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Abstract—Trust is a critical factor for achieving the full
potential of human-robot teams. Researchers have theorized that
people will more accurately trust an autonomous system, such
as a robot, if they have a more accurate understanding of its
decision-making process. Studies have shown that hand-crafted
explanations can help maintain trust when the system is less than
100% reliable. In this work, we leverage existing agent algorithms
to provide a domain-independent mechanism for robots to auto-
matically generate such explanations. To measure the explanation
mechanism’s impact on trust, we collected self-reported survey
data and behavioral data in an agent-based online testbed that
simulates a human-robot team task. The results demonstrate
that the added explanation capability led to improvement in
transparency, trust, and team performance. Furthermore, by
observing the different outcomes due to variations in the robot’s
explanation content, we gain valuable insight that can help lead to
refinement of explanation algorithms to further improve human-
robot trust calibration.

I. INTRODUCTION

Trust is critical to the success of human-robot interaction
(HRI) [1], [2]. In the high-risk and highly uncertain context
of real-world HRI, distrust can reduce people’s willingness to
accept robot-produced information and follow a robot’s sug-
gestions, thus limiting the potential benefit of robotic systems
[3]. Research in human-machine interaction has shown that
the more operators trust automated systems, the more they
tend to use them. Conversely, when operators trust their own
abilities more than those of the system, they tend to choose
manual control instead [4], [5], [6], [7], [8], [9]. Ideally, we
want humans to trust their robot teammates to perform a given
task when robots are more suited than the humans for the
task. If the robots are less suited, then we want the humans to
appropriately gauge the robots’ ability and perform the task
themselves. Failure to do so results in disuse of robots in the
former case and misuse in the latter [10]. Real-world case
studies and laboratory experiments show that failures in both
cases are common [11].

Research has shown that people will more accurately trust
an autonomous system, like a robot, if they have a more
accurate understanding of its decision-making process [7].
Hand-crafted explanations have shown to be effective in pro-
viding such transparency [5]. However, such static, manually
created explanations fall well short of conveying the ever-
increasing complexity of robotic decision-making to human
teammates. Successful HRI therefore requires that robots be

able to dynamically and automatically make their decision-
making processes transparent to the people they work with.

In our work, we pursue a general approach to expla-
nation that not only builds transparency, but can also be
reused across robotic domains, much as “explainable AI”
was reusable across expert systems [12], [13]. To ensure this
generality, we build our algorithms on top of Partially Observ-
able Markov Decision Problems (POMDPs) [14], a decision-
theoretic agent framework. The POMDP model’s quantitative
transition probabilities, observation probabilities, reward func-
tions, and decision-making algorithms have proven successful
in many robotic domains, such as navigation [15], [16] and
HRI [17]. We specifically use a multiagent social simulation
framework, PsychSim [18], [19], that includes transparency
of the various components of a POMDP model (e.g., beliefs,
observations, outcome likelihoods). Using this framework, we
have designed and implemented novel domain-independent
algorithms that can automatically generate explanation content
from POMDP-based decision-making, a first in the field.

To quantify the effectiveness of different explanation content
in achieving the desired transparency, we implemented an
experimental HRI testbed. This virtual human-robot simulation
teams a robot with a human counterpart in reconnaissance
missions [20]. The robot is modeled as a PsychSim agent,
with a POMDP representing its beliefs and observations of
its surroundings, goals (e.g., mission objectives), and actions
to achieve those goals. We conducted a study where people
interacted with different versions of the robot, where we varied
its ability and its explanation content. The empirical results
quantify the degree to which the explanations impacted trans-
parency, human-robot trust, and overall team performance. By
examining people’s behaviors over different combinations of
the robot’s ability and explanation content, we discuss the
implications of the results and directions for future work .

II. RELATED WORK

There have been a growing number of empirical explo-
rations of factors that impact trust in human-robot inter-
action. Freedy and colleagues [3] examined how reliability
can impact trust using the MITPAS Simulation Environment.
Desai and colleagues [21] also conducted a series of studies
on reliability and trust in a human-robot team search-and-
rescue task. Results show that drops in reliability affected



trust, the frequency of autonomy mode switching, and the
participants’ self-assessments of performance. In their follow-
up work, Desai and colleagues [22] studied the dynamics
of trust during the interaction and found that early drops
in reliability dramatically lowered real-time trust more than
later drops. Salem and colleagues [23] conducted a study that
revealed the phenomenon of compliance to an incompetent
robot when the negative consequences were somewhat trivial.
Beyond the reliability of the robot, the subjective perceptions
that people have of the robot, such as a human team member’s
understanding of the system, can also influence trust [24].

Our work is motivated by existing HRI studies that have
shown that a human’s ability to understand its robot teammate
has a clear impact on trust [7]. Explanations have shown
to contribute to that understanding in a way that provides
transparency and improves trust [5]. Our goal is to create an
automated, domain-independent method for generating expla-
nations that have the same impact as the manually crafted
explanations used in this prior work.

