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Abstract

An information retrieval system arranges retrieved documents into a list and ranks them in the order
they are expected to be relevant. The ranked list is a well-known and widely accepted technique for
information presentation for the task of finding relevant documents as quick as possible. Clustering is
also a well-known and successful method for grouping similar documents together — in particular, for
grouping relevant documents. In this paper we present a system that combines the ranked list with a
clustering approach, accepts a modest amount of user feedback, and yields an approach that exceeds the
retrieval effectiveness of a traditional ranked list, with and without relevance feedback.

1 Introduction

Finding relevant information in a collection of full-text documents is a very complex task. An information
retrieval system generally retrieves a set of documents that contains both relevant and non-relevant material.
Different methods for information presentation are employed to help a user separate interesting information
from the rest of the data. These presentation techniques have their advantages and disadvantages. We are
interested in how to combine presentation methods, hoping that by leveraging the individual strengths of
each approach we will be able to help the user locate the relevant information more quickly and therefore
more effectively.

The ranked list is a widely accepted approach for presenting retrieved information. An information
retrieval system returns the documents arranged in the order they are expected to be relevant to the user’s
query: the first document is the best match to the query, the second is the next most likely to be helpful,
and so on. The user of the system 1s expected to follow the system recommendations — start from the top
of the ranked list and follow 1t down looking at the documents one by one. In the ideal case the user will
see all the relevant documents before any non-relevant ones. Generally such a simple model breaks down
and the relevant documents appear to be scattered all over the ranked list. To bring the scattered document
together we also consider clustering approaches.

The use of clustering in Information Retrieval is based on the Cluster Hypothesis: “closely associated
documents tend to be relevant to the same requests” [24, p.45]. Croft [11] and more recently Hearst and
Pedersen [16], showed that this hypothesis holds in a retrieved set of documents. A simple corollary from
this hypothesis is that if we do a good job at clustering the retrieved documents, we are likely to separate the
relevant and non-relevant documents into different groups. If then we can direct the user to the right group
of documents, we would increase her chances of finding the interesting information with minimal effort.

In this paper we discuss an information presentation system that combines a traditional ranked list with
a clustering visualization. The clustering visualization groups similar documents together and generates
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a 2- or 3-dimensional graph where each node corresponds to a document and the distance between nodes
is inversely proportional to the inter-document similarity. We experimentally show that the information
contained in the graph can be used to produce an alternative ranking of documents that is significantly more
effective than the original ranked list.

2 Related Work

Tremendous amounts of work have been done on ranked lists over the past several decades, ranging from
improving effectiveness [15] to user evaluations [18]. The basic thrust of that work is so well-known, there is
little value in surveying it. Instead we focus on related work in clustering and clustering visualization.

Multiple visualization approaches for clustering have been developed in recent years. Generally these
visualizations are designed to present patterns in a document set and they are considered to be browsing
interfaces. The format of the presentation varies significantly from system to system. For example, Hearst
and Pedersen [16] suggest a clustering system that groups the retrieved documents into some preselected
number of clusters and displays them simultaneously as lists of titles. A similar presentation was developed
by Leuski and Croft [19], however they do not pre-specify the number of clusters and their display looks
more like the traditional ranked list.

It is common for the information organization to be presented graphically. The documents, paragraphs,
and concepts are usually shown as points or objects in space with their relative position indicating how closely
they are related. Allan [1, 4] developed a visualization for showing the relationship between documents and
parts of documents. It arrayed the documents around an oval and connected them when their similarity was
strong enough.

The Vibe system [12] is a 2-D display that shows how documents relate to each other in terms of user-
selected dimensions. The documents being browsed are placed in the center of a circle. The user can locate
any number of terms inside the circle and along its edge, where they form “gravity wells” that attract
documents depending on the significance of those terms in that document. The user can shift the location
of terms and adjust their weights to better understand the relationships between the documents.

