
A plan-based perspective allows a major shift in the organization predicate: 21 = Northwestern or 22 = Northwestern
of the appraisal process. Construal theory, like many models of blocked: (?t1 = Northwestern and ?t1s< 22s) or
appraisal, focuses on events. An agent recognizes an event (e.g., (72 = Northwestern and 22s < 1s)
action occurrence or state c_hange), and matty:hes it against construal Figure 2: An example of a construal frame
frames to appraise its relation to the agent's goals, standards, and

preferences. Figure 2 illustrates a construal frame that determines
how an event that contains a touchdown relates to an agent’s ‘hey plan-based appraisal, emotion-eliciting conditions are derived
roic-finish’ goal (Elliott, 1992 p. 77). Emile adds a level of indi- through a set of rules that reference syntactic features in plan
rection that significantly generalizes this process. Rather than apaemory. Rather than providing a single appraisal for the entire
praising events directly, Emile appraises the state of plans in merptan memory, Emile forms numerous local appraisals that are later
ory. Events influence plans indirectly through the activities of theintegrated into the agent's overall emotional state (Section 3.4). For
planner, allowing Emile to disassociate the two functions perexample, Emile appraises the local characteristics of each goal and
formed by construal frames. The relationship between events arsiibgoal in plan memory. The condition extracting rules are con-
an agent's disposition is derived more generally by a generahected to a simple truth-maintenance system, allowing appraisals
purpose planning algorithm. This perspective also allows otheto change as the planner manipulates plans in memory. | discuss
factors besides external events to drive the appraisal process. Rhe derivation of four of these eliciting conditions to give a flavor
example, allowing an agent to sit and think (elaborate its plang)f how plan representations support the appraisal process.

will initiate new appraisals through changes in plan memory. Self: Construal theory allows an agent to reason not just about its

A plan-based perspective also simplifies the second function awn emotions, but the emotions of other agents. The ‘self’ condi-
construal frames - extracting emotion-eliciting conditions. Thoughion specifies whose perspective is being used to form the ap-
these conditions provide a useful structure to the appraisal procegsaisal. For example, if Jack knows (or represents a guess about)
construal theory does not provide much guidance in how to conBteve's plans and goals, Jack can appraise both how Steve’s ac-
pute them (instead, deriving them from domain-specific rules). Byions impact his own plans and goals, as well as how Steve might
basing appraisals on the state of plans in memory, | show how iaterpret Jack's actions.

define ghe.se conditions in terms of the structu.re of p'."’?“ MEMONy ire-self: This condition summarizes if some local characteris-
Thus, Emile replaces a large number of domain-specific constru

'3es of plan memory are desirable to the agent named in the 'self’

. . g . 'Yondition. These characteristics are assessed to be either desirable
mdependent. rules. Domain-specific |nfo.rm.at|on, for the m.ost part0 undesirable. For example, when appraising some subgoal, local
can be resricted to the operator descriptions (the domain theorX aracteristics include whether there is a plan to achieve it, and if

from which plans are qu’ and W.h'Ch we typically need anyway toso, whether there are any threats to this plan. Obviously, the agent
inform planning and action selection.

who formed the subgoal would desire it to be achieved. Since
Construal theory forms appraisals with respect to an agent’s goalsased on plans, rather than events, these characteristics are expec-
social standards (norms of behavior), and preferences (the appegitions (e.g., | believe that | have a successful plan to achieve this
ingness of domain objects). In plan-based appraisal, | define thesabgoal). These expectations can be subsequently confirmed or
terms as relations over plans. Goals correspond to an agent’s tafisconfirmed as evaluated by the next emotion eliciting condition.
level goals as well as any subgoals that arise in the plans devepecifically, a (sub)goal's characteristics are assessed to be desir-
oped to achieve top-level goals. Standards are viewed as coable if some effect in plan memory establishes the (sub)goal and no
straints on behavior (i.e., constraints on ‘socially acceptableintervening effect (possibly) unestablishes it. Otherwise, its con-
plans) and may encode some domain-specific information. Fddition is undesirable.

