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Abstract

This paper describes a methodology for recording,
representing, and recognizing team behaviors per-
formed by human players in an Unreal Tournament
MOUT (Military Operations in Urban Terrain) sce-
nario. To directly monitor the performance of hu-
man players, we developed a customized version of
Unreal Tournament that records position and ori-
entation of all the team members through time as
they participate in a simulated MOUT scenario of
a firing team moving through an urban area. Be-
havior recognition is performed offline using a set
of hidden Markov models on short movement se-
quences that are translated into a canonical refer-
ence frame; the behavior model with the highest
log likelihood for a given sequence is identified as
correct. We believe that accurate offline recogni-
tion of team behaviors is an important prerequisite
towards building virtual training environments for
teamwork tasks.

1 Introduction
In certain domains tasks are too complicated to be performed
by individual agents and must be achieved through the coor-
dinated efforts of a group of agents over a period of time. To
analyze performance of these tasks, we need to extend exist-
ing behavior recognition formalisms to accommodate group
behaviors. In multi-agent systems we can often eliminate the
need for behavior recognition by having the agents commu-
nicate their states, intentions, and plans; however when the
group of agents includes human participants it becomes un-
reasonable to demand exhaustive self-reporting. Also, in ad-
versarial domains where disguising ones future plans confers
strategic advantage, good plan recognition allows the accu-
rate analysis of groups of agents who are unwilling to report
their state.

In this paper we examine the problem of team behavior
recognition in physical domains. We make the assumption
that the actions of the agents are tightly coupled; all agents
are always performing tasks relevant to accomplishing team
goals and the team is never concurrently executing multi-
ple group behaviors. Also, we focus on physical domains in
which the majority of the agent’s actions involve movement.

Due to the increase in number of actions generated, assuming
that each team member is simultaneously executing actions,
team behaviors have a more complicated temporal structure
than single agent behaviors. However group plans involving
physical movement possess a spatial structure which can be
exploited to classify team behaviors. This spatial structure
includes the relative physical position of team members and
the physical position of team members in relation to static
landmarks (e.g., walls and doorways).

One aspect of our domain which makes the problem more
challenging is that our teams are composed of human players
executing actions by moving bots in a simulated environment;
the humans typically exhibit more variability in their move-
ments than programmed bots who path plan the most efficient
trajectory towards their next target. This additional variabil-
ity makes the recognition problem more difficult; also data
collection is an expensive process since it requires multiple
humans to participate in the scenario.

This paper describes a methodology for recording, repre-
senting, and recognizing team behaviors performed by hu-
man players in an Unreal Tournament MOUT (Military Op-
erations in Urban Terrain) scenario. To directly monitor the
performance of human players, we developed a customized
version of Unreal Tournament that records position and ori-
entation of all the team members through time as they partic-
ipate in a simulated MOUT scenario of a firing team moving
through an urban area. Although we have only examined the
MOUT domain, we believe that this methodology could be
extended to analyze other military and sports tasks that uti-
lize tightly coupled teamwork behaviors in physical domains.

2 Related Work
Related work on the problem of human behavior recogni-
tion has emerged from three communities: computer vi-
sion researchers who have examined the problem of activ-
ity inferencing with temporal constraints[Shi et al., 2004],
graphics researchers who address the problems of cluster-
ing and segmenting unlabeled motion capture data[Jenk-
ins and Mataríc, 2002; Barbicet al., 2004] and artificial in-
telligence plan recognition researchers[Allen et al., 1991;
Charniak and Goldman, 1993; Huberet al., 1994; Tambe and
Rosenbloom, 1995; Pynadath, 1999; Goldmanet al., 1999;
Bui, 2003] who have traditionally focused on inference mech-
anisms.



Human behavior recognition is also performed in tutoring
systems, such as the one developed for the MOUT domain
by [Livak, 2004]. In model-tracing tutoring systems the same
cognitive model is used to generate human-like behavior of
computer generated forces and as part of the recognition sys-
tem used to evaluate the human trainee’s performance. In
our system we focus on analyzing and evaluating the com-
plex spatial relationships that exist between the human team
members rather than using simple location descriptors such
as ‘in room’ to evaluate correctness of behavior.