High-powered graphics workstations and the visual appeal of 3-dimensional graphics have encouraged
efforts to present document relationships in 3-space. The LyberWorld system [17] includes an implementation
of the Vibe system described above, but presented in 3-space. The user still must select terms, but now the
terms are placed on the surface of a sphere rather than the edge of a circle. The additional dimension should
allow the user to see separation more readily.

The Bead system [9] uses a graph drawing algorithm called spring-embedding for placing high-dimensional
objects 1n a low-dimensional space. The system puts documents in 3-dimensional space, positioning them
according to the inter-document similarity. The Bead research did not investigate the question of sepa-
rating relevant and non-relevant documents. The system was designed to handle very small documents —
bibliographic records represented by human-assigned keywords. A similar approach was adopted by Leuski
and Allan [20]. They extended the Bead spring-embedding approach and applied it to complete, full-sized
documents. We adopt spring-embedding for our system.

All of this work has focused on developing the power of a ranked list or of a clustering approach. Our
work, in contrast, unites the two approaches in one system and shows how their respective powers combine
to yield an even more effective system. Swan and Allan [23] considered a system with both components but
although their parts were tightly integrated, there was no exploration of how the two could be effectively
used together. Anick and Vaithyanathan [7] also integrated clustering and ranking to facilitate browsing of
the retrieval results, but did not explore effectiveness.

Hearst and Pedersen [16] also considered the effect of identifying clusters of relevant documents, and how
the resulting ranking compared to an unclustered list. However, they generated discrete clusters, explored
whether the user could select by keywords, and considered only that cluster as compared to the ranked list.



3 System Design

Our system consist of two parts: the ranked list and the clustering visualization. The ranked list is supplied
by INQUERY [6]. The INQUERY system is based on a probabilistic model of retrieval and it neither
incorporates the notion of similarity between documents nor includes document representations. Therefore,
to cluster the documents we use a vector-space approach where each document is represented by a vector V
such that v; is a tfidf weight of the ith term in the vocabulary:
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where tfis the number of times the term occurs in the document, docf is the number of documents the term
occurs in, and N is the number of documents in the collection. The distance between a pair of documents 1s
measured by one over the cosine of the angle between the corresponding vectors (i.e, 1/cosf). That is the
inverted measure of similarity between documents that is widely used in the vector-space model [22].

3.1 Spring-Embedding

To cluster the document vectors we use a spring-embedding algorithm [13]. An advantage of the algorithm is
that it handles both the task of clustering and the task of generating a visual presentation of the clustering.
Spring-embedding takes a set of high-dimensional vectors and generates 2- or 3-dimensional approximation of
this set, attempting to preserve the relative distances between vectors. The algorithm models each document
vector as an object in the 2- or 3-dimensional visualization space. The objects are connected with springs
and the strength of each spring is inversely proportional to the 1/cos distance between the corresponding
document vectors. This “mechanical” model begins from a random arrangement of objects and due to
existing tension forces in the springs, oscillates until 1t reaches a state with “minimum energy” — when
the constraints imposed on the object placements by the springs are considered to be the most satisfied.
The result of the algorithm is a set of points in space, where each point represents a document and the
inter-document similarity is mapped approximately onto the Euclidean distance between points.

There are many other techniques (e.g., LSI, Linear Programming, and so on) that might be used to the
same effect. Our choice was motivated by the graph-drawing heritage of the spring-embedding [13] — it is
supposed to generate eye-pleasing pictures — and availability of the source code. A detailed description of
the algorithm can be found elsewhere [10].

If all the constraints (all the springs) are incorporated into the spring-embedding process the resulting
structure is very tight and resembles a “soccer-ball.” To prevent this from happening we introduce a threshold
parameter into the algorithm — all springs that correspond to pairs of documents with the inter-document
distances above a predefined value are weakened significantly. This process eliminates the constraints imposed
on the system by these springs and at the same time it keeps the overall structure together. It allows us
to generate more “interesting” spatial structures. Unfortunately, we now have a parameter that we do not
know how to select. We will show, however, that the system is not very sensitive to the parameter value, so
this 1s not a major problem.

