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Abstract. Trust is critical to the success of human-robot interaction. Research
has shown that people will more accurately trust a robot if they have an accurate
understanding of its decision-making process. The Partially Observable Markov
Decision Process (POMDP) is one such decision-making process, but its quanti-
tative reasoning is typically opaque to people. This lack of transparency is exacer-
bated when a robot can learn, making its decision making better, but also less pre-
dictable. Recent research has shown promise in calibrating human-robot trust by
automatically generating explanations of POMDP-based decisions. In this work,
we explore factors that can potentially interact with such explanations in influ-
encing human decision-making in human-robot teams. We focus on explanations
with quantitative expressions of uncertainty and experiment with common design
factors of a robot: its embodiment and its communication strategy in case of an er-
ror. Results help us identify valuable properties and dynamics of the human-robot
trust relationship.

1 Introduction

Trust is critical to the success of human-robot interaction (HRI) [1]. To maximize the
performance of human-robot teams, people should trust their robot teammates to per-
form a given task when robots are more suited than humans for the task. If the robots are
less suited, then people should perform the task themselves. Failure to do so results in
disuse of robots in the former case and misuse in the latter [2]. Real-world case studies
and laboratory experiments show that failures of both types are common [3].

Research has shown that people will more accurately trust an autonomous system
if they have a more accurate understanding of its decision-making process [4]. The
Partially Observable Markov Decision Process (POMDP) is one such decision-making
process, providing optimized decision making that is commonly used by robots, agents,
and other autonomous systems [5]. Unfortunately, the quantitative nature of POMDP
algorithms and their results makes them hard for people to understand. Furthermore,
while a robot could learn to improve its POMDP model, such changes in its decision-
making only exacerbate the lack of transparency. Fortunately, recent research has shown
promise in calibrating human-agent trust by automatically generating explanations of
POMDP-based decisions [6].



In this work, we seek a deeper understanding of the factors leading to the effec-
tiveness (or lack thereof) of such automatically generated explanations. We specifically
focus on explanations that provide quantitative information on uncertainty and two fac-
tors related to common robot design decisions: its embodiment and its communication
strategy in case of errors. We seek to understand how a robot’s coping strategies af-
ter making an error may interact with its transparency communications in calibrating
a human teammate’s trust in it. We implement a specific trust-repair strategy inspired
by prior work in organizational trust: an acknowledgement of a mistake, paired with a
promise to improve [7]. We thus can study differences in the effect of such an error ac-
knowledgment and promise to learn when preceded by different types of explanations
of the robot’s decision-making.

In addition, people have been observed to react differently to robot teammates based
on their appearance [8]. There are clear behavioral differences for many people when
interacting with more human- or animal-like robots, in contrast to their interactions with
more “mechanical” robots. In fact, trust in human-animal interaction shares some char-
acteristics with trust in human-robot interaction, in that both seek to augment human
skills and abilities in order to better accomplish a particular task [9]. It has been sug-
gested that human-animal interactions may represent a suitable metaphor for human-
robot interactions (for review, see [10]). Of course, the roles that each entity fills de-
pend on its capabilities, skills, and affordances [11, 12]. Thus we consider how the
robot’s embodiment will affect the interpretation and effectiveness of its explanations.
In particular, we draw inspiration from studies showing that dog-like robots are treated
differently from those with a more traditionally robotic appearance [11, 12]. We can
therefore quantify the potentially different effects of POMDP-based explanations when
coming from robots with different embodiments.

To quantify the impact of these variables, we expand our measures to consider self-
reported trust as well as behavioral measures of human decision-making, such as com-
pliance with the robot’s recommendations, correct decisions by the human teammate,
and correct diagnosis of the robot’s failures by the human teammate. By looking at
where these behavioral measures deviate from self-reported measures, we can better
drill down into the mental states of the human teammates, into the antecedents of trust.

2 Related Work

Existing studies have shown that a human’s ability to understand its agent teammate
has a clear impact on trust [4]. Hand-crafted explanations have shown to contribute to
that understanding in a way that provides transparency and improves trust [13]. Auto-
mated, domain-independent methods for generating explanations have a long history
within the context of rule- and logic-based systems, like expert systems [14]. There has
been more recent work on generating explanations based on Markov Decision Problems
(MDPs) [15]. Our previous work automatically generated explanations from Partially
Observable MDPs [6], which provide a more realistic model for HRI domains, due to
the inherent uncertainty in the robots’ operating environment. The existing evidence is
encouraging as to the potential success of applying a general-purpose explanation on
top of an agent’s decision-making process.



