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ABSTRACT
Conventional multimedia annotation/retrieval systems such
as Normalized Continuous Relevance Model (NormCRM) [7]
require a fully labeled training data for a good performance.
Active Learning, by determining an order for labeling the
training data, allows for a good performance even before
the training data is fully annotated. In this work we pro-
pose an active learning algorithm, which combines a novel
measure of sample uncertainty with a novel clustering-based
approach for determining sample density and diversity and
integrate it with NormCRM. The clusters are also itera-
tively refined to ensure both feature and label-level agree-
ment among samples. We show that our approach outper-
forms multiple baselines both on a new, open dataset and
on the popular TRECVID corpus at both the tasks of an-
notation and text-based retrieval of videos.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Clustering,
Retrieval Models; H.5.1 [Multimedia Information Sys-
tems]: Video (e.g., tape, disk, DVI)

Keywords
Active Learning; Clustering; Uncertainty; Informativeness

1. INTRODUCTION
The ubiquity of multimedia content in our daily lives re-

quires effective tools for multimedia annotation and retrieval.
Multimedia annotation tools automatically annotate image
or video content (samples) with text labels specifying differ-
ent objects, events, etc. called concepts. A typical multime-
dia retrieval system, on the other hand, ranks the multime-
dia samples based on their relevance to the user’s text query.
Generally, the retrieval is done by comparing the query to
the sample concept labels. Thus an exhaustive annotation of
the sample is often a pre-requisite for such retrieval systems.
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Normalized Continuous Relevance Model (NormCRM) [7]
is an example of a technique that allows for a direct retrieval
of samples without having to annotate them. However train-
ing this model (like many others), requires fully annotated
data. The human-effort costs of concept annotation is sig-
nificant and this raises an interesting research question: is
there a way to achieve a decent annotation/retrieval perfor-
mance without requiring a fully annotated training dataset?

The community has taken to Active Learning to address
this issue [5]. Active Learning, is a machine learning tech-
nique that interactively selects unlabeled samples and queries
an oracle to provide labels for the samples. Such a system
outputs an order of labeling the samples such that a de-
cent annotation/retrieval performance is achieved before all
unlabeled data is queried. A typical active learning sys-
tem consists of a learning engine, which does the annota-
tion/retrieval and a sample selection engine, responsible for
determining the labeling order of the unlabeled samples.

In this work, we use NormCRM as the learning engine
and propose a novel sample selection algorithm. We call the
system CRMActive and apply it for video annotation and
retrieval tasks. The algorithm uses a measure of informa-
tiveness for ranking unlabeled samples during active learn-
ing. The informativeness combines a new measure of sample
uncertainty with a novel cluster-refinement approach for de-
termining sample density and diversity. Our experiments
show CRMActive outperforms a state-of-the-art baseline.

2. PROPOSED APPROACH
Normalized Continuous Relevance Model (NormCRM) is

a generative annotation/retrieval technique [7]. Let’s con-
sider a video sample I defined by a M -dimensional feature
vector r and V be the vocabulary of all concept labels (each
concept 1 word long). NormCRM defines conditional prob-
ability for using a label word w ∈ V to annotate the video I,
as P (w|r) = P (w, r)/P (r). Lavrenko et al. [7] suggest that
for annotation we pick the top-k words with highest P (wi|r),
i = 1, 2, ..., k. For the task of retrieval using a query word w,
we pick the top-t videos with highest P (w|ri), i = 1, 2, ..., t.
In both cases, the joint-distribution of words and features
P (w, r) is estimated from the training data by

P (w, r) =
∑
J∈T

(P (J)
∏
w∈w

P (w|J)

M∏
ri∈r,i=1

P (ri|J)),

where T is the set of training video samples and w is the set
of words in question.



However, NormCRM requires a fully annotated data for
training. To address this, we propose an Active Learning
approach that combines NormCRM with a sample selection
engine. The engine selects samples for annotation based
on their informativeness, which we calculate by combining
measures of sample uncertainty, density and diversity.

Sample Uncertainty is a measure of how uncertain the
learning engine is about the sample labels. Entropy and
distance of the sample from the decision boundary have been
explored as sample uncertainty measures [9, 12]. However,
these techniques do not capture the ambiguity between the
relevant labels and the irrelevant ones for NormCRM-based
models. Hence, we define a novel measure of uncertainty of
an unlabeled sample (a M-dimensional vector x) as:

unct(x) =
1

P (w1|x)− P (wk+1|x)
, (1)

where w1, ..., wk (in decreasing order of relevance) are the
top-k most relevant labels assigned to x. The denominator
in Eq. 1 gives a measure of the gap (distance) between the
posterior probabilities of the most relevant label and the first
irrelevant one and can thus be used to obtain uncertainty.