Figure 1 gives an example of our system. It shows fifty retrieved documents arranged into a ranked list
and recorded on two panels on the left and right sides of the screen. In the middle there is a 2-dimensional
spring-embedded visualization of the same fifty documents in the form of fifty spheres floating in space. The
document representations in the list and in the visualization are tightly linked: a click on a sphere highlights
both the sphere and the corresponding document id in the list and vice versa. The document ids can be
replaced by titles, but ids are shown here to save space.

This Figure 2 clearly illustrates potential advantages of the clustering visualization over the ranked list:
when the relevant documents are widely scattered in the ranked list, the same documents are tightly grouped
together in the visualization. The next section describes how we can take advantage of the clustering and
rearrange the documents in a more effective order.



Figure 1: The combination of a ranked list and spring-embedding visualization for a group of fifty retrieved
documents. The ranked list is presented on the two panels starting at the top of the left panel and continuing
down and then to the top of the right panel. The 2-dimensional visualization is in the middle. We show a
snapshot at the time when the user has looked at the top five documents in the ranked list. Their ids are
highlighted with a gray background in the list and the corresponding spheres are shown in dark gray color.
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A “4” indicates a relevant document; a “-” flags non-relevant documents.

Figure 2: The same example as on Figure 1 after the user has discovered all the relevant documents in the

retrieved set.
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Figure 3: Shows three consecutive snapshots of how the visualization will build a static relevant proximity
ranking. It begins with the first relevant document represented by the black disk in center of the picture and
looks for the closest disk. We show the state as the first, second, and third relevant documents are discovered.
The black disks represent the known relevant documents, the white disks — the known non-relevant, and the
gray disks are the unknown documents.

o o ®
© 08 © ©
OOOO
o
®
0
o o)

Figure 4: Shows three consecutive snapshots of how the visualization will select the documents for the
dynamic relevant proximity ranking. It begins with the first relevant document represented by the black
disk in center of the picture and looks for the closest disk. We show the state as the first, second, and third
relevant documents are discovered. The black disks represent the known relevant documents, the white disks
— the known non-relevant, and the gray disks are the unknown documents. The bright “X” represents the
location of the center mass of all known relevant documents. The gray “X” shows the old location of the
center of mass at the previous snapshot.

3.2 The Use of Clustering

Suppose that we know one relevant document. For example, we find this document by traversing the ranked
list. Now we re-rank the rest of the documents according to their spatial proximity to that relevant document.
We create a new ranking that we will call static relevant proximity ranking. The ranking can be shown to the
user and we can compare it to the original ranked list. Our system presents the new ranking by highlighting
the unknown document that is the closest to the known relevant document. After the user looks at the
“suggested” document the visualization highlights the next document in the ranking and so on. This process
can viewed as “feeding” the user one document at a time. Figure 3 shows an example of how the visualization
builds the static relevant proximity ranking.

If the user extends the effort to assign relevance judgments to the documents as she proceeds down the
new ranking we can use this information to adjust the ranking in the following way: instead of ranking the
rest of the documents by their proximity to the single (first) relevant document, we re-rank the documents by
their proximity to the center of mass of all relevant documents so far. Obviously this ranking may change as
soon as the user discovers a relevant document. We call such a ranking dynamic relevant prozimity ranking.
Figure 4 shows an example of how the visualization builds a dynamic relevant proximity ranking.

The new ranking — either a static or dynamic relevant proximity ranking — is presented to the user in the
form of suggested documents, highlighted in both the ranked list and the spring-embedding visualization.
The system does not force the user to view the documents in the suggested order. In next section we compare



the ranking generated by the visualization to the original ranked list.

4 System Evaluation

Consider the following scenario: a user receives the top fifty documents from an information retrieval system.
The documents are presented in our visualization system both in the form of the ranked list and the spring-
embedding visualization. The user reads the documents starting from the top of the ranked list until she
finds one relevant document. At this point our system suggests four alternative rankings to follow:

1. the original ranked list;

2. the ranking obtained by taking the relevant document found by the user to run an automatic relevance
feedback process [2], modifying the original query, and rearranging the document by the similarity to
the new query;

3. the static relevant proximity ranking created by the visualization;

4. the dynamic relevant proximity ranking created by the visualization (assuming that the user will keep
the system supplied with relevance judgments).