To identify the most effective content for such AI-based explanations, we look to
studies that measure the impact of various forms of explanation on people’s perceptions
of risks and uncertainties when making decisions. A survey of these studies indicates
that “people prefer numerical information for its accuracy but use a verbal statement to
express a probability to others.” [16]. On the other hand, one of the studies in the survey
contrasted a numeric representation of uncertainty with more anecdotal evidence and
found that the numeric information carried less weight when both types were present
[17]. A study of risk communication in medical trade-off decisions showed that peo-
ple performed better when receiving numeric expressions of uncertainty in percentage
(67%) rather than frequency (2 out of 3) form [18]. In translating our robot’s POMDP-
based reasoning into a human-understandable format, our explanation algorithms use
natural-language templates inspired by these various findings in the literature.

Previous studies of automatically generated explanations in HRI used a fixed robot,
with a traditionally mechanical appearance. However, people react differently to robot
teammates based on their appearance. Prior studies have shown that some people show
a marked preference for more mechanical-looking robots, while others are more com-
fortable interacting with humanoid robots [8]. Such observations have prompted other
technological attempts to emulate the physical, behavioral, and cognitive aspects of bi-
ological entities within robots. Studies have found that humans tend to describe their
relationships with robotic animals as similar to those with biological animals [11, 12].
These studies found that people will often attribute some (but not all) dog-like quali-
ties to robots who look like dogs. In fact, in many domains, human-animal trust can be
viewed as a better model for HRI than human-human trust [10].

Given the uncertain nature of the robot’s decisions, they will inevitably turn out
to be wrong from time to time. Reinforcement learning has enabled many robots to
improve from their mistakes (e.g., [19, 20]). While such learning is likely to complicate
the robot’s effort to reason transparently with human teammates, it does provide an
opportunity to repair trust that has been damaged by robot errors. Our investigation into
the interaction between explanations and trust repair is inspired by work on the latter
within organizations [21, 7]. Prior research has found that timely trust-repair actions are
critical to effectively maintaining trust within HRI [22].

In this paper, we discuss the impact of a robot’s embodiment, its explanation, and its
promise to learn from mistakes on trust and team performance. Based on results from
previous studies of robot explanations and trust [23], we hypothesize that:

H1: Compared to a robot who offers no explanations of its decisions, a robot who
offers explanations can help its teammate better calibrate trust and produce better team
performance.

Additionally, we hypothesize that a robot that looks like an animal, such as a dog,
will help human teammates establish a trust relationship with it similar to the one they
would have with a real dog. We therefore hypothesize that:

H2: A robot’s embodiment will impact trust in the robot and team performance.
Specifically, a robot whose appearance shares that of an animal will foster a stronger
trust relationship than one with a more mechanical appearance.



Finally, a robot can acknowledge its mistakes and promise to learn from them, so as
to indicate that it is aware of its limitations and knows how to improve. Such indications
can potentially improve its teammate’s trust in its ability. We hypothesize that:

H3: A robot that acknowledges each mistake it makes and promises to learn from
them will improve its trust relationship with its human teammates.

3 HRI Testbed

We evaluate our hypotheses in the context of an online HRI testbed [24]. For the current
study, we used the testbed to implement a scenario in which a human teammate works
with a different robot across eight reconnaissance missions (Figure 1). Each mission
requires the human teammate to search 15 buildings in a different town. The virtual
robot serves as a scout, scans the buildings for potential danger, and relays its findings.
The robot has an NBC (nuclear, biological, and chemical) weapon sensor, a camera that
can detect armed gunmen, and a microphone that can identify suspicious conversations.

The human must choose between entering a building with or without protective gear.
If there is danger in the building, the human will be injured if not wearing the protective
gear, and the team will incur a 3-minute time penalty. However, it takes time to put
on and take off protective gear (20 seconds each). The human teammate must enter all
15 buildings within 10 minutes; otherwise, the mission is a failure. So the human is
incentivized to consider the robot’s findings before deciding how to enter the building.