Artificial intelligence researchers have similarly explored
the possibility of automated explanation mechanisms, espe-
cially within the context of expert systems [12]. Unfortunately,
there has been little empirical evaluation of the impact of these
explanations on human-machine trust, although the existing
data suggest that explanations do increase user acceptance
of expert systems [13]. This limited evidence is encouraging
as to the potential success of applying a general-purpose
explanation on top of a robot’s decision-making process.

Most of these previous investigations examined explanations
within rule-based and logic-based AI systems, not addressing
the quantitative nature of much of the AI used in HRI. More re-
cent work on automatic explanations instead used Markov De-
cision Problems (MDPs), the completely observable subclass
of POMDPs [25], [26], [27]. Although these methods were not
applied within HRI, they do seek to communicate an optimal
MDP policy to a human user. However, certainty of beliefs
is extremely rare in HRI domains, and these mechanisms do
not apply to more general POMDP-based policies. As far as
we know, our work is the first to develop the algorithms to
automatically generate explanations based on POMDPs.

Looking beyond the AI and HRI literature, we can find a
large variety of studies that measure the impact of various
forms of explanation on people’s perceptions of risks and
uncertainties when making decisions. A survey of these studies
across multiple domains indicates that “people prefer numer-
ical information for its accuracy but use a verbal statement
to express a probability to others.” [28]. This finding led
to a recommendation to include a numeric representation in
any communication informing a person of the uncertainties
underlying a decision. On the other hand, one of the studies in
the survey contrasted a numeric representation of uncertainty
with more anecdotal evidence and found that the numeric
information carried less weight when both types were present
[29]. A study of risk communication in medical trade-off
decisions showed that people performed better when receiving
numeric expressions of uncertainty in percentage (67%) rather

than frequency (2 out of 3) form [30]. This same study also
found that people expressed a preference for information “as
words” rather than “as numbers”. It is therefore clear that
both percentage and verbal expressions of uncertainty have
value in conveying uncertainty, but it is less clear what form
makes the most sense in an HRI context. In translating our
robot’s reasoning into a human-understandable format, our
explanation algorithms use natural-language templates inspired
by these various findings in the literature.

There are many definitions of trust, from decades of research
in interpersonal, organizational and human-machine trust. In-
stead of redefining it, we operationalize trust as the perceived
“trustworthiness” based on the 3-factor model from previous
work in organizational trust: ability, benevolence and integrity
[31]. While we operationalize subjective trust based on per-
ceived “trustworthiness”, behaviorally, we operationalize it
as compliance, e.g., behavioral indicators of how much one
follows the robot’s recommendations. To evaluate the impact
of our explanation algorithms, we first draw inspiration from
survey instruments used in the HRI trust literature [32], [33].
We also look to behavioral measures already used in the HRI
trust literature. Prior studies have used a human supervisor’s
“take-over” and “hand-over” behavior as a measure of the
trust or distrust s/he had in the robot [34]. Freedy et al.
constructed a quantitative measure of trust, such that trust
behavior is reflected by the expected value of the decisions
whether to allocate control to the robots on the basis of past
robot behavior and the risk associated with autonomous robot
control [3]. This rational decision model maps very easily
to the decision-theoretic agent model underlying our robot
decision-making and explanation algorithms.

III. AUTOMATIC GENERATION OF ROBOT EXPLANATIONS

We have implemented the explanation algorithms using
PsychSim [18], [19], which combines two established agent
technologies: decision-theoretic planning [14] and recursive
modeling [35]. The combination of decision theory and theory
of mind has enabled PsychSim agents to operate in a variety of
human-agent interaction scenarios [36], [37], [38], [39], [40].

A. Agent Model

We implement the robot as a PsychSim agent that generates
its behavior by solving a POMDP [14]. In precise terms, a
POMDP is a tuple, 〈S,A, P,Ω, O,R〉, that we describe here
in terms of our human-robot team (see [20] for additional
details). The state, S, consists of objective facts about the
world, both observable (e.g., the locations of the robot and its
human teammate) and initially hidden (e.g., the presence of
dangerous people or chemicals in the buildings to be searched).

The actions, A, capture the decisions the robot can make.
For example, the robot can decide which discrete waypoint to
move to next. Upon arrival at a new waypoint, the robot can
then decide whether to declare a location as safe or unsafe. If
the robot believes that armed gunmen are at its current loca-
tion, it may want its teammate to take adequate preparations
(e.g., put on body armor) before entering. Because there is a



time cost to such preparations, the robot may instead decide
to declare the location safe, so that its teammates can more
quickly complete their own reconnaissance tasks.

The transition probability function, P , captures the possibly
uncertain effects of the robot’s actions on the subsequent state.
We can simplify the robot’s navigation task by assuming that
a decision to move to a specific waypoint succeeds determin-
istically. The robot’s recommendation that a building is safe
(unsafe), on the other hand, can have a nondeterministic effect,
with a high (low) probability of decreasing the teammate’s
health if there are, in fact, chemicals present.