There has also been work on the problem of identifying
team behaviors from snapshots of formations in Robocup[Ri-
ley and Veloso, 2000; Rileyet al., 2002] and in MOUT[Suk-
thankar and Sycara, 2005]. This is very useful for classify-
ing certain team behaviors that include highly discriminative
static spatial relationships that rarely appear in other behav-
iors; however certain behaviors (e.g., bounding overwatch)
are only distinguishable by examining sequences of spatial
relationships as they evolve through time. In this paper, we
use both spatial and temporal characteristics to perform be-
havior recognition by using invariant spatial relationships in
our state representation and temporal relationships in the tran-
sition matrix of our hidden Markov models. Hidden Markov
models have been successfully applied to the problem of
robotic behavior recognition by[Han and Veloso, 1999].

3 MOUT Domain

MOUT (Military Operations in Urban Terrain) scenarios in-
volve moving teams of soldiers and vehicles through heavily
cluttered urban areas to accomplish high-level strategic objec-
tives. Typically small teams (4 firing-team pairs) of soldiers
work to achieve their objectives in a tightly coupled fashion
without external guidance from central command.

In our MOUT scenario, we focus on the building clear-
ing task, during which a firing-team of soldiers must enter a
building and clear it of enemy occupants. The cognitive task
analysis of building clearing given in[Phillips et al., 2001]
identifies the process of approaching the building as one of
the key decision requirements that dictates whether the pro-
cess is successful; this paper focuses on the three behaviors,
stacked movement, bounding overwatch, and buttonhook en-
try used to approach and enter a building. These behaviors
are difficult to identify solely on the basis of static snapshots
due to their spatial similarity.

During stacked movement the purpose is to move the team
in such a way that their gun angles completely span all possi-
ble areas of approach; the team moves slowly and in synchro-
nization. For moving through open areas or intersections, this
approach is less feasible since it’s hard to span all possible
threatened areas. In this case, the bounding overwatch be-
havior is used; one soldier moves forward while the other re-
mains stationary. The buttonhook entry is similar to bounding
overwatch; one soldier moves through the doorway hugging
the wall while the other soldier waits and guards. After the
entry is clear, the second soldier moves through the doorway
hugging the opposite wall.

Figure 1: MOUT scenario in customized Unreal Tournament
environment from spectator viewpoint. A pair of human play-
ers control soldiers A and B as they move through a small ur-
ban layout. The bot models and animations were modified to
conform to the appearance of real human soldiers rather than
the larger-than-life UT fantasy fighter models.

4 Method
The results described in this paper were obtained using the
following procedure:

1. Pairs of human players using a modified Unreal Tourna-
ment game interface manipulated “bots” through a small
urban layout.

2. After some initial practice familiarizing themselves with
the map and working together as a team, the subjects
were instructed to perform a particular sequence of team
behaviors. Note that the subjects were not playing an
Unreal Tournament level, but using Unreal Tournament
to execute sequences of commonly used MOUT team
maneuvers.

3. Using the modified version of Unreal Tournament de-
scribed in Section 4.1, traces of the players’ behaviors
were recorded in a text file for offline analysis.

4. Behavior traces were preprocessed to generate short,
overlapping segments and converted into a canonical ref-
erence frame based on the motion of the team’s centroid
as described in Section 4.2.

5. Offline traces were automatically classified using the set
of hidden Markov models as described in Section 4.3.

6. The results of our automatic recognition were compared
with a manually annotated version of the trace.

Section 5 gives preliminary results obtained with a single
pair of players who performed the task multiple times in dif-
ferent layouts.

4.1 Data Collection
To directly monitor the performance of human players, we
customized the first-person shooter game, Unreal Tournament



(UT), using the game development language Unrealscript.
Many of the original UT game classes were written in Unre-
alscript and thus can be directly subclassed to produce mod-
ified versions of the game (known as mods); for example,
Gamebots [Kaminkaet al., 2002] is an example of a mod
that allows external programs to control game characters us-
ing network sockets.

We developed our ownTrainingBot mod that allows us
to save the state of all the bots in the scenario; currently we
save each player’s ID number, position(x, y.z), and rotation
(θ,φ) every 0.15 seconds. This information is useful for both
offline behavior analysis and for a separate replay mode that
allows us to create bots that follow the paths recorded by the
original players. To ensure that the player traces are correctly
synchronized in time, we wait until all players have activated
their autosave option to begin recording traces.

To enhance the immersive experience of the players, we
created a custom MOUT soldier model (see Figure 1) that
conforms more closely to the appearance of a real soldier than
the standard UT fantasy fighter models. We also developed a
set of hand-signal animations to allow the players to use a
small set of military hand signals triggered on key-presses.
For our experiments, players executed team behaviors in an
uncluttered map environment of corridors and rooms; in the
future we plan to extend the scenario to include less structured
regions with more clutter.

