
A Platform for Building Mobile Virtual Humans

Andrew W. Feng?1, Anton Leuski??1, Stacy Marsella? ? ?2, Dan Casas†1,
Sin-Hwa Kang‡1, and Ari Shapiro§1

1 USC Institute for Creative Technologies
2 Northeastern University

Abstract. We describe an authoring framework for developing virtual
humans on mobile applications. The framework abstracts many elements
needed for virtual human generation and interaction, such as the rapid
development of nonverbal behavior, lip syncing to speech, dialogue man-
agement, access to speech transcription services, and access to mobile
sensors such as the microphone, gyroscope and location components.

Keywords: system, mobile, virtual human, chat

1 Motivation

Virtual Humans (VH) have been shown to be effective elements of training simu-
lations, interactive entertainment and other virtual experiences. Non-embodied,
audio-based, or text-only agents have been well explored in the research com-
munity. A 3D embodied virtual human significantly expands the amount of in-
formation that can be communicated to a user over an audio-only or text-based
interaction. Virtual humans can potentially display non-verbal behavior similar
to humans in face-to-face interactions. However, developing a 3D virtual human
can be complicated due to the need to model both visual and behavioral elements
of human-to-virtual human interaction. For example, a conversational virtual hu-
man might need to keep track of the dialogue turn, exhibit both speaking and
listening behavior, and be able to express emotions non-verbally.

Complex virtual humans are typically found in museums, specialized training
installations, and similar settings. In many cases, a virtual human resides in a
particular place, and is often only available under formal or brief encounters.
Thus encounters with virtual humans are limited in place, interaction and time.
In addition, constructing a virtual human is a complex, multi-disciplinary effort.
Thus research into pervasive aspects of virtual humans have been limited by the
few venues in which they can appear, and the complexity of their construction.

? feng@ict.usc.edu
?? leuski@ict.usc.edu

? ? ? marsella@neu.edu
† dan.casas@gmail.com
‡ kang@ict.usc.edu
§ shapiro@ict.usc.edu



2 Feng et al

Studies of virtual humans and their impact on real humans are restricted to
expensive, location-specific, and domain-specific interactions.

Mobile platforms such as smartphones and tablets are a pervasive technology,
and are now capable of running the software and hardware components that
are necessary for a convincing, interactive Virtual Human. Potentially, a virtual
human running on a mobile platform changes three significant relationships with
real humans: (1) a mobile virtual human can be accessible to a mobile user at
any time, (2) a mobile virtual human can be accessible to a mobile user at any
location, and (3) the group of real users who could potentially interact with
a mobile virtual human is broadened to all people with a smartphone. Thus,
rich, long-term interactions with a broad range of types of people would now be
possible on mobile devices, through a broad set of domains.

While it is possible to create a virtual human application on a mobile device,
the effort to do so is very large and requires experts from many disciplines. By
providing a mechanism for non-experts to assemble various functionality related
to virtual humans and mobile platforms, we extend the domain of virtual human
applications to a larger audience than would ordinarily be possible. Rather than
requiring several experts from artificial intelligence, graphics, and programming
to assemble a single application, we anticipate that a mobile application author
could construct a virtual human application without any external assistance.
Thus researchers from the social and behavioral sciences will be able to access
and manipulate virtual human technology on mobile devices.

In this paper, we further describe an authoring framework for developing
virtual humans on mobile applications. The framework abstracts many elements
needed for virtual human generation and interaction, such as the rapid develop-
ment of nonverbal behavior, lip syncing to speech, dialogue management, access
to speech transcription services, and access to mobile sensors such as the mi-
crophone, gyroscope and location components. We describe our experience in
building virtual humans on mobile devices, and how we have attempted to ab-
stract key features into a singular platform that allows the rapid production of
similar mobile apps.