The POMDP model gives the robot only indirect informa-
tion about the true state of the world, through observations, Ω,
that are probabilistically dependent (through the observation
function, O) on the corresponding state features. For example,
the robot can observe the location of itself and its teammate
with no error (e.g., via GPS). However, it receives only a local
reading about the presence (or absence) of armed gunmen or
dangerous chemicals at its current location. For example, if
dangerous chemicals are present, then the robot’s chemical
sensor will detect them with a high probability. There is also
a lower, but nonzero, probability that the sensor will not
detect them. We can implement false positives in an analogous
manner. By controlling the observations that the robot receives,
we can manipulate its ability in our testbed.

Partial observability gives the robot only subjective beliefs
about what it thinks is the state of the world, computed
via standard POMDP state-estimation algorithms [14]. For
example, the robot’s beliefs include its subjective view on the
presence of threats, in the form of a likelihood (e.g., a 33%
chance that there are toxic chemicals in the farm supply store).
By decreasing the accuracy of the robot’s observation function,
O, we can decrease the accuracy of its beliefs. In other words,
we can also manipulate the robot’s ability by allowing it to
over- or under-estimate the accuracy of its sensors.

PsychSim’s POMDP framework instantiates HRI objectives
as a reward, R, that maps the state into a real-valued evaluation
of benefit. For example, states where all buildings have been
explored can yield the highest reward, to incentivize the robot
to pursue a search objective. An increasingly positive reward
associated with the human teammate’s health would punish
the robot if it fails to warn him or her of dangerous buildings.
Finally, a negative reward that increases with time would
motivate the robot to complete the mission as quickly as
possible. By providing different weights to these goals, we
can change the priorities that the robot assigns to them. For
example, by lowering the weight of the teammate’s health
reward, the robot may allow its teammate to search waypoints
that are potentially dangerous, in the hope of searching all
the buildings sooner. Alternatively, lowering the weight on the
time cost reward might motivate the robot to wait until being
almost certain of a building’s threat level (e.g., by repeated
observations) before recommending that its teammate visit
anywhere. By varying the relative weights of these different
motivations, we can manipulate the benevolence of the robot
toward its teammate in our testbed.

The robot can autonomously generate its behavior based on
its POMDP model of the world by determining the optimal
action based on its beliefs about the state of the world [14]. For
example, the robot considers declaring a building dangerous or
safe (i.e., recommending that its teammate put protective gear
on or not). It would combine its beliefs about the likelihood of
possible threats in the building with each possible declaration
to compute the likelihood of the outcome, in terms of the
teammate’s health and the time to search the building. It would
finally combine these outcome likelihoods with its reward
function and choose the option that has the highest reward.

B. Robot Explanation Generation with PsychSim

On top of this POMDP layer, PsychSim provides algorithms
that are useful for studying domain-independent explanation.
By exploring variations of these algorithms within PsychSim’s
scenario-independent language, we ensure that the results can
be re-used by other researchers studying other HRI domains,
especially those using POMDP-based robots. By exposing
different components of the robot’s POMDP model, we can
make different aspects of its decision-making transparent to
its human teammate. We create natural-language templates to
translate its model’s contents into human-readable sentences:
• A: The robot can make a decision whether to declare the

building safe or not and communicate its chosen action to
the user, e.g., “I think the doctor’s office is safe.”

• S: The robot can also communicate the level of uncertainty
underlying its beliefs, e.g., “I am 67% confident about this
assessment,” if it believed that the probability of the doctor’s
office being safe was 67%.

• P : The robot can also reveal the relative likelihood of
possible outcomes, e.g., “There is a 33% probability that
you will be injured if you enter the doctor’s office without
protective gear.”

• Ω: Communicating its observation to the user can reveal
information about its sensing abilities, e.g., “My sensors
have detected traces of dangerous chemicals.”

• O: Beyond the specific observation it received, the robot can
also reveal information about how it models its own sensor
capabilities, e.g., “My image processing will fail to detect
armed gunmen 30% of the time.”

• R: By communicating the expected reward outcome of its
chosen action, the robot can reveal its benevolence (or
lack thereof) toward its teammate, e.g., “I think it will be
dangerous for you to enter the informant’s house without
putting on protective gear. The protective gear will slow
you down a little.”

IV. SIMULATION TESTBED FOR HRI

We developed an online HRI simulation testbed (described
in more detail in a prior publication [20]) to study the
impact of these automatically generated explanations on trust.
The current testbed implements the POMDP scenario from
Section III-A, in which a human teammate works with a
robot in reconnaissance missions to gather intelligence in a
foreign town. Each mission involves the human teammate



Fig. 1. Human Robot Interaction Simulation Testbed with HTML front-end.