example, th_e standard “thou shalt not kill" could be representeq [atus The status condition characterizes the state of the expec-
the constraint that plans executed by an agent must not contain 8on underlying a “desire-self’ assessment. Plans allow more

action who's e.ﬁeCt leaves another agent dea(_j. I depa_rt from Coﬂéxibility than a simple binary distinction between confirmation
strual theory with regard to preferences, adopting the view of Laza-

rus (1991) that preferences are encoded in terms of goals: it is n?#d dis-confirmation, however to remain consistent with construal

that Emile prefers to be in a room with a desirable woman. but that €2y | draw a line that seems consistent with Elliott’s intent. A
he has a F())al of mutual affection or self-affirmation SUCI‘,I refer_s.ub)goal's characteristics are appraised to be desirable but uncon-

9 . . Lo P firmed if the (sub)goal has an unthreatened establisher (it is estab-
ences are encoded as utility values associated with goals.

Emile's best friend, that Emile would prefer to be with his friend or the
2In general, construal theory’s encoding of preferencesin terms of objects woman in isolation, but not together. This "non-additivity," | argue, is

is problematic as it suggests such objects are good/bad regardless of con- better explained in terms of plans and goals: Emile's "acquisition” plan is
text. In contradt, it is easy to imagine that if the desirable woman likes threatened by his friend's presence.



lished and no possibly intervening action unestablishes it). This [ Current State \

(at(car,nhome) ) (at(Steve,home))

desire is confirmed once the establishing effect occurs. A (at(dackhome) ) Cat(carhome) ) T prive(SieveBeach) |
(sub)goal’s characteristics are appraised as unconfirmed and unde- (Cat(car,beach) ) (at(Steve,beach))
sirable if the (sub)goal doesn’t have an establisher or the estal

lisher is threatened. This state is confirmed if the probability of Cﬁ(kk'*;n‘z)(gacg ;Iéf:)“home)‘)
generating a plan drops to zero, or the threat occurs, respectively. Cai(Gackgior®) ) ( alcarsiore) )

Evaluation: This specifies if the local plan characteristics contain
a praiseworthy or blameworthy act. This involves reasoning abou

standards of behavior and Emile currently only models a single

M ake-money(Jack)

standard: “thou shalt not introduce threats into someone else’ e [ ] = T
” . . . . : . . ; e-mone at(car,beac
plans.” This is too simplistic as it avoids the issue of intent, but it Top God

is enough to get things started. In terms of the planning mode
described above, this standard is violated if a protection constrair Figure 3: An example of inter-plan threats
associated with an agent's (sug)goal is threatened by an actic

associated with another agent. It is relatively easy to model othgfore, probability assessment can be (and | argue should be) based

standards. For example, it could be considered praiseworthy if ongh one’s current representation of the plans that could bring that

agent proposes an action that achieves another agent's goals.  goal about. Thus we can model the change in probability assess-
ment through cognition (i.e. as the planner works on its goals).

3.2.2 Emotion Classification . - . .

. ] . . . ) ~ The main advantage over Neal Reilly’s approach is that leveraging
Emile uses emotion-eliciting conditions to classify which emotionyt of an explicit plan representation allows more generality in how
arises from an appraisal. Following Ortosy al., emotions are  one computes this dynamic probability. Many planning researchers
defined as relations over emotion-eliciting conditions. For exampaye considered how to compute the probability of goal attainment
ple, the model associates an instance of joy with a character Steyg, plan representations (Russell and Wefald, 1991; Blythe and
if there is an event where Self is Steve, Desire-self is desirable, a%loso, 1996: Onder and Pollack, 1999). In general, the compu-
Status is confirmed. Many, possibly conflicting, appraisals argaton must consider not only the probability that a given plan will

generated simultaneously from plan memory and must be latgfcceed, but also the more problematic question of how likely one
integrated to infer the agent’s overall state. By integrating subsels;n, derive a plan for a given goal or subgoal.