Our platform differs from desktop-based virtual human systems in that: 1) it
leverages commonly used mobile capabilities, such as the location, gyroscope and
microphone sensors, 2) it runs on mobile platforms, such as Android, and does
not require a separate mobile application to be built, and 3) it utilizes an Appli-
cation Programming Interface (API) that allows the author to generate a virtual
human application through the use of run-time scripts (using Python [17]), that
allows access to mobile capability as well as to virtual human capability.

2 Related Work

Many mobile applications have been developed that use 3D characters, and some
mobile applications have been developed as embodied virtual humans. However,
there have been very few mobile platforms specifically designed for virtual human
research. A number of virtual human systems designed for desktop use include



Mobile Virtual Humans 3

Greta [15], Elckerlyc [21], EMBR [6] and SmartBody [18] which all use the Be-
havioral Markup Language [8]. In addition, there are a number of other systems
that use different behavioral specifications, such as BEAT [3] and Maxine [1]. A
system that integrates many components for virtual human development can be
found in [5]. Our framework differs in that we seek rapid authoring for a specific
set of capability for mobile devices.

There are numerous studies that use mobile platforms. A description of vir-
tual humans on personal digital assistants is found in [4]. A study of animated
characters on a handheld device explored different modalities of agents, such
as text, static image, or animated character [2]. More recently, [16] investigates
the use of a 3D facial avatar for chat applications. Closest to our work, is the
description of the Elckerlyc BML realizer for mobile systems [7], which allows
the embodiement of a 2D character on an Android system using the behavioral
capabilities of Elckerlyc. Our platform differs in that (1) it uses 3D, not 2D, char-
acters, which allow for a greater potential for nonverbal communication, and (2)
it is capable of rendering high-fidelity (photorealistic) virtual humans, (3) our
platform provides a set of interfaces to the sensors and to dialogue management,
and (4) finally, in contrast to custom systems like [11], we focus on unifying the
overall tool set as a platform for building different virtual humans.

3 Experience Developing Mobile Virtual Humans

Our architecture is inspired from our past experience of developing virtual hu-
mans on mobile devices. We describe some of these experiences and demon-
state how they inform our mobile virtual human architecture. Code examples
for the following sections can be found at http://smartbody.ict.usc.edu/

mobilevirtualhumans/.

Development environments for building mobile apps can require nu-
merous tool sets and build environments and has a slow iteration
speed. A mobile platform development typically requires a set of tools that is
specialized and sometime unfamiliar to the mobile application developer.

In addition, the iteration time for a typical mobile application is very slow.
When iteratively developing a mobile application, the app either has to be copied
to a mobile device, or it has to run inside of a simulator, which can be slow,
particularly when 3D graphics are used.

In this platform, we simplify such a process by providing an executable app
that is configured through the use of a set of runtime-interpreted scripts (in the
Python scripting language). By building the executable (the “vanilla app”), we
eliminate the need to build the mobile application separately. We abstract the
elements needed to configure that application into a set of APIs. By allowing the
application to be configured by scripts, an application author can iterate over
the changes by simply running the application directly on the device.



4 Feng et al

Game engines have a steep learning curve and are not designed for
conversational virtual characters Modern game engines contain excellent
tools for authoring 3D content. However, the use of a 3D game engine requires
a learning curve to understand its architecture and design, as well as its build
processes. In addition, game engines typically employ very generic animation
capabilities; they allow for the playback, blending and overlay of animations,
but typically do not provide fine-grain control over subtle human emotion and
expression, such as gazing and gesturing.

We base our framework on an existing animation system and BML [8] real-
izer that employs a large number of conversational capabilities that the virtual
human community has identified through research, [18], including automated
lip syncing to speech [22]. The learning curve for our platform is not based on
knowledge of a game engine API, but rather on a set of APIs targeted to the use
of virtual human development: a Virtual Human API (Section 4) which controls
characters and their behaviors, an Interface and Sensor API (Section 4) which
controls widgets and sensors, a Rendering API (Section 4) which controls the
appearance of the app, a Dialogue Management API (Section 4) which controls
the dialogue turn, and a Communication API (Section 4) which controls the
communication between the device and other systems.