searching eight buildings in the town. The robot serves as
a scout, scans the buildings for potential danger, and relays
its findings to the teammate. Prior to entering a building, the
human teammate can choose between entering with or without
equipping protective gear. If there is danger present inside the
building, the human teammate will be fatally injured without
the protective gear. As a result, the team will have to restart
from the beginning and re-search the entire town. However,
it takes time to put on and take off protective gear (e.g.,
30 seconds each). So the human teammate is incentivized to
consider the robot’s findings before deciding how to enter the
building. In the current implementation, the human and the
robot move together as one unit through the town, with the
robot scanning the building first and the human conducting
a detailed search afterward. The robot has a NBC (nuclear,
biological and chemical) weapon sensor, a camera that can
detect armed gunmen, and a microphone that can listen to
discussions in foreign language. As described in Section III-A,
it uses standard POMDP algorithms to incorporate its sensor
readings into an assessment of whether danger may be present
if its human teammate enters the building. While the scenario
is military reconnaissance, it is simple enough that it does not
require prior experience to complete the mission in the study,
e.g., the task does not need knowledge of clearing procedures
for searching buildings. The participant only needs to decide
whether to trust the robot’s findings (safe/dangerous), and
press a key to enter/exit the room.

V. EVALUATIONS

A. Participants

We recruited 160 participants from Amazon Mechanical
Turk (AMT). The participants had previously completed 500
or more jobs on AMT and had a completion rate of 95% or
higher. Each participant was compensated $10. All participants
were located in the United States.

B. Design

We used the online testbed to conduct an evaluation study
on how the robot’s explanation impacted trust and team

performance. We designed six versions of the simulated robot,
varied along two dimensions—ability and explanation.

The ability variable has two levels: low and high. The robot
with high ability makes the correct decision 100% of the
time. The one with low ability has a faulty camera and makes
false-negative mistakes, e.g., not detecting armed gunmen in
the simulation. The other simulated sensors and the robot’s
decision-making capability remain intact. In other words, the
high-ability robot’s decisions will always be correct, while the
low-ability robot will occasionally give an incorrect “safe”
assessment. Human teammates will learn the correctness of
the robot’s decisions upon entering the buildings themselves.

The explanation variable has three levels: confidence-level
explanation, observation explanation and no explanation. At
all three levels, the robot informs its teammate of its decision,
derived from A in PsychSim (e.g., “I have finished survey-
ing the doctor’s office. I think the place is safe.”). Under
the confidence-level and observation explanations, the robot
augments this decision with additional information that should
help its teammate better understand its ability (e.g., decision-
making and sensing), one of the key dimensions of trust [31].

The confidence-level explanations augment the decision
message with additional information about the robot’s un-
certainty in its decision. PsychSim’s S explanation contains
the robot’s probabilistic assessment of the hidden state of
the world (e.g., the presence of threats) on which it bases
its recommendation.1 One example of a confidence-level ex-
planation would be: “I have finished surveying the Cafe. I
think the place is dangerous. I am 78% confident about this
assessment.” Because the low-ability robot’s one faulty sensor
will lead to occasional conflicting observations, it will on those
occasions have lower confidence in its erroneous decisions
after incorporating that conflicting information into its beliefs.

The observation explanations instead augments the deci-
sion message with non-numeric information about the robot’s
sensing capability. PsychSim’s Ω explanation provides the
teammate with the robot’s observations. One such commu-
nication with both decision and explanation would be: “I have
finished surveying the Cafe. I think the place is safe. My
sensors have not detected any NBC weapons in here. From the
image captured by my camera, I have not detected any armed
gunmen in the cafe. My microphone picked up a friendly
conversation.” These explanations will thus potentially help
the robot’s teammate understand which sensors are working
correctly and which ones are not.

The study is a between-subject design. Each participant
interacted with one of the six simulated robots.

C. Procedure

Participants first read an information sheet about the study
and then filled out the background survey. Next, participants
worked with a simulated robot on 3 reconnaissance missions.
After each mission, participants filled out a post-mission sur-
vey. Each participant worked with a robot with the same ability

1Probability and confidence are generally different concepts. We used the
probability as an approximation of the robot’s confidence level.



and communication throughout the 3 missions. Participants
were randomly assigned to team up with 1 of the 6 robots.
The study was designed to be completed in 90 minutes.

D. Measure

The Background Survey includes measures of the demo-
graphic information, education, video game experience, mil-
itary background, predisposition to trust [41], propensity to
trust [42], complacency potential [43], negative attitude to-
wards robots [44] and uncertainty response scale [45]. Because
the impact of individual differences on trust is not the focus
of this paper, such analyses and results are not included here.

In the Post-Mission Survey, we have designed items to
measure participants’ understanding of the robot’s decision-
making process. We modified items on interpersonal trust to
measure trust in the robot’s ability, benevolence and integrity
[31]. We also included the NASA Cognitive Load Index [46],
Situation Awareness Rating Scale [47], trust in oneself and
teammate [43], and trust in robots [33]. We have also collected
interaction logs from the online testbed.