We model this task as a POMDP, which is a tuple, 〈S,A, P, Ω,O,R〉 [5]. The
state, S, consists of objective facts about the world, such as the presence of dangerous
chemicals in the buildings. The robot’s available actions, A, correspond to the possible
decisions it can make. Upon arrival at a new building, the robot makes a decision as to
whether to declare it safe or unsafe for its human teammate. We model the dynamics of
the world using a transition probability function, P , that captures the uncertain effects
of the robot’s actions. A recommendation that a building is safe (unsafe) has a high
(low) probability of decreasing the teammate’s health if there is, in fact, danger present.

The robot has only indirect information about the true state of the world, through
a subset of possible observations, Ω, that are probabilistically dependent (through the
observation function, O) on the true values of the corresponding state features. For
example, if dangerous chemicals are present at its current location, then the robot’s
chemical sensor will detect them with a high probability. There is also a lower, but
nonzero, probability that the sensor will not detect them.

The robot’s reward, R, is highest when all buildings have been explored by the
human teammate. This reward component incentivizes the robot to pursue the overall
mission objective. There is also a positive reward associated with the human teammate’s
health. This reward component punishes the robot if it fails to warn its teammate of
dangerous buildings. Finally, there is a negative reward that increases with the time cost
of the current state. This motivates the robot to complete the mission quickly.

An agent can generate behavior based on its POMDP model by determining the op-
timal action based on its current beliefs, b, about the state of the world [5]. In particular,
our robot will consider declaring a building dangerous or safe by combining its beliefs
about the likelihood of possible threats in the building with each possible declaration



to compute the likelihood of the outcome (i.e., impact on teammate’s health and time
needed to search the building). It will finally combine these outcome likelihoods with
its reward function and choose the option that has the highest reward.

While the scenario is military reconnaissance, it is simple enough that it does not
require prior experience to complete the mission in the study, e.g., the task does not need
knowledge of procedures for searching buildings. The participant needs to decide only
whether to trust the robot’s findings (safe/dangerous) and press a button to enter/exit the
room. In the current study, we fixed the observations the robot receives to be accurate
80% of the time. As a result, the robot makes incorrect assessment of the danger level
for 3 out of 15 buildings in each town. Research on automation reliability on trust and
human-automation team has indicated that a reliability of 80% ([25]) or above 70%
([26]) to be a suitable setting for similar studies.

Fig. 1. Human Robot Interaction Simulation Testbed with HTML front-end.

4 Evaluation

The domain of the testbed scenario is relevant to the military, so we recruited 61 partic-
ipants from a higher-education military school in the United States. Participants were
awarded extra course credit for their participation.

Design: We varied the robot’s embodiment (robot vs. robot dog), explanation (no
explanation vs. confidence explanation) and acknowledgement to learn from mistakes
(no acknowledgement vs. acknowledgement). The aforementioned testbed was used in
the study. Because individual differences often impact trust in automation [27], a 2 ×
2×2 within-subject design is used in the study. Each participant completed 8 missions.
In each mission, a different variation of the robot worked with the participant. A total of
8 variations of robot were used (hence 8 missions). While the task and environment of
mission 1 through 8 were fixed, the order of the robot variations was counter-balanced.
At the beginning of each mission, participants were told that they were working with a
new robot for the first time (e.g., not the same robot from previous missions).

Embodiment: Two robot embodiments were used in the study, illustrated in Figure
2. One robot was designed to look like a dog, with ears, nose, and highlighted eyes,
suggesting possibly embedded sound, NBC, and vision sensors. The second robot was
designed to have the appearance of a typical robot-looking robot on wheels.

Explanation: Existing algorithms explain an agent’s decision-making by exposing
different components of its POMDP model [6]. In this study, the explanation variable



has two levels: no explanation and a confidence-level explanation. At both levels, the
robot informs its teammate of its decision (e.g., “I have finished surveying the doctor’s
office. I think the place is safe.”). Under the confidence-level explanations, the robot
augments this decision with additional information that should help its teammate better
understand its ability (e.g., decision-making), one of the key dimensions of trust [28].
The confidence-level explanations augment the decision message with additional infor-
mation about the robot’s uncertainty in its decision. One example of a confidence-level
explanation would be: “I have finished surveying the Cafe. I think the place is danger-
ous. I am 78% confident about this assessment.” Because the robot’s one faulty sensor
will lead to occasionally conflicting observations, it will on those occasions have lower
confidence in its erroneous decisions.