Character configuration is time consuming and complicated. Regard-
less of the capabilities of the underlying engine or platform, an effective virtual
character needs to be configurated properly to perform its functions related to
communication and behavior. This requires a detailed face rig, a set of com-
patible gestures, and a means to lip sync to speech. Typical 3D characters that
can be acquired through online marketplaces do not typically have complicated
facial rigs, and there are very few standards for facial rigs, emotional expression
or lip syncing.

In this platform, we provide a small set of characters of varying gender and
age that are designed to be able to express varying emotions and nuance through
a set of controls that allow arbitrary combinations of facial poses over time. In
addition, our platform provides high-fidelity lip syncing automatically both from
text-to-speech, as well as from recorded voice. Our platform also provides a set of
male and female gestures that include a large set of deictic (pointing), metaphoric
and beat gestures that are suitable for many conversational situations. Thus,
the creation of a character that includes many conversational capabilities can be
done with just a few lines of code.

Nonverbal behavior can be difficult to generate. In developing virtual
human applications, one of the key lessons that we have learned is that hand
crafting nonverbal behavior is time consuming and requires considerable knowl-
edge of the particulars of when nonverbal behavior is exhibited, as well as an
strong aesthetic sense for the physical manner of that behavior. At the same
time, social psychology as well as the virtual human community has extensively



Mobile Virtual Humans 5

documented the powerful impact behaviors have on face-to-face interaction be-
tween humans as well as between humans and virtual humans. Leaving out these
behaviors is not a viable option. Further, we have known going back to the pi-
oneering work of film director Lev Kuleshov in the early 1900s on what is now
studied as the Kuleshov effect that people will falsely infer attitudes and emo-
tions in the absence of any behavioral signals. For these reasons, researchers
and application developers have crafted a range of tools to help automate this
process, including BEAT [3], NVBG [9] and Cerebella [13].

Over the process of using these tools in applications, developers have acquired
considerable practical expertise. For example, we noticed early on that people
tended to slightly nod their heads on initial noun phrases and verb phrases.
Automating this behavior in virtual humans quite remarkably brings otherwise
seemingly dead characters to life [9]. Later machine learning research [10] bore
out this correlation in human data. Further, application developers often wanted
very simple mechanisms that could specialize the performance of these tools
on specific scenarios and characters, by, for example, triggering specific behav-
iors when the character spoke specific words or phrases. This functionality was
not novel, all of the aforementioned tools had this capability. What developers
wanted were simple mechanisms that did not require them to have expertise in
a tool’s internal workings. Based on both knowledge of the challenges of crafting
nonverbal behavior, its importance as well as the practical expertise garnered
over the years, we have chosen to incorporate a nonverbal behavior generator
based on a few basic principles tailored to application developer use: parsing an
utterance, breaking it down into syntactic and lexical elements that would allow
an author to simply uses a text file that would provide a map between these
elements and behaviors.

Voice-based interfaces are familiar to mobile device users. A speech-
based interface is important for many mobile applications that require conver-
sations with virtual humans. The Automatic Speech Recognition (ASR) module
of a Virtual Human system, which converts the audio of the user’s speech into
machine readable text, has to process the audio in real time and be robust to
different acoustic conditions, noise levels, and speaker accents. We leverage the
Google Speech API to allow easy authoring of speech capture.

Easy sensor access is needed to leverage the unique nature of a mobile
device. Mobile devices provide an array of sensors that can be used in virtual
human systems, including orientation, position and microphone sensors. The use
of such sensors represents one of the main differentiators between mobile and
desktop applications. For example, a mobile device can have a location sensor,
a gyroscopic sensor, an accelerometer sensor, and a camera sensor.

We simplify access to various sensors through the use of the Interface and
Sensor API. While not part of our mobile platform, we anticipate that easy
access to a camera-based sensors that reports facial expressions would also be



6 Feng et al

useful. Such access would allow, for example, the acquisition of facial expressions
from the mobile user in real time.

Language Processing. Natural Language Understanding (NLU) and Dialogue
Management (DM) form the focal point where the different sensor inputs come
together with the speech recognition output and the system decides how to
respond to the user’s actions.