Given a set of known documents and relevance judgments we will create all four rankings automatically
and evaluate them using average precision.

4.1 Experimental Setup

For our experiments we used TREC [14] ad-hoc queries with their corresponding collections and relevance
Jjudgments. Specifically, TREC topics 251-300 were converted into queries and run against the documents in
TREC volumes 2 and 4 (2.1GB) that include articles from Wall Street Journal, Financial Times, and Federal
Register. For each TREC topic we considered four types of queries: (1) a query constructed by extensive
analysis and expansion [5]; (2) the description field of the topic; (3) the title of the topic; and (4) a query
constructed from the title by expanding it using Local Context Analysis (LCA) [25].

In addition, we used TREC topics 301-350 to create queries to be run against TREC volumes 4 and
5 (2.2GB) that include articles from the Congressional Records, Financial Times, and Los Angeles Times.
Again, the same four different types of queries were constructed, except instead of just using the description
field for the second query type, we used both the title and the description field of the topic (this was done
to compensate for an error in the topic creation in TREC [15]). For each query we selected the 50 highest
ranked documents and spring-embedded them in 2 and 3 dimensions.

4.2 Results — Stability of Spring-Embedding

The first question we investigate is how much the quality of the ranking generated by our system depends
upon the uncertainty from the spring-embedding algorithm. There are two sources of uncertainty: the initial
position of the objects before we start the embedding process and the threshold value that defines how many
springs exist in the structure.

The final spring-embedding picture depends on the initial position of the objects. We experimented with
individual queries by starting the embedding process from different initial placement of objects. We have
observed that the spring-embedding algorithm is very stable to the initial arrangements. Table 1 shows
the mean and variance of the average precision for the dynamic relevant proximity ranking. The ranking is
generated for 2 and 3 dimensional embeddings for several TREC-5 queries. It is clear that 3 dimensional
embeddings are less sensitive to the starting conditions. The Table suggests that our final precision numbers
will be accurate to within less than a half percent of what could be reported.

The spring-embedding algorithm also has a threshold parameter associated with the embedding process
(Section 3.1). Recall that the threshold defines what constraints (springs) are left in the embedding process.
There are generally (N — 1)N/2 different threshold values for N objects. Unfortunately, it is not clear how
to select the threshold parameter effectively. We assume that the threshold is selected randomly and we



Table 1: Shows how the precision of different queries depends on the initial arrangements of object for
the spring-embedding. The table contains the mean and variance of the precision across 40 initial random
arrangements. The numbers are given for several TREC-5 title queries embedded in 2 and 3 dimensions.

Query ID | Average Precision (%)
2D 3D
252 37.7+1.2 32.140.3
253 99.940.0 | 100.0+0.0
254 52.840.4 60.640.1
257 67.240.2 69.0+0.0
259 81.84+0.9 87.240.0
261 39.2404 | 53.7+0.0
262 30.748.5 31.7+0.0
263 72.9404 | 71.010.3
264 24.440.2 22.640.0
273 85.6+0.4 | 88.31+0.2
282 51.440.6 | 45.3+0.3

average the precision across all possible values of the threshold for each query — i.e.; we set a threshold, run
the spring-embedding, create a ranking, measure its precision, and repeat this for the next threshold value.
Then we average the precision numbers obtained that way. The variance for these values is generally close
to 0.3%. This indicates that the precision of a ranking generated by the spring-embedding does not vary
much with the threshold.

4.3 Results — Effectiveness

The second question we consider in this study is how the retrieval effectiveness of the rankings created from
the visualization compares to the the effectiveness of the ranked list. How does the dimensionality of the
visualization and the initial query properties affect the quality of the rankings?

Table 2 shows that the average precision of the rankings generated from the spring-embedding signifi-
cantly exceeds precision of the ranked list — it is more effective for the user to follow the suggestions of the
visualization part of the system, than to follow the ranked list. We observe on average 20% improvement in
the average precision. The improvement is almost always statistically significant by two-tailed t-test with
p = 0.05.