The dependent measures discussed in this paper are listed
below. Trust can both be measured via self-report [31] and
behavioral indicators, such as compliance. Both of these
measures used in the study are discussed below. Because trans-
parency is hypothesized as the “mediating” factor between
explanations and trust, we also included transparency as one
of the outcome measures. The investigation is carried out in
the domain of a human-robot team, and the goal of designing
explanations to improve transparency and trust relationship is
to improve team performance. Thus, we include two team-
performance measures as outcome measures, shown below.
• Trust: Trust in the robot’s ability, benevolence and in-

tegrity is measured by modifying an existing scale [48]
that measures these three factors of trustworthiness. Each
factor of trust is calculated by averaging corresponding Post-
Mission Survey items collected after each of the 3 missions.
The explanations compared in this paper are designed to
influence perceptions of the ability factor of trust, and do
not explicitly target the benevolence and integrity factors of
trust. So we focus on only the ability component of trust in
this paper. The value ranges from 1 to 7.

• Compliance: This is calculated by dividing the number of
participant decisions that matched the robot’s recommen-
dation, by the total number of participant decisions in the
interaction logs collected from 3 missions. The value ranges
from 0 to 100.

• Transparency: This is measured using 1–7 Likert scale
items on the understanding of the robot’s decision-making
process, designed by the researcher. A sample item from
this measure is “I understand the robot’s decision-making
process”. The measure is calculated by averaging responses
to corresponding survey items in the Post-Mission Survey
after each of the 3 missions. The value range from 1 to 7.

• Mission Success: This team-performance measure is ex-
tracted from a line in the interaction log indicating whether
the mission ended in success/failure, then divided by the

TABLE I
NUMBER OF PARTICIPANTS IN EACH EXPERIMENT CONDITION.

Confidence
Explanation

Observation
Explanation

No
Explanation

High Ability Robot 23 21 30
Low Ability Robot 19 18 31

total number of missions (3) in the study. The value ranges
from 0 to 100.

• Correct Decisions: This team-performance measure is cal-
culated by dividing the number of correct decisions (e.g.,
ending in safety) by the total number of participant decisions
in the interaction logs collected from 3 missions. The value
ranges from 0 to 100.

VI. RESULTS

We excluded data from 20 (out of 160) participants due to
incomplete entries (e.g., participants skipped survey questions
or left the simulations). As a result, 140 participants (62
women, 78 men, Mage = 33.5 years, age range: 20-61 years)
are included in the analysis. 4 participants answered that they
had worked with an automated squad member (such as a
robot) before. 3 participants had reconnaissance or search and
rescue training, and 1 was actually involved in such missions.
Only 1 participant was an active service member. Table I
shows the number of participants in each experiment condition
included in the analysis. During the study, more participants
were recruited in the No Explanation condition, due to data
loss caused by server failure. The researchers were later able
to recover and include the lost data in the analysis.

A. Correlations

Pairwise correlation tests show that mission success is
moderately correlated with trust, r(137) = .336, p < .001, but
weakly correlated with transparency, r(137) = .175, p < .05,
and correct decisions, r(138) = .204, p < .05. It is not signif-
icantly correlated with compliance, r(138) = .049, p = .569.
The same tests show that trust is strongly and positively
correlated with transparency, r(137) = .712, p < .001, and
moderately correlated with correct decisions, r(137) = .512,
p < .001, and compliance, r(137) = .431, p < .001.

B. Main Effect of Robot’s Ability and Explanations

A 2x3 ANOVA with the robot’s ability (high, low) and
the type of explanations offered (no explanation, confidence-
level explanation, observation explanation) as between-subject
factors show significant main effects of ability on trust
,F (1, 133) = 31.15, p < .0001, transparency, F (1, 133) =
17.30, p < .0001, compliance, F (1, 134) = 21.48, p < .0001,
and correct decisions, F (1, 134) = 11.67, p < .001. The main
effect on mission success, F (1, 134) = 2.28, p = .1337, is
not statistically significant. Table II shows the means of the
dependent variables. Overall, participants who worked with a
high-ability robot reported trusting the robot more, followed
the robot’s recommendations more often (measured as com-
pliance) and made better decisions. Surprisingly, participants



TABLE II
MAIN EFFECT OF THE ROBOT’S ABILITY: MEANS OF DEPENDENT

VARIABLES COMPARED BETWEEN PARTICIPANTS WHO INTERACTED WITH
A ROBOT WITH HIGH OR LOW ABILITY.

High Ability Robot Low Ability Robot

Trust 6.36 5.37
Transparency 5.84 4.80
Compliance 91.6 79.5
Mission Success 85.7 78.0
Correct Decisions 91.6 82.4

TABLE III
MAIN EFFECT OF EXPLANATIONS: MEANS OF DEPENDENT VARIABLES

COMPARED BETWEEN PARTICIPANTS WHO INTERACTED WITH A ROBOT
THAT OFFERED DIFFERENT EXPLANATIONS. A PAIR OF ∗ OR † MEANS THE

DIFFERENCE BETWEEN THE TWO VARIABLES IS STATISTICALLY
SIGNIFICANT (p < .05).