Fig. 2. The two embodiment of the robots used in the study: a robot (left) and a robot dog (right).

Acknowledgment: The acknowledgement variable has two levels: no acknowledge-
ment and an acknowledgement that a mistake has been made along with a promise to
learn from the mistake. This acknowledgement is given every time the robot makes an
assessment that turned out to be incorrect. The team searches 15 buildings during each
reconnaissance mission. In each mission, the robot makes an incorrect assessment of
three buildings. An example of the robot’s acknowledgement is “It seems that my as-
sessment of the informant’s house was incorrect. I will update my algorithms when we
return to base after the mission.”

Procedure Participants first read an information sheet and filled out the online back-
ground survey. Next, participants worked with a simulated robot on 8 reconnaissance
missions. In each mission, a variation of the simulated robot (with a different combina-
tion of embodiment, explanation, and acknowledgment to learn from its mistakes) was
presented. The order in which the robots were presented was counter-balanced across
participants. After each mission, participants filled out an online post-mission survey.
The study was designed to be completed in 2 sessions, 120 minutes total.

Measure The Background Survey included measures of demographic information,
education, video game experience, military background, predisposition to trust [29],
propensity to trust [30], complacency potential [31], negative attitude towards robots
[32], and the uncertainty response scale [33]. Because the impact of individual differ-
ences on trust is not the focus of this paper, such analyses and results are not included.

In the Post-Mission Survey, we designed items to measure participants’ understand-
ing of the robot’s decision-making process. We modified items on interpersonal trust to
measure trust in the robot’s ability, benevolence, and integrity [28]. We also included



the NASA Cognitive Load Index [34], Situation Awareness Rating Scale [35], and trust
in oneself and teammate [31]. We have also collected interaction logs from the testbed.

The dependent measures discussed in this paper are listed below. Trust can be mea-
sured via both self-report [28] and behavioral indicators, such as compliance. Both of
these measures used in the study are discussed below. Because transparency is hypothe-
sized as the “mediating” factor between explanations and trust, we also included trans-
parency as one of the outcome measures. The investigation is carried out in the domain
of a human-robot team, because the goal of designing explanations to improve trans-
parency and trust relationship is to improve team performance. Thus, we include two
team-performance measures as outcome measures, shown below.

Trust: Trust in the robot’s ability, benevolence, and integrity was measured by mod-
ifying an existing scale [36]. Each factor of trust was calculated by averaging corre-
sponding Post-Mission Survey items collected after each of the 3 missions. The expla-
nations compared in this paper are designed to influence perceptions of the ability factor
of trust, and do not explicitly target benevolence and integrity. So we focus on only the
ability component of trust in this paper. The value ranges from 1 to 7.

Transparency: This is measured using items (along a 1–7 Likert scale) on the under-
standing of the robot’s decision-making process, designed by the researchers. A sample
item from this measure is “I understand the robot’s decision-making process”.

Transparency Test Score: We designed a question to assess participant’s understand-
ing of the robot’s decision-making process. The question asks the participants to name
the components of the robot that need repair. The components include the NBC sen-
sors, audio and video processing units, etc. For the current study, only the audio/video
processing units are faulty. Participants receive either 0 or 1 on this test.

Compliance: This is calculated by dividing the number of participant decisions that
matched the robot’s recommendation by the total number of participant decisions in the
interaction logs collected in each mission (15). The value ranges from 0 to 100%.

Correct Decisions: This measure is calculated by dividing the number of correct
decisions (e.g., ending in safety) by the total number of participant decisions in the
interaction logs collected in each mission (15). The value ranges from 0 to 100%.

5 Results

Data from 61 participants are included in the analysis (14 women, 39 men,Mage = 19.2
years, age range: 18-23 years). 2 participants answered that they had worked with an
automated squad member (such as a robot) before. 3 participants had reconnaissance or
search and rescue training, and 1 was actively involved in such missions.