of these appraisals, and Emile agent could ‘contextualize’ its feel- . o
ings: Steve feels happy but is troubled by his plan to go surfing. 1€ current model uses a simpler approach to deriving these prob-
) o abilities based on a strong independence assumption (all joint
Figure 3 extends the example in Figure 1. Steve has now told Jagk,papilities are modeled as the product of their constituent prob-
that he’s taking the car to the beach and Jack has incorporated tjjities). This suffices as a first approximation and greatly simpli-
information into plan memory. The planner's threat detection profies 4 number of equations. It is also clear that people used flawed
cesses recognize a potential goal violation: If Steve takes the Cargfobability models (Tversky and Kahneman, 1983). The probabil-
violates Jack’s constraint that the car stays home till he can takei@ that a goal will be achieved depends on how one intends to
to the store. The appraisal mechanisms make several inferencgsnieve it (current plans), but ultimately the computation grounds
from the characteristics of the 'car at home' goal. Whereas Jack Wg§t in a number of ‘base-probabilities’ that must either be supplied

previously hopeful that this subgoal would be achieved, he is NOWy a domain expert or learned in the course of problem solving.

fearful that it will be violated. Furthermore, Jack now resents Steve i , - .

as he has violated a social standard by threatening his plans. Specifically, one must specq‘y two classes of probabllltlles. .FII’St
one must supply the probability that an effect of an action will be

. achieved if the action is executed. Téxecution probability of a
3.3 Intensity given effect is denoted asReff). Second, one must derive the
Given qualitative appraisals, Emile must assess their intensityprobability that an unplanned for goal can becgssfully achieved
There is fear and there is FEAR, but how to automatically recogémeaning we must both generate a plan and successfully execute
nize the difference? Here too, Emile draws heavily on the explicitt). The unplanned-for probability of a goal is denoted as
plan representation to extend the generality of this computatiorPyyps(goal). Simple models can treat these base-probabilities as
Ortonyet al. propose up to eight intensity variables éach emo- constants. More sophisticated models coatdount for other
tion type (e.g. goal importance, unexpectedness, arousal) aractors. For example, the probability of me getting a date might be
Elliott and Siegal (1993) have continued to expand this list. Foleonditional on if | took a bath that morning, or the time remaining
lowing Neal Reilly (1996) | adopt a much simpler model using twobefore the date. Some of the above mentioned methods can ac-
intensity variables: probability of goal attainment and goal imporcount for such conditional probabilities.
tance. This is sufficient to illustrate the use of plan representatio

Pfhe initial probability assessment of a top-level goal is its base
and can be readily extended to account for other factors. P y P 9

probability. This becomes refined as the planner refines its plans
- . for the goal. The probability model propagates base probabilities
?"3'1 Probability of Goal attainment through the plans in memory using simple rules that key off of
Emile incorporates the view of Oatley and Johnson-Laird and Nedertain syntactic properties of plans. A (sub)goal is considered
Reilly that emotions are related to changes in the perceived probstablished if the planner has identified some effect in plan mem-
ability of goal attainment. Basing intensity on probability has theory that could achieve it. Thistablisher is consideredhreatened
advantage that (almost) everyone agrees on what it means, aféGome other effect — called thlereat — possibly undoes it before
they can (in theory at least) be learned from experience. Furthethe (sub)goal is needed. Thetion associated with an effect has



an execution state (an action may be pending or initiated). Emile's tance of each impacted goal weighted by the change in probability
planning model assumes actions have duration so an action may that attaining the subgoal would have on it:
initiated and its effects observed somewhat later. An effest-is

isfied as long as it is observed to be true in the environment. IMPOr(S)=1m, ,inedS + |mmnns.'c(g)w
gOimpact(s) P(S)
Probability of an effect: P(eff) This captures the notion that difficult to achieve goals are more
IF state(action(eff}) = -Initiated THEN important (i.e. unplanned-for probability is low).