There are many NLU approaches ranging from simple keyword spotting to
detailed semantic parsing [20]. The main goal is the same – it is to ingest the text
of the user’s speech and produce some sort of machine readable representation
that reflects the speech content. There is always a compromise when selecting
an appropriate NLU strategy: a simple technique may not provide sufficient
information for meaningful interaction, while a more complex approach requires
extensive knowledge engineering and can be rather brittle in the presence of
ASR mistakes. Another dimension where a virtual human system designer has to
make a choice is whether to have the NLU system select one of several predefined
utterance meanings or generate one on the fly. The former approach guarantees
a predictable result coming from the NLU component, while limiting the number
of things the character can understand to whatever is stored in the system.

In our system we use the statistical text classification approach [12]. This
approach assumes that all possible system responses are known and stored in
a database at the system construction stage. It relies on a set of linked sample
utterances and response pairs to “translate” the incoming user’s utterance into
a query that it uses to search the database of responses. The algorithms returns
a ranked subset (possibly empty) of the system responses. While this approach
is limited by the number of things the virtual human can understand, it is
fast, robust to the ASR errors, and it does not require extensive knowledge
engineering beyond providing sample utterances that should trigger individual
system responses. It can also combine both verbal and non-verbal features, e.g.,
sensor data, in one classification step. It has been shown to perform successfully
in a variety of applications [12].

The second part of virtual human language processing is the Dialogue Man-
agement (DM) module that takes the result from the NLU, considers the current
state of the interaction, and selects the system response. Here also a number of
approaches exist that range from a set of simple rules to a sophisticated multi-
level reasoning process that includes modeling of the character knowledge, goals,
and emotions [19]. For our platform we use a rule-based decision approach, where
the character designer specifies a number of rules triggered by the specific NLU
outputs, sensor events, or system timers. The designer can use the scripting
language to model and maintain the dialogue state, keep track of the interac-
tion history, and combine the DM state with the system events into complex
behavior strategies. A general purpose dialogue management script is included
with the system sufficient for constructing question-answering characters [12].
We also provide a tool box of script-based functions for the character designer



Mobile Virtual Humans 7

to extend and modify the dialogue strategy, instead of relying on a separate tool
to configure the NLU and DM.

Communication between mobile devices or between a mobile device
and a server is a common part of many virtual human apps. Mobile
applications frequently require communication that extends beyond the device
itself, and potentially to other devices or servers. For example, a mobile ap-
plication might communicate with a server to collect or retrieve data. Standard
mobile platform communication mechanisms can be used over standard TCP/IP
networks.

We include an asynchronous communication protocol called the Virtual Hu-
man Messaging System (VHMSG) that allows the easy communication between
virtual human applications. Thus, only one line of script code is needed to con-
nect, and one line of script code for each message is necessary. In this way, we
allow numerous mobile devices to communicate with each other without requir-
ing a separate protocol to be defined and managed.

4 Architecture

The Mobile Virtual Humans framework consists of a set of code, scripts, configu-
ration files and processes to build and develop a mobile application on an Android
operating system platform. The app author configures the mobile virtual human
by writing scripts that access five Application Programming Interfaces (APIs);
the Virtual Human API, the Interaction and Sensor API, the Rendering API,
the Dialogue Management API, and the Communication API. The five APIs,
in turn, communicate with the animation engine, rendering engine, mobile os
platform, and sensors. The rendering component interacts with the animation
engine, mobile OS and app code, as shown in Figure 1.

Application authors can leverage the application, called the “vanilla app”,
by associating data and process. Thus, a mobile virtual human platform author
does not need to compile a new application, only to modify the control scripts
and data in order to have a functioning mobile virtual human app.