We conducted a General Linear Model analysis with Repeated Measures and Bon-
ferroni corrections, using explanation, embodiment, and promise to improve as within-
subject factors, and trust, transparency, compliance, and correct decisions as dependent
variables. Results show that explanation had a significant impact on trust (F (1, 60) =
118.68, p < .0001), transparency (F (1, 60) = 33.82, p < .0001), transparency test
score (F (1, 60) = 11.72, p = .001), compliance (F (1, 60) = 66.31, p < .0001), and
correct decisions made (F (1, 60) = 83.90, p < .0001). As shown in Table 1, partici-
pants reported a higher level of trust in the robot’s ability when it offered explanations



on its decisions. Participants also reported that they felt that they understood the robot’s
decision-making process better when the robot offered explanations. Additionally, when
the robot offered explanations, the human teammate made better decisions, as reflected
in the percentage of correct decisions. The explanation also helped the human teammate
calibrate when they should trust robot, as indicated by the combination of compliance
rate and percentage of correct decisions. For each mission, 80% of the robot’s deci-
sions are correct (12 out of 15). We can see from Table 1 that when the robot offered
no explanations, the participants over-trusted the robot (89.3%), resulting in poor de-
cisions (69%). In contrast, when the robot offered explanations, the compliance rate
(78.9%) is much closer to the robot’s correctness rate (80%). On the other hand, when
the robot offered no explanations, participants scored higher on the transparency test
score, compared to when explanations were offered.

Table 1. The effect of explanation on trust, transparency, compliance, and correctness.

No Explanation Confidence Explanation

Transparency 2.75 (out of 7) 3.65 (out of 7)
Transparency
Test Score .414 (out of 1) .275 (out of 1)

Trust 2.99 (out of 7) 5.07 (out of 7)
Compliance 89.3% 78.9%
Correct Decisions 69% 85.1%

The main effect of the promise to learn from mistakes was not statistically signif-
icant for any of the dependent variables. The robot’s embodiment had a marginally
significant effect on trust (F (1, 60) = 3.64, p = .061) and no significant main effect on
the rest of the dependent variables. With a dog-like embodiment, participants reported
a lower level of trust, compared to that reported for the machine-like robot embodiment
(Mdog = 3.96, Mrobot = 4.10).

There was a marginally significant interaction between the robot’s promise to im-
prove and its explanations on trust (F (1, 60) = 3.85, p = .054). As shown in Table 2,
when the robot offered explanations, additional acknowledgment of error and promise
to learn from it did not make much difference in the self-reported trust in the robot.
However, when the robot did not offer explanations, acknowledging that an error was
made and promising to improve did lead to higher self-reported trust by the participants.

Table 2. Interaction between the robot’s explanations and acknowledgment on participants’ trust.

No Explanation Confidence Explanation

No ACK. 2.86 (out of 7) 5.09 (out of 7)
With ACK. 3.13 (out of 7) 5.05 (out of 7)

The analysis of the main effect of embodiment shows that there was a marginally
significant impact of the robot’s embodiment on trust, as we originally hypothesized.
The rationale of the hypothesis is that participants will carry their trust relationship
with the real animal over to the animal-like robot. Such carry-over may last only a
short period of time after the initial interaction, as over time, it will be overcome by



the actual behavior of the robot. We plotted the self-reported trust over the course of
8 missions between interactions of robots with different embodiments. As Figure 3
shows, this hypothesized decaying effect is indeed the case. Initially (i.e., during the first
mission), the trust level differed significantly between the two robot embodiments. An
ANOVA with explanation, embodiment, and acknowledgement as fix factors and self-
reported trust right after the first mission as the dependent variable shows a significant
main effect of the robot’s embodiment (Mdog = 3.58, Mrobot = 4.39, F (1, 60) =
6.48, p = .014) and the explanation offered (Mnone = 2.91, Mconfidence = 5.00,
F (1, 60) = 47.47, p < .001). However, over time (in fact, starting from the second
mission), the impact of the robot’s embodiment is overtaken by the robot’s behavior.
And the difference in the level of trust in the robot is dominated by the difference in
the robot’s behavior, in this case, mainly the explanations offered by the robot (Figure
3). The aforementioned ANOVA tests on self-reported trust after subsequent missions
indicated only a significant main effect of the robot’s explanations. Additionally, we did
not observe a significant impact of embodiment on the other dependent variables during
the first mission or over the course of 8 missions.