The addition of the user’s input into the ranking generation allows us to create better orderings of docu-
ments. The difference between the static and dynamic relevant proximity rankings (Table 2) is consistently
about 2-3 points in average precision, constituting an additional 5-6% improvement over the ranked list.

The document vectors occupy a very high-dimensional space. When these documents are presented
with the spring-embedding algorithm some of the documents maybe shown nearby when they are actually
unrelated because of the constraints imposed by fewer number of dimensions. Our intuition is that a higher
dimensional visualization provides more degrees of freedom and therefore a better chance to represent the
inter-document relationship accurately than a lower dimensional one. Table 2 shows that indeed the numbers
for 3-dimensional visualizations are better than for 2-dimensional visualizations. The difference is about 3%
and is statistically significant.

The size and the quality of the original query have a large impact on the clustering. The smallest
improvements are shown for the full queries that were created by elaborate topic processing and expansion.
There is little chance they will be typed in by a user and the processing to create them automatically is
currently prohibitive for an interactive setting. On the other hand the rankings generated by the clustering
visualizations for the shortest title queries — the style of queries that people use more often — display large
amount of improvement in retrieval effectiveness.

We can also see that running the relevance feedback method and re-ranking the documents based on the



Table 2: Ranked list vs. relevant proximity rankings produced from the spring-embedding. Suppose that
a user 1s searching from the top of the ranked list until she finds a relevant document. Four choices are
considered: she continues to follow the ranked list (first column); she applies automatic relevance feedback,
modifies the query, re-ranks the documents, and follows the new ranking (second column); she switches to the
2-dimensional spring-embedding and follows the system-generated static proximity ranking (third column);
she switches to the 3-dimensional spring-embedding and follows the system suggestions (forth column). The
fifth and the sixth columns are for the dynamic proximity rankings in 2 and 3 dimensions. Average precision
numbers for each search process are shown. Percent improvement is from the ranked list. Asterisk indicates
statistical significance with p = 0.05.

Query sets Ranked List Spring-Embedding
static proximity ranking dynamic proximity ranking
Original After RF 2D 3D 2D 3D
Full 36.2 | 35.9 ( -0.7 %) | 39.1 (8.0 %) | 39.4 (9.0% %) | 40.7 (12.4%%) | 41.6 (15.0"%)
TREC-5 | Desc 34.1 42.6 (24.9%* %) | 43.4 (27.2*%%) | 44.5 (30.4*%) | 45.8 (34.4*%) | 47.2 (38.5*%)
Title 31.0 32.0 ( 3.3 %)| 37.3 (20.4*%) | 37.6 (21.3*%) | 39.0 (25.8*%) | 38.9 (25.3*%)
Title + Desc 31.0 34.5 (11.5%* %) | 34.1 (9.9* % 35.1 (13. 4*% 36.1 (16. 4*% 37.2 (19.9*%)
Full 51.0 | 51.3( 0.6 %)| 5.0 ( 0.0 %) | 53.2 ( 4.4 %) | 52.9 ( 3.7 %) | 54.9 ( 7.6* %)
TREC-6 | Desc 42.5 46.9 (10.3* %) | 49.2 (15. 7*% 53.4 (25.6%%) | 52.5 (23.5*%) | 55.2 (30.0%*%)
Title 40.1 42.4 ( 5.6 %) | 49.6 (23.6%%) | 51.7 (29.0*%) | 53.0 (32.1*%) | 54.4 (35.6*%)
Title + Desc 47.2 41.8 (-11.5*%*%) | 49.8 ( 5.6 %) | 51.8 (9.8* %) | 52.4 (11.0*%) | 53.5 (13.4*%)
average 39.1 | 40.9 ( 4.6% %) 44.2 (12.9%%) | 45.9 (17.2%%) | 46.5 (18.9%%) | 47.9 (22.3%%)

modified query brings much less improvement than the visualization-driven approaches. It occasionally even
hurts average performance (Table 2, column 2, rows 1 and 8)