4.2 Representation
Due to the continuous nature of the domain, automatically
determining the exact transition points between team behav-
iors is a difficult problem. While approaching and entering
buildings, the players continue moving their bots, changing
team behaviors as appropriate for the physical layout. We ad-
dress this issue by dividing the traces into short, overlapping
time windows during which we assume that a single behav-
ior is dominant; these windows are classified independently
as described in Section 4.3. To recognize team behaviors per-
formed in different physical layouts, it is important for our
classifier to be rotationally and translationally invariant; we
achieve this by transforming the data in each window into a
canonical coordinate frame as described below.

More formally, we define:

• a ∈ 1, . . . , A is an index overA agents;

• j is an index overW overlapping windows;

• t ∈ 1, . . . , T is an index over theT frames in a given
window;

• xa,j,t is the vector containing the(x, y) position of agent
a at framet in window j.

The centroid of the positions of the agents in any given
frame can be calculated as:

Cj,t =
1
A

∑
∀a

xa,j,t.

We describe the configuration of the agent team at any given
time relative to this centroid to achieve translation invariance.
However, rather than rotating each frame independently we
define a shared canonical orientation for all the frames in a

window. This is important because it allows us to distinguish
between similar formations moving in different directions
(e.g., agents moving line abreast vs. single file). One stan-
dard technique for defining a canonical orientation is to use
the principal axis of the data points for that window, which
can be calculated using principal component analysis (PCA).
However for efficiency we have empirically determined that
we can achieve similar results by defining the canonical ori-
entation as the displacement of the team centroid over the
window: dj = Cj,T −Cj,1.

We rotate all of the data in each window so as to align its
canonical orientation with the x-axis, using the rotation ma-
trix Rj . Thus the canonical coordinates,x′, can be calculated
as follows:x′

a,j,t ≡ Rjxa,j,t − cj,t. Our current recognition
technique (described in Section 4.3) also relies on observa-
tions of agents’ velocity as a feature which we locally com-
pute as:va,j,t ≡ ||x′

a,j,t+1 − x′
a,j,t||.

4.3 Classification

For each canonically transformed window in our trace, our
goal is to select the best behavior model. We perform this
classification task by developing a set of hidden Markov mod-
els (HMMs), one for each behaviorb, and selecting the model
with the highest log-likelihood of generating the observed
data. Our models ({λb}) are parameterized by the following:

• N , the number of hidden states for the behavior;

• A = {aij}, the matrix of state transition probabilities,
whereaij = Pr(qt+1 = j|qt = i),∀i, j andqt denotes
the state at framet;

• B = {bi(ot)}, wherebi(ot) = N (µi,Σi). The obser-
vation space is continuous and approximated by a single
multivariate Gaussian distribution with mean,µi and a
covariance matrix,Σi, for each statei.

• π = {πi}, the initial state distribution.

For our problem, givenA agents in a team, the obser-
vations at timet and window w are the tuple: ot =
(x′

1,w,t, v1,w,t, . . . ,x′
A,w,t, vA,w,t). We determine the struc-

ture for each behavior HMM based on our domain knowl-
edge. For instance, the stacked behavior can be described
using only two states (N = 2), whereas we represent the
more complicated bounding overwatch behavior using six
states connected in a ring. Each hidden state captures an
idealized snapshot of the team formation at some point in
time, where the observation tuple (in canonical coordinates)
is well modeled by a single Gaussian. Rather than initializ-
ing the HMMs with random parameters, we use reasonable
starting values. These can be polished using expectation-
maximization (EM)[Dudaet al., 2001] on labeled training
data.

To determine the probability,Pr(o1...T |λb), of generating
the observed data with the modelλb, we employ the for-
ward algorithm[Rabiner, 1989] as implemented in the Hid-
den Markov Model toolbox[Murphy, 2001]. We classify
each window segment with the label of the model that gen-
erated the highest log-likelihood.



Figure 2: Team Behaviors: Stacked Formation (top), Bounding Overwatch (middle), Buttonhook Entry (bottom). Schematics
for each behavior, along with the canonical representation for several frames, are depicted in the left column. A sample raw
trace for each behavior is shown in the right column; the coordinates of the axes are in Unreal Tournament length units.