Sample Density is a measure of how likely a certain sample
is to occur given the underlying distribution that generated
the data while a high Sample Diversity score ensures that the
samples chosen for labeling aren’t too similar to each other.
To compute sample density and diversity, we start by clus-
tering all samples in the training data X = {x1,x2, ...,xN},
consisting of the initial labeled training data L and the unla-
beled training data U (X = L∪U). We first represent every
sample in the visual feature space and perform X-Means
clustering. X-Means is a variant of K-Means, which auto-
matically picks the parameter K by comparing the Bayesian
Information Criterion (BIC) scores of the clustering system
for a range of values of K and picking the one with an opti-
mal score [8]. We then check if every labeled sample shares
a concept with at least one other labeled sample in the same
cluster. If we find a sample that shares no labels, we create
a new cluster for it and redistribute unlabeled samples from
the original cluster between the old and the new clusters
using 2-Means.

In order to measure the extent of agreement among the
labeled samples in a cluster, both in terms of their visual
features and their labels, we use Empirical Entropy [3]. For
a cluster C, it is defined as:

hC = − 1

n

n∑
i=1

log(
1

n

n∑
j=1

K(xi,xj)), (2)

where there are n > 1 labeled samples in the cluster and
K(., .) is a kernel function. A kernel is a mapping : χ×χ→
R, where χ is the input space. A kernel may be considered
as a measure of similarity. For continuous input spaces, such
as video features, a Gaussian kernel is often used [13]:

KGauss(x,x
′) = exp(−||x− x′||2/2σ2),

where x,x′ ∈ X . For discrete input spaces, such as the space
of labels, a Bernoulli product kernel may be used [6]:

KBern(x,x′) =

D∏
d=1

[(γ
xd
d ×γ

x′
d

d )×(1−γd)(1−xd)×(1−γd)(1−x′
d)],

where x,x′ ∈ {0, 1}D, xd, x′d shows the presence (1) or ab-
sence (0) of the dth concept and γd is the probability of the

dth concept occurring. In order to capture the notion of sam-
ple similarity both from the visual and label perspectives, we
define a new kernel as a combination of the two [4]:

K(x,x′) = KBern(x,x′)×KGauss(x,x
′)

Once we clustered the sample videos, we compute the sam-
ple density of an unlabeled sample x in cluster C as

den(x) =
p(x)

max
xi∈X

p(xi)
,

where p(x) is the kernel density estimate:

p(x) =
1

|C|
∑
xi∈C

KGauss(x,xi)

and |C| is the total number of samples in cluster C.

Algorithm 1 CRMActive

Input: The set L = {l1, l2, ..., lP }, their labels Y =

{y1,y2, ...,yP } where yi ∈ {0, 1}D, the set U = {u1,u2, ...,uQ}
and K :- nos. of samples to pick in a batch.
Output: The set L, containing the order in which the unlabeled
samples are labeled.
Algorithm:
Perform X-Means, using the visual features, on the set of L ∪ U
samples. Say, T be the optimal number of clusters and let rep(Ci)
denote the representative sample of cluster Ci.
Check if ∀lj , lj ∈ L, lj ∈ Ck, lj shares ≥ 1 concept with at least 1
labeled sample in Ck, otherwise call Redistribute(Ck, lj).
hworst := NIL // Initialize hworst

while U 6= φ do
Train NormCRM using L, evaluate model on test set.
Update hworst to max. entropy value among all clusters with

at least 2 labeled samples
Compute Info(xi), ∀xi ∈ U
Pick top-K samples, Lab = {a1, a2, ..., aK} for labeling.
L := L ∪ Lab,U := U − Lab // Update the lists
// Now refine the clusters based on newly labeled samples
for j = 1, 2, ..., K do

if hworst = NIL then // If hworst is not set
Check if sample aj , aj ∈ Ck shares ≥ 1 concept with at

least 1 labeled sample in Ck, otherwise call Redistribute(Ck, aj).
else// Determine which sample in Ck to knock out

Compute hCk , where aj ∈ Ck //Ck > 1 labeled sample

if hCk > hworst then // Exceeds threshold
for r = 1, 2, ..., # labeled samples in Ck do

C′
k := Ck − rth labeled sample in Ck

if hC′
k ≤ hworst then // Meets threshold

W := rth labeled sample
Redistribute(Ck,W) // Split cluster
break

Our definition of the sample density, though similar to Zha
et al. [13], differs by using clusters, which are refined (see
later in this section), to determine the neighboring samples
of x rather than a static set of its k-nearest neighbors.

procedure Redistribute(Samples in Ck, a)
Input: Set of all samples in cluster Ck & the seed sample a
Output: Updated set of clusters
Algorithm:
Create a new cluster, C′

k, with a as the centroid.
Perform 2-Means on the unlabeled samples of cluster Ck with

rep(Ck) and a as the two initial cluster centroids.
Update rep(C′

k) as the representative sample of cluster C′
k.