Confidence
Explanation

Observation
Explanation

No
Explanation

Trust 6.17∗ 6.29† 5.37∗†

Transparency 5.96∗ 5.52† 4.75∗†

Compliance 86.0 86.4 83.9
Mission Success 96.0∗ 92.3† 65.0∗†

Correct Decisions 90.0∗ 89.6 82.8∗

also felt that they understood the robot’s decision and decision-
making process (measured as transparency) more, when the
robot’s ability was high. More surprisingly, participants did
not succeed in significantly more missions when they worked
with a high-ability robot. This may be an indication that the
explanations offered by the low-ability robot were mitigating
the impact of its erroneous recommendations.

The 2x3 ANOVA tests also show significant main effects
of explanation on trust, F (2, 133) = 17.23, p < .0001,
transparency, F (2, 133) = 12.05, p < .0001, mission suc-
cess, F (2, 134) = 21.45, p < .0001, and correct decisions,
F (2, 134) = 5.25, p < .01. The main effect on compliance,
F (2, 134) = .769, p = .466, is not statistically significant.
Tukey HSD tests were subsequently conducted on all possible
pairwise contrasts, shown in Table III. Pairs of groups found
to be statistically significant (p < .05) are indicated with a
pair of ∗ or †. In general, explanations helped the participants
understand the robot’s decision-making process, and succeed
in more missions, compared to participants who worked with
a robot that offered no explanation. Participants also trusted a
robot that offered explanations more. However, we did not find
any significant impact of explanations on the compliance, e.g.,
how often participants followed the robot’s recommendations.

C. Interaction Effect of Robot’s Ability and Explanations

The 2x3 ANOVA tests also show that there are signifi-
cant interaction effects between the robot’s ability and the
explanation offered on trust, F (2, 133) = 18.67, p < .0001,
and transparency, F (2, 133) = 10.06, p < .0001, mission
success, F (2, 134) = 4.57, p < .05, correct decisions,
F (2, 134) = 12.29, p < .0001, and compliance, F (2, 134) =
4.05, p < .05. Post hoc analyses were conducted given the

TABLE IV
INTERACTION EFFECT OF ABILITY AND EXPLANATIONS: MEANS OF
DEPENDENT VARIABLES COMPARED BETWEEN PARTICIPANTS WHO

INTERACTED WITH A ROBOT WITH DIFFERENT ABILITY AND OFFERING
DIFFERENT EXPLANATIONS. A PAIR OF ∗ OR † MEANS THE DIFFERENCE

BETWEEN THE TWO VARIABLES IS STATISTICALLY SIGNIFICANT (p < .05).

Confidence
Explanation

Observation
Explanation

No
Explanation

Low Trust 6.15∗ 6.07† 4.31∗†

Ability Transparency 5.51∗ 5.71† 3.66∗†

Robot Compliance 84.6 81.5 74.2
Mission Success 97.1∗ 93.7† 52.2∗†

Correct Decisions 91.9∗ 87.0† 71.9∗†

High Trust 6.18 6.57 6.39
Ability Transparency 5.53 6.27 5.82
Robot Compliance 87.8 93.0 93.4

Mission Success 94.7 91.7 77.4
Correct Decisions 87.8 93.0 93.4

significant ANOVA F test. Specifically, Tukey HSD tests were
conducted on all possible pairwise contrasts. Contrasts within
robots of the same ability are shown in Table IV, because
it makes little sense to compare across robots of different
abilities. Pairs of groups found to be statistically significant
(p < .05) are indicated with a pair of ∗ or † in Table IV.

1) Explanation and Low-Ability Robot: From Table IV,
we can see that explanations made significant differences
on almost all dependent variables. When a low-ability robot
offered either confidence-level or observation explanations,
it helped participants understand the robot’s decision-making
process (transparency), succeed in more missions, make more
correct decisions, and trust the robot more. Compliance (e.g.,
following the robot’s recommendations) to a low-ability robot
was not impacted by the explanations offered. It is worth
noting that the goal of the explanations is not to make human
teammates trust the low-reliability robot more, but to calibrate
their trust level appropriately and know when and when not to
trust it. So it may seem problematic that the participants trusted
the low-ability more when it offered explanations. Implications
of this outcome are discussed in detail in Section VII.

2) Explanations and High-Ability Robot: From Table IV,
we an see that explanations made no significant difference on
any of the dependent variables, when participants worked with
a high-ability robot. Interestingly, the compliance rate to the
high-ability robot, who makes correct decisions 100% of the
time, is still less than 100%. As previous research has shown,
disuse is a real and common problem in human-automation
interaction [10] and often linked to lack of transparency
[49]. While we hypothesize that explanations, even offered
by a reliable robot, can help improve the trust relationship,
compliance rate and team performance, we did not find such
an effect in our data from interaction with a high ability robot.

VII. DISCUSSIONS

In this work, we designed an online experiment platform
to study trust in HRI. PsychSim was used as the underlying
framework to simulate the robot’s decision-making process



and as the foundation for automatically generated POMDP
explanations to establish a proper level of trust. We evaluated
these novel explanation algorithms with the testbed where
participants teamed up with a simulated robot with either high
or low ability, and offered two different types of explanations
or no explanations with its decisions. Results indicate that the
robot explanations on either confidence-level or observations
helped build transparency and trust, and improved decision-
making and team performance, particularly so when the robot’s
ability was low. When the robot’s ability was high, the
explanations did not make any significant impact on trust,
transparency or team performance.