Virtual Human API The Virtual Human API handles the setup and control
of the virtual human characters. The API includes methods to create a virtual
human, configure its behaviors, and respond to user input. The API leverages an
animation system SmartBody [18] to construct and configure characters and the
environment. Lip syncing to speech is automatically performed and matched to
the character’s facial rigs [22]. Complex configuration elements, such as config-
uring the facial rig, and behavioral control are abstracted via interface scripts,
and thus the construction of characters can be done with a single line of code.

Interface and Sensor API The Interface and Sensor API manages the user
interaction with the mobile device, such as touch and widget interfaces, as well as
access to the various mobile sensors, such as the gyroscope, microphone, location
and camera. In addition, it allows access to device-specific information, such as
the device id, IP address and name of the user interacting with the device.



8 Feng et al

Mobile OS

Animation Engine

App codeInteraction API

Virtual Human API

Rendering

User 
Defined 
Scripts

Sensors

Rendering API

Dialogue Management 
API

Communication API

Fig. 1. Components of Mobile Virtual Human architecture. The authoring interface is
primarily through a set of scripting interfaces that allow control of the Virtual Human
API, the Interface API, the Rendering API, and the Dialogue Management API.

Rendering API The Rendering API manages the display elements such as
cameras and lighting. The platform draws 3D content using OpenGL ES [14].

Dialogue Management API The Dialogue Management API handles control
of the speaking turn and the virtual human responses to user questions. The
NPC Editor [12] is used to provide a question-and-answer interface.

Communication API The Communication API allows easy access to all the
capabilities in the system. The platform leverages the Virtual Human Messaging
System (VHMSG) which transmits asynchronous messages across a TCP/IP
network.

5 Applications

We demonstrate a number of applications that can be generated through our
architecture and describe the key control elements needed in Figure 2.

6 Conclusion

In this work, we have presented a platform for the development of virtual human
systems on mobile devices. Unlike many 3D frameworks and game engines, our
framework is focused on the interaction between a virtual human and a user.
Our framework also differs from desktop-based virtual human frameworks in that
it allows convenient access to capabilities that are commonly found on mobile
devices, such as the gyroscopic, microphone and location sensors. Modification
of an application developed by our platform can be done in a data-driven way by
modifying the scripts that control the virtual human, interface and rendering.

All software architecture designs differ in which aspects can be exposed to
the platform author and which aspects will be hidden. Any 3D platform, such as
a game engine, can be used to design virtual human systems. Our design choices



Mobile Virtual Humans 9

Fig. 2. (Top Left and Top Center) Using the accelerometer to determine the orientation
of the mobile device. (Top Right) An example using text-to-speech and proper lip sync
useful for dynamic conversations. (Bottom Left) Use of a virtual human in the medical
domain. A virtual nurse queries the users for health issues. (Bottom Center and Bottom
Right) A realtime render showing a photorealistic virtual human backchannelling in
response to a user’s speech.

make the development of a 3D conversational virtual human require very little
configuration or expertise. For example, a virtual human can be displayed and
made to speak with only a few lines of code, and without even going through
the configuration process of building an app. By contrast, a game engine would
be a superior platform for the development of large-scale 3D worlds that include
various particle effects, such as water, dust and so forth.

References

1. Baldassarri, S., Cerezo, E., Seron, F.J.: Maxine: A platform for embodied animated
agents. Computers & Graphics 32(4), 430–437 (2008)

2. Bickmore, T., Mauer, D.: Modalities for building relationships with handheld com-
puter agents. In: CHI’06 Extended Abstracts on Human Factors in Computing
Systems. pp. 544–549. ACM (2006)

3. Cassell, J., Vilhjálmsson, H.H., Bickmore, T.: Beat: the behavior expression ani-
mation toolkit. In: Life-Like Characters, pp. 163–185. Springer (2004)

4. Gutierrez, M., Vexo, F., Thalmann, D.: Controlling virtual humans using pdas.
In: The 9th International Conference on Multi-Media Modeling (MMM” 03). pp.
150–166. No. VRLAB-CONF-2007-028 (2003)



10 Feng et al

5. Hartholt, A., Traum, D., Marsella, S.C., Shapiro, A., Stratou, G., Leuski, A.,
Morency, L.P., Gratch, J.: All together now. In: Intelligent Virtual Agents. pp.
368–381. Springer (2013)