Determine the centroid of the labeled and the remaining unla-
beled samples in Ck and similarly update rep(Ck).

To compute the sample diversity, we use the angular dis-
tance between features similar to Brinker’s technique [2].
However we choose only the representative samples of ev-
ery cluster (i.e. the sample closest to the cluster centroid),



rep(C), rather than all the samples in X , to gain speed.
Diversity of the unlabeled samples is thus, defined as:

div(x) = 1−max
xi∈S

KGauss(x,xi)√
KGauss(x,x)×KGauss(xi,xi)

,

where S is the set of all T cluster representatives S =
{rep(C1), rep(C2), ..., rep(CT )}. We combine these measures
to define the informativeness of an unlabeled sample x:

Info(x) = λ1 × unct(x) + λ2 × den(x) + λ3 × div(x).

We rank the unlabeled samples in the order of decreasing
Info(x) score to select a batch of top-K samples for labeling.
While Zha et al. use a combination of sample local structure,
density, diversity, and relevance to score the samples [13],
our approach differs, most notably, in the use of clustering
and the novel uncertainty measure.

Equation 2 shows that a cluster with low inter-sample dis-
agreement has a low entropy. As more samples in a cluster
C are labeled, the disagreement among its labeled samples
increases. This changes the empirical entropy hC in a mono-
tonically non-decreasing fashion. We refine the clusters by
doing the following: After each labeling batch the algorithm
finds the cluster with the worst entropy and uses its hC as
the threshold to decide whether to keep or split a cluster
during the next batch. This is repeated for successive itera-
tions. If a newly labeled sample increases the cluster entropy
beyond the batch threshold, then we use grid search to find
the first sample without which the cluster meets the entropy
threshold. We create a new cluster for the sample and rear-
range the unlabeled samples via 2-Means (see Algorithm. 1).

3. EXPERIMENTS
We conduct two sets of experiments. In each set, the

dataset is divided into training and test subsets. For the first
set of experiments, the task of an algorithm is to annotate
a test video with a subset of concepts from the vocabulary.
The algorithm starts with the training data set divided into
labeled (L) and unlabeled (U) parts. Initially only a small
subset of the training set is considered to be labeled. The al-
gorithm uses this information to annotate the test set with
concept labels. For the next step, the algorithm selects a
batch of K unlabeled training samples, we reveal the labels
for the selected samples, and the algorithm repeats the an-
notation task. For every iteration, we report the average
precision (AP) scores on the test-set for each concept.

In the second set of experiments, an algorithm ranks the
test samples by their similarity to a single word query with-
out annotating the test samples. Again, the algorithm starts
with the training dataset divided into labeled and unlabeled
parts. For each concept label in the vocabulary, the al-
gorithm ranks the test samples by their similarity to the
concept. It then selects a batch of K unlabeled training
samples, we reveal the labels for the selected samples, and
the algorithm repeats the ranking task. For each round, we
report the AP scores for the top 5 images/videos.

3.1 Datasets
TRECVID 2007: The TRECVID 2007 video corpus has

110 short video clips [1] . Each frame in every video is anno-
tated with at most 16 concept labels selected from a set of 36
concepts such as “crowd”, “building”, “airplane”, etc. This
corpus has been used extensively in video annotation exper-
iments [13]. For every frame we compute a 225-dimensional

feature vector (color moment, edge orientation histogram,
wavelet PWTTWT texture) as described in the work of Zha
et al. [13]. We test our model on the frames from 13 ran-
domly selected videos and we use the rest of the data (frames
from 97 videos) for training. We selected 4000 frames from
the training data as the initial set of labeled samples L, con-
taining at least 1 positive example of every concept. We set,
batch size, K to 2400.

USC SmartBody: SmartBody is an open virtual char-
acter animation platform. It ships with a library of 274
animations such as walking, pointing, eye-brow raising, lip
corner stretching, etc. [11]. The animations are defined on a
3D skeleton of 119 individual joints and the joints 3D coordi-
nates are available from the SmartBody API. We annotated
each animation using at most 6 concept labels from a set
of 30 labels such as “Legs”, “Arms”, “Face”, “Left”, “Right”,
etc. The X-axis of Figure 1 gives an exhaustive list of all
the concepts. We annotated the animations at the video
clip level (i.e. the individual frames are not annotated).
We handpicked 9 out of 119 joints (neck, left(L)/right(R)
shoulders, L/R elbows, L/R hip joints, and L/R knees). For
each frame in an animation we calculated the skeleton an-
gles at these joints [10] and encoded the differences between
the minimum and the maximum values for the angles dur-
ing the whole animation sequence as a 9-dimensional feature
vector. The dataset will be available at our web site1. We
randomly selected 24 animations for testing and we use the
rest of the data (250 animations) for training. We selected
40 animations from the training data as the initial set of
labeled samples L, containing at least one positive example
of each concept. We now set, batch size, K to 23.