5 Discussion

An interesting question that we have just partially addressed in this paper is how this search based on the
information from the ranked list and the visualization compares to automatic relevance feedback [8]. The
dynamic relevant proximity ranking produced by the visualization is, in effect, a version of relevance feedback
— the order of the ranking changes as the new relevance information becomes available. An alternative to this
ranking would be to run automatic relevance feedback each time as we discover a new relevant document,
modify the original query, run the modified query, and rearrange the ranked list. However:

1. Tt is known [3] that automatic relevance feedback method performs erratically with small amounts of
relevant information. Whereas by using just one relevant document we have generated a new ranking
that is about 17% better than the ranked list.

2. We believe that constantly rearranging of the ranked list because of the relevance feedback might prove
very confusing and disorienting to the user.

3. A fair comparison would require that some type of relevance feedback be incorporated into the spring-
embedding process itself as well. One approach would be to modify the spring-embedding by moving
apart relevant and non-relevant documents as suggested by Leuski and Allan [21]. We are interested
in incorporating these techniques into our system.

4. The relevance feedback requires an additional cognitive effort from the user — for the relevance feedback
to run the user must mark documents as relevant or non-relevant. There exist anecdotal evidence that
people are not likely to do so. Our dynamic relevant proximity ranking is based on the simple idea
of “looking at the things that are close to the good things.” It is not difficult to imagine that people
might follow a similar search pattern basically doing the relevance feedback in their heads. Then explicit



relevance judgments become unnecessary. We are planning to conduct a user study to test how well
people recognize and use the similarity information provided by the spatial clues in the visualization.

Another idea is to isolate the ranking generation from the visualization and incorporate it into an auto-
matic information retrieval system to produce improved ranked lists. Then we can do away with constraints
imposed on the visualization by small dimensionality of the visualization space. In other words, we can use
the original distances between document vector to generate new ranking. We still see several advantages in
showing the visualization to the user. First, it is very easy to explain to the user why a particular document
was suggested: the visualization shows that it is the closest document to the currently discovered relevant
material. Such explanation should give the users more sense of comfort and control and it has been shown
that users like to have control over the search process [18]. Second, the methods for constructing both the
static and dynamic relevant proximity ranking from the visualization are very simplistic. It is our belief
that users may employ additional spatial clues (such as clumpiness) that are not taken into account by our
processing. This is a topic for our future work.

6 Conclusions and Future Work

In this paper we presented an information organization system that combines two approaches for visualizing
retrieval results: the ranked list and the spring-embedding visualization of clustering. We suggested a
method of how the clustering visualization could be used to generate alternative ranking of documents —i.e.,
a “relevant proximity” ranking.

We showed that if the user starts with the ranked list, finds one relevant document, switches to the
spring-embedding visualization and blindly follows the recommendations of our visualization system, her
search will be on average 20% more effective than if she would have blindly followed the ranked list. Note
that the user might actually do much better than our system suggests and what we showed is that the user
is guaranteed to do at least 20% better than with the ranked list just by following the system suggestions.

Note that relevance feedback generally produces similar improvements in effectiveness, but it does so by
re-submitting the query and presenting a new ranked list. We are achieving these results without re-issuing
the query and showing better effectiveness that relevance feedback in such a setting.

We also observed that visualizations created in 3 dimensions possess better quality than 2 dimensional
visualizations: they are more stable to the initial conditions in the spring-embedding and generally produce
rankings with higher precision values.

This work could be extended in the following directions:

e In this study we considered only two classes of documents: relevant and non-relevant. This was caused
by the lack of data of any other kind. We are looking into extending our approach into situations when
the user places the relevant documents into multiple classes. That task is modeled after the interactive
TREC task of “aspect retrieval.”

e We plan on a user study to analyze if the people take advantage of the spatial clues such as proximity
that we use to automatically generate new rankings from the spring-embedding visualization. We are
also interested in what other kind of information besides simple proximity people receive from the
visualization.
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