P(eff) = Rx(eff)l 1P(precondition(action(eff))

IF state(action(eff)) = Initiated AND -satisfied(eff) THEN 3.3.3  Emotional Intensity

P(eff) = Ry(eff) The intensity of an appraisal is based on its importance and the
IF state(action(eff)) = Initiated AND satisfied(eff) THEN how the current plans in memory impact the probability of goal

P(eff) =1 achievement. One could augment these variables with other factors
IF state(action(eff)) = Initiated AND -satisfied(eff) THEN (Elliott and Siegal, 1993). To keep the model simple, however, |

P(eff)=0 propose the following intensity rules, which could be subsequently

refined. Emile currently implements only five emotion types:

Probability of a goal/precondition: Pr(goal)
IF -established(goal) THEN .
P(goal) = Re(goal) Intensity oy (goal) = Import(goal)

IF established(goal) AND -threatened(goal) THEN ; — _
P(goal) = P(establisher(goal)) Intensityrear(goal) = Import(goal)[1-P(goal)]

Intensityope(goal) = Import(goal) P(goal)

IF established(goal) AND threatened(goal) THEN Intensitypsrress(goal) = Import(goal)
P(goal) = P(establisher(goal))[1 — P(threat(goal))] + .
PL(,gp(gt)Jal)P((threat(goalgg )l ( (goal)] Intensityancer(goal) = Import(goal ) P(threat)

As with appraisal rules, probability rules are associated with a trutfoP€ arises from a belief that something good might happen. In
maintenance system, updating automatically as plans in memof':;m"e' this translates into the fact that a goal has been established

change. but not yet achieved. The intensity is based on the goal’s impor-
tance and its probability of achievement. Joy arises when some-
3.3.2 Emotional Importance thing good has happened. This translates into the fact that a goal

Goal i ¢ is th d factor infl . tion intensit has been successfully achieved. Intensity is tied to the goal's im-
oa |rlnpor ance Is the second factor influencing émotion intenst Yoortance. Fear arises from a belief that something bad may happen.
A goal's importance to an agent is divided into intrinsic and extrin

. . L . n Emile, this means some goal is unestablished, or its establisher
sic components (following Sloman). Intrinsic importance is the

d (utilit t . ¢ hieving th LA is threatened. Intensity is based on the goal's importance and it's
rewar (u ||y) an“ agen I‘ECEIVE‘"S rom achieving the goal. / robability of failure. Distress arises when some fear has been
agent might view “having money” as an end in itself, and assig

O ST onfirmed. This translates into the fact that a goal has been pre-
intrinsic importance to obtaining it. Goals may also further °the'§/ented from occurring. (It's establishing plan was threatened and
ends (subgoals). A goal’s extrinsic worth relates to how it further

hi h | | X hi i ch . ~~“'dard: don’t introduce threats into other agents’ plans. Anger be-
achieve the goal, etc.). In my view, this syntactic ¢ aracterization s e more intense if the goal is important and the threat is likely

amqunts o a hegrlstlc for assessmg”how muc.h.a gubgogl’t% be realized. A more general treatment of standards would asso-
achievement contributes to the probability of attaining intrinsic

o ) - AR ciate importance with standards as well as goals.
goals. Rather, | explicitly define this contribution in terms of the )
change in the probability of intrinsic goal achievement: the im-This approach can be extended to other emotion types, or made
portance of a subgoal is the sum of the intrinsic importance ofubtler through the introduction of more intensity variables
goals it helps establish, weighted by how much its establishmerfhough see the discussion in the final section). For example, émo-
adds to the probability each of these intrinsic goals will belions such as surprise or relief can be defined in terms of the

achieved. Again, plan representations are key in this computationchange in probability of goal attainment (its derivative with respect
Extrinsic i d d ¢ Fi id to time) as in Neal Reilly's Em. Because Emile explicitly models
xtrinsic importance depends on two factors. First, we must idenp oo Jeacs of planning, its easy to incorporate ‘planning effort

tify all of the intrinsic goals impacted by a subgoal. Second, W& .. 1o equation. as sudaested by Ort
must identify how much the subgoal impacts each of these intrins?(r:] quation, Hag y Orterg).