Fig. 3. Left: Self-reported trust in the robot between two different robot embodiments. Right:
Self-reported trust in the robot between a robot offering confidence-level vs. no explanation .

6 Discussion

It is intriguing that explanation had a significant effect on transparency and self-reported
trust. The explanation offered by the robot indicates only its confidence in its own as-
sessment, not any information about what the assessment was based on or how the
assessment was made. However, participants still reported that they felt that they under-
stood the robot’s decision-making process better when such an explanation was offered.
Furthermore, such explanations do not indicate which component of the robot is faulty.
This is reflected in the generally low scores on the transparency tests (M = .344). It
may be somewhat surprising that when the robot offered explanations, participants ac-
tually scored lower on the transparency test. Perhaps, during these times, participants
relied on the robot’s explanation to guide their decisions, without thinking about where
its recommendation came from. When the robot offered no explanations, the partici-
pants had to rely on experience with the robot to make future decisions, and, in the



process, tried to figure out what was wrong with the robot. Additionally, by offering
explanations of its decisions, the robot helped its teammate calibrate a proper compli-
ance rate (e.g., when and when not to follow its recommendations), resulting in better
decision-making by the human teammate. Finally, without receiving explanations from
the robot, the participants overused the robot, i.e., they followed the robot’s recommen-
dations even when the robot was wrong. Such participants also reported a lower level
of trust in the robot, most likely due to the fact that over-relying on the robot during the
mission resulted in poor decision-making.

Embodiment had an only marginally significant impact on self-reported trust. In
particular, participants reported a lower level of trust in a robot with a dog-like ap-
pearance, compared to a robot with a machine-like appearance. This difference in trust
levels did not translate to a difference in perceived transparency, compliance, or per-
centage of correct decisions. The direction in which the self-reported trust differed is
contrary to our hypothesis. We hypothesized that one would trust a robot that looks
like a dog more because of the existing trust relationship between humans and their
best friend. The fact that participants trusted a machine-like robot more indicates that
trust in the robot’s ability could be context- and task-dependent. A machine-like robot
may give the initial impression of a technological advantage offered by more sophisti-
cated sensing equipment, which would be relevant to the reconnaissance task, compared
to a dog-like robot. However, the effect of embodiment on self-reported trust is most
pronounced at the beginning of the interaction. After interacting with the robot in the
first mission, the robot’s embodiment made no significant difference in the teammate’s
trust. The robot’s behavior, particularly the explanations, which are highly relevant to
the teammate’s decision-making and team performance, became the deciding factor on
transparency, trust, compliance, and teammate’s decision-making for the following mis-
sions. This is congruent with the notion that trust is built based on past experience and
first impressions based on appearance may not last.

Acknowledging a mistake and promising to learn from it had no significant effect
on any of the dependent measures in the study. This is contrary to our hypothesis. Per-
haps this is due to the fact that the participants interacted with each robot in only one
mission. While the robot promised to update its decision-making algorithms to reflect
the experience during the mission, the participants never got to witness any change af-
ter that mission. Making such acknowledgment had a significant interaction effect with
the robot’s explanations on self-reported trust. Particularly, when no explanations were
offered, making such acknowledgment and promise can help restore some trust and per-
haps instill some hope in the robot. However, when the robot offered explanations with
its recommendations, such acknowledgement and promise did not make any significant
impact. Perhaps the explanations alone were enough to steer the trust relationship.

We experimented with a robot that acknowledged its errors and promised to learn
from them after the mission. However, it did not change its behavior within the mis-
sion, possibly accounting for the lack of any significant effect of such an acknowledg-
ment/promise. Our robot’s POMDP model can support such a dynamic behavior with
some straightforward modification. In the next iteration of this study, we will expand
the robot’s POMDP model to include an explicit representation of the possibility of
a sensor failure. The standard POMDP belief-update algorithms could then allow this



robot to decrease its confidence in its vision system after each false negative it receives
[5]. In general, we can allow our robot to perform model-based reinforcement learning
to update any aspect of its POMDP model [37]. Introducing the ability for the robot to
change its decision-making model will no doubt raise new challenges for maintaining
transparency and trust for human teammates.
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