Consistent with previous studies on trust and transparency
[5], self-reported trust in the robot’s ability was highly corre-
lated with understanding of its decision and decision-making
process. However, explanation helped improve understanding
of the robot’s decision, but only in the low-ability robot.
This could be because the high-ability robot always makes
correct decisions, so participants never needed to question its
decisions, let alone carefully examine its confidence level or
observations. Working with a low-ability robot, on the other
hand, requires the teammates to pay close attention to the
explanations to gauge when to trust or distrust the robot.

This finding on explanations offered by the low-ability robot
and subjective trust is seemingly similar to earlier research
on hand-crafted explanations [5]. However, in the Dzindolet
study, the explanation was provided before the interaction
began and was not designed to help participants “diagnose”
when to trust the robot’s recommendations. Thus, such expla-
nations served more or less as the robot’s “excuse” when it was
unreliable. The explanations presented here were generated to
help participants gauge when and when not to trust the robot.
Thus, it is possible that the participants trusted the low-ability
robot more when it offered explanations because the robot was
more useful, compared to a robot that has the same low ability
but did not offer additional information on its decisions.

Interestingly, we did not find any significant differences on
the measures we analyzed between confidence-level explana-
tions and observation explanations. Both types of explanations
were useful in helping the human teammate decide when to
trust the robot. For example, a teammate could potentially
learn his/her own heuristics that if the robot’s confidence
level is below (for example) 75%, then do not follow the
robot’s decision. Similarly, a teammate could diagnose from
the observation explanations that if the camera reports no signs
of danger, but the robot’s microphone picks up unfriendly
conversations, then it is time to be cautious and put protective
gear on, regardless of the robot’s overall assessment of safety.
It is concerning that participants who received confidence-
level explanations also felt that they understood the robot’s
decision-making process, even though such explanations did
not reveal any of the robot’s inner workings. While confidence-
level explanations may help teammates make decisions just
as well as with observation explanations, they will not help
teammates diagnose or repair the robot (e.g., the participants
will not know that it is the camera that caused the robot to

make wrong decisions).
Although compliance (e.g., percentage of robot’s recom-

mendations followed) is not significantly correlated with mis-
sion success, it is significantly correlated with trust in the
robot’s ability. Additional pairwise correlation tests revealed
that compliance is highly correlated with the correct decisions,
r(138) = .957, p < .0001. This is because the robot’s errors,
although costly, are somewhat rare (16.7%) in the testbed
scenario. Future work can vary both the probability and utility
of correct decisions.

One of the limitations of the current work is that the
understanding of the robot’s decision-making process is mea-
sured via self-report. In other words, it is unclear whether the
participants actually understood such decision-making process,
as they claimed. Future work can include measures to test
participants’ knowledge of the robot (e.g., its capability) or
allow it to be inferred more directly and specifically from
the subsequent decisions that participants made (e.g., ask
participants to choose MOPP gear vs. body armor). Another
limitation of the current work is that the measures are ag-
gregated from participants’ responses after each of the 3
missions. More fine-grained analysis of data collected from
each mission can be conducted to study how trust evolves
over time. Additional analysis of individual differences (e.g.,
complacency potential, uncertainly response) and cognitive
load (e.g., NASA’s TLX measure) can shed light on how
these factors impact the efficacy of explanations on trust,
transparency, and team performance. These future analyses
can lead to further refinements of our explanation algorithms
that can increase the positive impact already exhibited by the
current implementation on human-robot trust.

ACKNOWLEDGMENT

This project is funded by the U.S. Army Research Labo-
ratory. Statements and opinions expressed do not necessarily
reflect the position or the policy of the United States Govern-
ment, and no official endorsement should be inferred.

REFERENCES

[1] V. Groom and C. Nass, “Can robots be teammates?: Benchmarks in
human–robot teams,” Interaction Studies, vol. 8, no. 3, pp. 483–500,
2007.

[2] E. Park, Q. Jenkins, and X. Jiang, “Measuring trust of human operators
in new generation rescue robots,” in Proceedings of the JFPS Interna-
tional Symposium on Fluid Power, vol. 2008, no. 7-2. The Japan Fluid
Power System Society, 2008, pp. 489–492.

[3] A. Freedy, E. DeVisser, G. Weltman, and N. Coeyman, “Measurement of
trust in human-robot collaboration,” in Collaborative Technologies and
Systems, 2007. CTS 2007. International Symposium on. IEEE, 2007,
pp. 106–114.

[4] P. de Vries, C. Midden, and D. Bouwhuis, “The effects of errors on
system trust, self-confidence, and the allocation of control in route
planning,” International Journal of Human-Computer Studies, vol. 58,
no. 6, pp. 719–735, 2003.

[5] M. T. Dzindolet, S. A. Peterson, R. A. Pomranky, L. G. Pierce, and H. P.
Beck, “The role of trust in automation reliance,” International Journal
of Human-Computer Studies, vol. 58, no. 6, pp. 697–718, 2003.