goals. The set of impacted goals is simply the set of goals with . .

intrinsic importance that are directly or indirectly connected to the3-4 I ntegration and Dynamics

subgoal via plans (in the transitive closure of the establishmermt any moment in time, the appraisal mechanism will have pro-
relation). Computing the probabilistic contribution of the subgoalduced a number of appraisals from the current plan structure. Two
to each impacted goal has been studied in the planning communigiyiestions that remain are how appraisals change over time and
(e.g., Onder and Pollack, 1999). | adopt a much simpler (but ndtow to integrate several (possibly conflicting) assessments.
necessarily accurate) computation that exploits the assumed ind

. ﬁgain, the plan-based view provides a general (albeit partial)
p_en_dence of precondition pr_obabl_lltles assumed above. The eXtr'PﬁodeI of the dynamics of emotion. Whenever plan memory
sic importance of a subgoslis defined as the sum of the impor-

changes, Emile automatically revises its appraisal and probability



assessments (through the actions of the truth maintenance system control to the planning algorithm (as suggested by Damasio). For
that manages these rules). For example, an agent may have an example, one could focus planning effort on the portions of the
important and unestablished goal that leads to an appraisal of fear. plan generating the most intense appraisals. | have also experi-
After some effort the planner discovers a workable plan, causing mented with using the emotional state to alter how the planner
the fear appraisal to retract and a hope appraisa to be asserted. treats interactions between plans (Gratch, 1998). For example, the
The modéd is partial because it may lead to somewhat jarring tran- planner may develop a plan for one goal that defeats a plan for a
sitions and doesn’t address the issue that emotional responses téess important goal. If the agent is experiencing strong negative
to decay over time. It also doesn’t specify how the various anémotions, it may not care about these interactions. However if it is
possibly conflicting appraisals are integrated into an overall emoexperiencing positive emotions, it may try to ensure that both goals
tional state. Finally, it doesn’t specify how to integrate cognitivecan be successfully achieved. This same idea can be applied to
appraisals (those that derive from plans and goals) with other irsocial situations. For example, if I'm angry with another agent, |
fluences on emotion, such as bodily states. might wish to bias my plan generation to defeating their goals.

| draw on Velasquez's (1997) Cathaxis model to mitigate some dh its current incarnation, Emile only learns about the activities of

the issues of dynamics and integration. Cathaxis is inspired hyther agents through perception of their actions, or through com-
ethological and neuroscience theories and has been used to monwinication events, as when Steve tells Jack his plan to go to the
emotional responses in robotic systems. Cathaxis is based on beach. In general, | would like the system to guess the goals and
energy metaphor. Different appraisals act as energy elicitors thptans of other entities in the world through some form of plan rec-

excite or inhibit different emotional states, and decay over time. ognition. Even when agents communicate, there may be ambiguity
use an instantiation of a general class of models that Velasquez their utterances. Clearly, the emotional state could impact the
describes. This stage, unlike the previous ones, requires a numlpdan recognition or disambiguation process. For example, a fearful
of free parameters that don’t have obvious ‘objective’ assignmentagent might assume the worst when choosing among multiple in-
The previous stages result in a set of appraisals associated Wm{pretations. The emotional state pould glso influence probability
different agents and with differing emotional labels (joy, hope2SS€ssment, for example, by allowing a joyful agent to be hope-
etc) and intensities. As a first step, as long as these appraisé?s“ly optimistic when assessing the probability of goal attainment.