Table 1: Confusion matrix for HMM behavior classification.
The ground truth is given in the left column; the classifica-
tion result is given in the top row. Our hidden Markov model
approach achieves good accuracy. Buttonhook entry is often
confused with bounding overwatch, as may be expected from
similarities in the canonical representation as shown in Fig-
ure 2.

stacked bounding buttonhook
stacked 90% 10% 0
bounding 14% 67% 19%
buttonhook 0% 33% 67%

5 Results

To evaluate our automatic recognition method, we developed
behavior models for the standard team behaviors used by a
2-person firing team during the approach phase of the MOUT
building clearing task: stacked movement, bounding over-
watch, and buttonhook entry (see Figure 2). A pair of human
players performed sequences of team behaviors in our Un-
real Tournament urban simulation; position data was recorded
from both of the players at 0.15 second intervals using our
TrainingBot mod (as described in Section 4.1). Players
executed team behaviors in predesignated sequences, transi-
tioning instantly from one behavior into the next, adapting
each behavior as needed to the local physical layout (turning
corridors, entering rooms). Figure 2 (right) shows a raw trace
for each behavior; note that even consecutive executions of
the same behavior exhibit significant variation as shown by
the bounding overwatch behavior. Player traces were divided
into overlapping 20 frame (3 second) windows, which were
converted into a canonical coordinate frame as described in
Section 4.2. This process is illustrated in the inset of Figure 2.
The window size was empirically determined by observing
the average speed of the players’ maneuvers.

Table 1 presents the classification results (confusion ma-
trix) for the three modeled behaviors; the accuracy of the
HMM approach is good, particularly for the stacked forma-
tion. Buttonhook entry is sometimes confused with bounding
overwatch, as may be expected from similarities in the canon-
ical representation as shown in Figure 2. In Section 6 we dis-
cuss ways that domain knowledge could be incorporated to
improve these recognition results.

6 Discussion

The experiments described in the previous section were de-
liberately designed to omit many spatial and temporal cues
that would exist in a real MOUT scenario. This enables us
to examine the raw accuracy of our classifier. For instance,
we chose not to incorporate the existence or position of static
spatial features (e.g., doors and walls) into our observation
model, even though this impacts the team’s choice of behav-
ior in a more realistic MOUT task. For example, the but-
tonhook entry behavior is usually performed at doorways or
windows whereas stacked movement typically occurs when
the team is paralleling a wall.

In our experiments, the sequence of behaviors was arbitrar-
ily chosen to create a variety of behavior transition opportuni-
ties. Our HMMs perform recognition at a very low-level and
do not currently exploit inter-window dependencies. Realis-
tically, some behaviors more commonly occur before others;
for example, in a typical building clearing operation, there are
often long periods of bounding overwatch followed by a sin-
gle buttonhook entry through a doorway, followed by another
period of bounding overwatch.

By exploiting higher-level domain knowledge about the
building clearing task, we believe that we can improve recog-
nition performance over a full-length MOUT scenario in
which the subjects are instructed to perform team behaviors
as appropriate for the situation. This could be done using a
hierarchical approach, such a hierarchical HMM[Fineet al.,
1998] that examines longer time sequences at multiple res-
olutions. We propose the following strategy for automatic
recognition of a full MOUT scenario:

1. Annotate the map (either manually or automatically)
with relevant features, such as doors, intersections, win-
dows, and trees.

2. Employ the HMMs described above to perform local
analysis and assign discrete labels to each window.

3. Use these as discrete observations for higher-level
HMMs that examine longer time windows and incorpo-
rate map annotations into the observation space.

A simpler approach is to assign a prior probability to each
low-level HMM based on the current map context and select
the behavior that maximizes thea posterioriprobability. We
plan to test these approaches in future experiments over a full-
length MOUT scenario.

7 Conclusion

This paper describes a methodology for recording, represent-
ing, and recognizing team behaviors performed by human
players in an Unreal Tournament MOUT scenario. Simula-
tion traces of the players’ positions were preprocessed to gen-
erate short, overlapping segments and converted into a canon-
ical reference frame based on the motion of the team’s cen-
troid. Segments were automatically classified using a set of
hidden Markov models and selecting the model with the high-
est log-likelihood. We propose a method for extending our
technique to perform behavior recognition on a full-length
MOUT scenario using a hierarchical approach and exploiting
domain knowledge.

For future work, we plan to evaluate our recognition
method on a larger pool of human subjects to ensure that our
technique adequately handles behavior execution variability
between subjects. We are particularly interested in the prob-
lem of modeling subject error since subjects occasionally ex-
ecute the wrong action or poorly execute the correct behavior.
Also, we intend to expand our team size to include multiple,
simultaneous, firing-teams and to expand our behavior model
library accordingly.
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