[6] J. Lee and N. Moray, “Trust, self-confidence and supervisory control
in a process control simulation,” in Systems, Man, and Cybernetics,
1991.’Decision Aiding for Complex Systems, Conference Proceedings.,
1991 IEEE International Conference on. IEEE, 1991, pp. 291–295.



[7] ——, “Trust, control strategies and allocation of function in human-
machine systems,” Ergonomics, vol. 35, no. 10, pp. 1243–1270, 1992.

[8] B. M. Muir, “Trust between humans and machines, and the design of
decision aids,” International Journal of Man-Machine Studies, vol. 27,
no. 5, pp. 527–539, 1987.

[9] V. Riley, “Operator reliance on automation: Theory and data,” in
Automation and human performance: Theory and applications, R. Para-
suraman and M. Mouloua, Eds. Hillsdale, NJ: Lawrence Erlbaum
Associates, Inc., 1996, pp. 19–35.

[10] R. Parasuraman and V. Riley, “Humans and automation: Use, misuse,
disuse, abuse,” Human Factors: The Journal of the Human Factors and
Ergonomics Society, vol. 39, no. 2, pp. 230–253, 1997.

[11] J. D. Lee and K. A. See, “Trust in automation: Designing for appropriate
reliance,” Human Factors: The Journal of the Human Factors and
Ergonomics Society, vol. 46, no. 1, pp. 50–80, 2004.

[12] W. R. Swartout and J. D. Moore, “Explanation in second generation
expert systems,” in Second generation expert systems. Springer, 1993,
pp. 543–585.

[13] L. R. Ye and P. E. Johnson, “The impact of explanation facilities on user
acceptance of expert systems advice,” MIS Quarterly, vol. 19, no. 2, pp.
157–172, 1995.

[14] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial Intelligence,
vol. 101, pp. 99–134, 1998.

[15] A. R. Cassandra, L. P. Kaelbling, and J. A. Kurien, “Acting under
uncertainty: Discrete Bayesian models for mobile-robot navigation,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, vol. 2, 1996, pp. 963–972.

[16] S. Koenig and R. Simmons, “Xavier: A robot navigation architecture
based on partially observable Markov decision process models,” in
Artificial Intelligence Based Mobile Robotics: Case Studies of Successful
Robot Systems, D. Kortenkamp, R. P. Bonasso, and R. R. Murphy, Eds.
MIT Press, 1998, pp. 91–122.

[17] J. Pineau, M. Montemerlo, M. Pollack, N. Roy, and S. Thrun, “Towards
robotic assistants in nursing homes: Challenges and results,” Robotics
and Autonomous Systems, vol. 42, no. 3, pp. 271–281, 2003.

[18] S. C. Marsella, D. V. Pynadath, and S. J. Read, “PsychSim: Agent-based
modeling of social interactions and influence,” in Proceedings of the
International Conference on Cognitive Modeling, 2004, pp. 243–248.

[19] D. V. Pynadath and S. C. Marsella, “PsychSim: Modeling theory of mind
with decision-theoretic agents,” in Proceedings of the International Joint
Conference on Artificial Intelligence, 2005, pp. 1181–1186.

[20] N. Wang, D. V. Pynadath, K. Unnikrishnan, S. Shankar, and C. Mer-
chant, “Intelligent agents for virtual simulation of human-robot interac-
tion,” in Virtual, Augmented and Mixed Reality. Springer, 2015, pp.
228–239.

[21] M. Desai, M. Medvedev, M. Vázquez, S. McSheehy, S. Gadea-
Omelchenko, C. Bruggeman, A. Steinfeld, and H. Yanco, “Effects
of changing reliability on trust of robot systems,” in Human-Robot
Interaction (HRI), 2012 7th ACM/IEEE International Conference on.
IEEE, 2012, pp. 73–80.

[22] M. Desai, P. Kaniarasu, M. Medvedev, A. Steinfeld, and H. Yanco,
“Impact of robot failures and feedback on real-time trust,” in Proceed-
ings of the 8th ACM/IEEE international conference on Human-robot
interaction. IEEE Press, 2013, pp. 251–258.

[23] M. Salem, G. Lakatos, F. Amirabdollahian, and K. Dautenhahn, “Would
you trust a (faulty) robot?: Effects of error, task type and personality
on human-robot cooperation and trust,” in Proceedings of the Tenth An-
nual ACM/IEEE International Conference on Human-Robot Interaction.
ACM, 2015, pp. 141–148.

[24] S. Ososky, D. Schuster, E. Phillips, and F. G. Jentsch, “Building ap-
propriate trust in human-robot teams,” in 2013 AAAI Spring Symposium
Series, 2013.

[25] T. Dodson, N. Mattei, and J. Goldsmith, “A natural language argumenta-
tion interface for explanation generation in Markov decision processes,”
in Algorithmic Decision Theory, R. I. Brafman, F. S. Roberts, and
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