persist, Emile decays their intensity by a constant rate. The intésinally, emotional state can bias action selection. For example,
gration model adds these decaying intensities into different buckeRBousseau and Hayes-Roth (1997) describe an approach that views
based on their emotional label. Thus, if one has several separamotion and personality as a point in some multi-dimensional
appraisals of "fear", these are added together into an overall feapace. Actions are assigned to points in this space and an agent
intensity. If one has a model of other sources of excitation (e.gchooses whatever action is closest to the current emotional state.
the influence of hunger) these could be added to the buckets as

v_veII. Collectively, th_ese_ buckets corr(_espond to the current actlva4 ILLUSTRATION

tion vector. The activation vector at tirhés denotedA;. Accord- . ] . )

ing to the Cathaxis model, the activation of a given emotion i&Mile is being applied to the problem of modeling agents that
excited by some emotional states (e.g., joy excites hope) and iRoPulate a military simulator and exhibit realistic emotional re-
hibited by others. These influences can be expressed asnan SPONSes to battlefield situations (building on Hlal., 1997).
matrix, M, wheren is the number of emotional labels and the di- T.h's Work_ IS quite p(ell_ml,nary SO I deSCT'.b.e an ?rt'f'f:'al applica-
agonal elements have a value of zero. For examigse=-0.5 tion th_at |Ilustrate_s Emile’s basic capablllt_les. I've incorporated
corresponds to the notion that joy has a modest negative influen lle into a version of Steve (a pedagogical agent developed by

on fear. The overall intensity of each emotion at tintepresented ickel and_Joh_nso_n, 1998) by, in essence, removing Steve’s brain
in vector forme, is defined as: and replacing it with the plan based model. The Steve software

provides a representation of a body, including a model of percep-
Et+l =a [EEt +(1—a XAH1+M xEt] tion, motor commands, and a text-to-speech interface.
. The following annotated exchange comes from a sample interac-
The parameteu_controls t_he smoothness of tra_nsmqns. AS_ a Iasrtion between two Emile agents who have been given differing
step, the intensity vectd is passed through a sigmoid function to o415 domain knowledge, and personality parameters. Jack’s goal
map the emotional state to a value from zero to one. This normak 5 make money and has a conscientious personality. Steve’s

ized value is then used to influence behavior. goal is to surf, and tends to be rude. Both develop different plans
_ _ but have to contend with a shared resource. The model of how
3.5 Influencing Behavior personality influences planning and how discourse is organized is

An agent's current emotional state can influence behavior by aRutside the scope of this paper but is discussed in Gratch (1999).
tering its communication, planning, and action selection. commuFigure 4 illustrates a snapshot of the visual presentation, including

nication may be altered in several ways. In the application | neX¢ach agent's current emotional state and plan memory.
describe, the emotional state is used to select gestures, facial ok
pressions and to alter speech generation (based on a model '
Cahn, 1990). Modeling the emotional state of other agents can
guide discourse between agents. For example, an agent might azieve: | want to catch-some-wavékooks concerned, scratches

another agent what's wrong if they unexpectedly frown. head, and continues to look concerned. Surfing is important to

. . . Steve and he cannot devise a plan.
The emotional state can influence the plan generation process in plan]

several ways as well. Appraisals can be used to provide search

want to make-some-big-moneyLooks concerned,
atches his head, then, after devising a plan looks hopeful ]
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Figure 4. An exchange between two Emile agents

Jack: [Perceives Steve's emmtial state and generates an infor 5 SUMMARY

mation request.]Hey Steve, what's wrong? Obviously, several important issues are finessed in this demonstra-
Steve:[Locates the appraisal generating the most intense negative  tion. The agents do not understand English. Rather they communi-
emotional excitation. Communicates the associated plan fragment ~ cate symbolic representations of plans and a simple generation

in a distressed tone of voice] | want to catch some waves but can’t routine converts this to English-like speech for the benefit of the
find any good breakers. observer. The agents do not have general emotion recognition

Jack:[Incorporates Steve's plan fragment into plan memor andcapabilities (as in Picard, 1997). Rather, they directly perceive
) P P g P y high-level predicates likexpression(Steve, Anger).