3.2 Baseline Systems
For the annotation task we compare CRMActive with two

methods. The first one is an active learning system that
uses NormCRM as the learning engine while the samples
are selected randomly. The results are averaged over 3 runs
with different random seeds. The second baseline is the
method proposed by Zha et al. (state-of-the-art) [13]. We
determine the two NormCRM smoothing parameters λ and
β [7] and the validated parameters of the second baseline
using 10-fold cross-validation on the first annotation batch.
These values are then fixed for successive rounds. The val-
ues of the fixed parameters for the second baseline are reused
from the paper [13]. For CRMActive, probability γd, is re-
estimated from the labeled training data on each annota-
tion batch and the weighting parameters λi = 1

3
, i = 1..3.

Finally, both NormCRM and CRMActive work by ranking
annotation concepts, so we assign the top 16 concepts for
TRECVID 2007 and the top 6 for SmartBody as relevant.
For direct retrieval, CRMActive is compared only with the
first baseline discussed above, since no prior work is known.

3.3 Results and Discussion
The results in Table 1 show that the NormCRM-based

models, i.e. the first baseline (NormCRM) and CRMActive,
generally perform better than the Zha et al. approach for
annotation. We believe that this is because NormCRM cap-
tures the inter-label correlation, while Zha et al. trains in-
dividual classifiers for every concept. Also, the NormCRM-
based systems jointly model the labels and features and it

1http://nld.ict.usc.edu/group/corpora/smartbody-annot
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Table 1: AP scores (on Y-axis) for annotation on
TRECVID (a), SmartBody (b) and AP scores (on
Y-axis) for retrieval of top-5 videos on TRECVID
(c), SmartBody (d).

0

0.2

0.4

0.6

0.8

Le
gs

Ar
m

s

R
ai

se Le
ft

R
un

C
irc

le

Sh
ld

er

Sl
ow

Sh
ru

g

H
ig

h

R
ig

ht

H
ea

dt
ur

n

Be
at

Fa
st

W
he

n

Be
nd

H
ea

dt
ilt

Fa
ce

C
ho

p

W
al

k

M
ou

th

Ey
es

Po
in

t

Pl
ay

D
an

ce M
e

Sh
ow

_u

St
ra

fe

Tu
rn

Be
hi

ndco
nc

ep
t p

re
ci

si
on

concepts

Zha et al. R0 NormCRM R0 CRMActive R0 Zha et al. R7 NormCRM R7 CRMActive R7

Figure 1: Precision scores for annotation of individ-
ual concepts of SmartBody for Round 0 (R0) and
Round 7 (R7) of active learning.

allows them to capture the patterns from both these perspec-
tives. CRMActive trains a more robust model early on by se-
lecting the more informative samples; it results in its mono-
tonic non-decreasing AP score for annotation/retrieval. This
is in contrast with the occasional dips in the AP scores of the
random baseline, which might potentially select some of the
relatively noisy training samples early on. Figure 2 shows
a sample annotation result on the SmartBody dataset using
CRMActive. We see that the model gets all top 3 labels
correct at Round 7, before the data is fully annotated.

Figure 1 shows the annotation performance of all the mod-
els for the individual concepts of the SmartBody dataset over
two rounds (initial and towards the end). The concept scores
for the NormCRM are obtained by averaging over the results
of 3 runs. We notice a performance gain for all the models
across most concepts over the two rounds, indicating that
more training data helps. We also notice that CRMActive
performs best on all concepts. All models do well on con-
cepts with many positive examples (e.g., Legs) or complex
concepts (e.g., Dance).

4. CONCLUSIONS
In this work, we proposed a sample selection algorithm

based on active learning by combining a novel measure of
sample uncertainty and a novel cluster-refinement approach
for determining sample density and diversity. This approach

is shown to outperform multiple baselines at both annota-
tion and retrieval tasks. Our experiments also reveal the
pros of using a generative approach of jointly modeling both
the features and labels. CRMActive is thus shown to be a
promising active learning approach to explore.

Figure 2: A sample annotation result on SmartBody
dataset, showing the top-6 annotated labels by CR-
MActive after Round 0 and Round 7.
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