6. Heloir, A., Kipp, M.: Real-time animation of interactive agents: Specification and
realization. Applied Artificial Intelligence 24(6), 510–529 (2010)

7. Klaassen, R., Hendrix, J., Reidsma, D., et al.: Elckerlyc goes mobile enabling
technology for ecas in mobile applications. In: UBICOMM 2012, The Sixth In-
ternational Conference on Mobile Ubiquitous Computing, Systems, Services and
Technologies. pp. 41–47 (2012)

8. Kopp, S., Krenn, B., Marsella, S., Marshall, A.N., Pelachaud, C., Pirker, H.,
Thórisson, K.R., Vilhjálmsson, H.: Towards a common framework for multimodal
generation: The behavior markup language. In: Intelligent virtual agents. pp. 205–
217. Springer (2006)

9. Lee, J., Marsella, S.: Nonverbal behavior generator for embodied conversational
agents. In: Intelligent virtual agents, pp. 243–255. Springer Berlin Heidelberg
(2006)

10. Lee, J., Marsella, S.C.: Predicting speaker head nods and the effects of affective
information. Multimedia, IEEE Transactions on 12(6), 552–562 (2010)

11. Leuski, A., Gowrisankar, R., Richmond, T., Shapiro, A., Xu, Y., Feng, A.: Mobile
personal healthcare mediated by virtual humans. In: Proceedings of International
Conference on Intelligent User Interfaces (2014)

12. Leuski, A., Traum, D.: NPCEditor: Creating virtual human dialogue using infor-
mation retrieval techniques. AI Magazine 32(2), 42–56 (2011)

13. Marsella, S., Xu, Y., Lhommet, M., Feng, A., Scherer, S., Shapiro, A.: Virtual char-
acter performance from speech. In: Proceedings of the 12th ACM SIGGRAPH/Eu-
rographics Symposium on Computer Animation. pp. 25–35. ACM (2013)

14. Munshi, A., Ginsburg, D., Shreiner, D.: OpenGL ES 2.0 programming guide. Pear-
son Education (2008)

15. Poggi, I., Pelachaud, C., de Rosis, F., Carofiglio, V., De Carolis, B.: Greta. a
believable embodied conversational agent. In: Multimodal intelligent information
presentation, pp. 3–25. Springer (2005)

16. Rincón-Nigro, M., Deng, Z.: A text-driven conversational avatar interface for in-
stant messaging on mobile devices. Human-Machine Systems, IEEE Transactions
on 43(3), 328–332 (2013)

17. Sanner, M.F., et al.: Python: a programming language for software integration and
development. J Mol Graph Model 17(1), 57–61 (1999)

18. Shapiro, A.: Building a character animation system. In: Motion in Games, pp.
98–109. Springer (2011)

19. Traum, D.: Talking to virtual humans: Dialogue models and methodologies for
embodied conversational agents. In: Wachsmuth, I., Knoblich, G. (eds.) Modeling
Communication with Robots and Virtual Humans, pp. 296–309. Springer (2008)

20. Traum, D., Swartout, W., Gratch, J., Marsella, S., Kenney, P., Hovy, E.,
Narayanan, S., Fast, E., Martinovski, B., Bhagat, R., Robinson, S., Marshall, A.,
Wang, D., Gandhe, S., Leuski, A.: Dealing with doctors: Virtual humans for non-
team interaction training. In: Proceedings of the 6th annual SIGDIAL Conference.
Lisbon, Portugal (September 2005)

21. van Welbergen, H., Reidsma, D., Ruttkay, Z.M., Zwiers, J.: Elckerlyc. Journal on
Multimodal User Interfaces 3(4), 271–284 (2009)

22. Xu, Y., Feng, A.W., Marsella, S., Shapiro, A.: A practical and configurable lip
sync method for games. In: Proceedings of Motion on Games. pp. 131–140. ACM
(2013)