locates relevant information. Jack has knowledge of a wave re-
port that establishes Steve’s blockergoal] Steve, does it help More fundamentally, the treatment of appraisal is too simplistic for

that someone did say there’s some great waves near the pier? ~ several potential applications. The model does a reasonable job of
accounting for emotions that arise from a concrete task. It provides

a less than adequate account of interpersonal emotions (where one
needs to factor in issues like intent or locus-of control), "life goals"
Jack:[Perceives Steve'shange in expression andeks to confirm  (where the connection between events and goals is rather tenuous),
his expectation that the information he provided helped St&ge.] and rich coping strategies (as in dehumanizing someone you have
that information helped? wronged to mitigate one's guilt). | am currently considering pro-

Steve: [Handles Jack’s information requestyes Jack. | planto ~ Posals by Lazarusl991), who uses a two-stage appraisal process
drive the car to the beach, then | plan to surf-my-brains-out. to account for such phenomena.

Jack: [Incorporates Steve’s plan fragmeantd finds a conflict with ~ Nevertheless, the system_is still quite flexible. Leveraging off of a _
his own plans. Based on personality, Jack attempts to negotiateRi@nner's general reasoning eases some of the knowledge engi-
fair solution.] Wait a second. Our plans conflict. | plan to drive ~ neering complexities. The discourse and personality knowledge is
the car to the quicky-mart then | plan to buy &l ottery-ticket. also fairly general. Thus, Jack tells Steve about the wave report
, . because of a general rule that states: If you are friends with another
Steve: _[Incorp_orates Jack's plan frag_ment and recognizes theagent, and you have information that is relevant to them, and you
same mterac_tlon. Based on per_sonallty m(_)del, Ste\m)mels’to do not believe that they are aware of that information, than com-
interaction differently. Steve exits stage righitgter dude, 'm 1 nicate the information. The assessment of relevance is based on
driving the car to the beach. a general model (desJardin and Wolverton, 1998).
Jack:[Perceives that car has departed without him. Looks angry.
Saysin angry voice:] | want to kill-my-roommate.

Steve:[Incorporates the communicated plan fragment. Completes
a plan to go surfing and looks hopeful .]



More importantly, by taking a plan-based perspective, Emile notHudlica, E., & Billingsley, J., 1999. Representing behavior
only gains the generality discussed in this paper, but it also opefjgoderators in military human performance mod8iCon./ on

the way to integrating the system with a large body of technique omputer Generated Forces and Behavioral Representation.

that have been developed for plan representations. Thus, it is regohnson, L., Rickel, Jo. & Lester, J., 2000. Animated peda-
tively straightforward to augment Emile with the ability to provide 909ical agents: face-to-face interaction in interactive learning
concise descriptions of its plans (Young, 1999), recognize th(ignnvwonments. International Journal ofArtificial Intelligence

lans of other agents (Lesh and Etzioni, 1995), as well as au mentEducation. Forthcomming
b 9 ' ' g Knoblock, C. 1995. Planning, executing, sensing, and replan-

its plz_;\nning cgpabilities with more ef'fic_ient or more expressi\(ening for information gathering, 1JCAI95.
planning algorithms as they become available. Clearly, a planning ) )
approach is not a cure-all. Planning algorithms must still wrestié&azarus, R.S. 1991Emotion and Adaptation. Oxford Press.

with issues of efficiency and they don’'t provide any insight onLesh, N., and Etzioni, O. 1995. A sound and fast goal recog-
non-cognitive influences on emotional state. Nonetheless, plamizer. International Joint Conference on Al.

based models like Emile have the potential to augment educatior]_aéster’ J.C., Towns, S.G.FitzGerald, P.J. 1999 Achieving

software such as tutoring systems and training simulationsaffective Impact: Visual Emotive Communication in Lifelike
Hopefully as this project continues, we will have a better sense @edagogical Agentdnternational Journal of Al in Education,

the extent that this potential may be realized. 10 (3-4) pp. 278-291.
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