
Detecting Coordination Failures by Observing Groups: A Formal Approach

Michael Lindner and Meir Kalech and Gal A. Kaminka
The MAVERICK Group

Computer Science Department
Bar Ilan University, Israel�
kalechm, galk � @cs.biu.ac.il

Abstract

Teams often require their members to coordinate
with respect to specific aspects of their joint task.
These coordination relations can often fail as a re-
sult of intermittent failures of sensor readings, com-
munication failures, etc. Detection of such failures,
based upon agents’ observations of each other, is
of prime importance. Though different solutions
have been presented, none has presented a compre-
hensive, formal approach to solving this problem.
Our research has produced a compact matrix-based
representation of pre-defined agent coordination re-
lations, that is used with a matrix-based represen-
tation of a plan-recognition process. The result is
a novel solution that is both generic and efficient
for large-scale teams. Additionally, it facilitates
easy design of coordination requirements, modu-
larity and reuse of existing systems.

1 Introduction
Autonomous agents within multi-agent systems interact and
coordinate between themselves in order to achieve their goals.
The increased deployment of robotic and agent teams in com-
plex dynamic settings has, in turn, led to an increasing need
for responding to coordination-failure [Kaminka and Tambe,
2000; Parker, 1998] Detection of coordination failures is
essential for later recovery process during which coopera-
tion is reinstated (e.g., by negotiations [Kraus et al., 1998]).
Coordination-failure detection does not indicate whether the
group is achieving its goals but only if agent-coordination ex-
ists.

The following example demonstrates the importance of
this process [Kaminka and Bowling, 2002]. A helicopter
squadron is sent on a strike mission. According to the flight
plan, at certain coordinates, one helicopter is to proceed and
get visual target confirmation, while the rest of the squadron
remains hidden. Once the target is confirmed the lead he-
licopter is to signal the squadron to commence their attack.
Coordination difficulties, in this example, may lead to the
failure of the mission. Thus, if an additional helicopter con-
tinues flying, it may jeopardize the whole mission. If, on the
other hand, the errant pilot is able to recognize his error on
time, the mission might be saved.

The systematic detection method we have devised in-
fers the agents’ internal state through observation of the
agent. Some previous coordination-failure detection meth-
ods have assumed that the agents internal state is known
[Klein and Dellarocas, 1999]. These methods have ignored
scale-up challenges. Some have take a certain amount of
uncertainty into account, but were unfortunately only able
to capture specific coordination failures, such as disagree-
ments over a selected joint plan [Kaminka and Tambe, 2000;
Kaminka and Bowling, 2002]. None of the methods intro-
duced so far has taken a systematic approach to addressing
this challenge (see Section 2).

We suggest a new compact way to represent (1) pre-defined
agent coordination models and (2) the agents states as in-
ferred from their observed actions. Accounting for both the
coordination model and the observation, we suggest an ef-
ficient failure-detection algorithm. The algorithm does, in
many cases, reduce the complexity of detection in large-scale
teams from exponential to polynomial.

The paper is organized as follows. Section 2 presents re-
lated work. Section 3 motivates the research. Then, in section
4, we present our new notation to the coordination-definition
and observation modeling, and give the fault detection algo-
rithm. An extension of the former for complex systems is
presented in section 5. At last, section 6 summarizes.
2 Related Work
[Horling and Lesser, 1999; Horling et al., 2001] presented
a framework for diagnosing failures in multi-agent systems,
based on agent information-sharing, and a diagnosis causal
model. However, this work addresses neither the scale-up
issues, nor the construction of the causal model that enables
it to detect and diagnose failures.

A different approach was presented by [Klein and Del-
larocas, 1999] according to which, each agent is paired with
a sentinel. Sentinels report agent-activities to a failure-
detection system that utilizes a pre-analyzed coordination
failure database. This method, the failure-model approach,
dictates that all possible failures be analyzed in advance. No
allowance is given to different agent-action interpretation,
e.g., through plan recognition.

[Poutakidis et al., 2002] provides a method for tracking
the progress of conversations using interaction protocols, and
detection of some failures, using a Petri-net representation
of the interaction protocols that are expected to take place

(rather than the expected failures as in the techniques dis-
cussed above). When protocols are matched against obser-
vations of messages, errors are detected. However, the repre-
sentation has been shown to scale poorly with the number of
agents [Gutnik and Kaminka, 2005].

[Kaminka and Tambe, 2000; Browning et al., 2002] use a
behavior-based approach. In a system consisting of � agents,
each with � possible states, there exist

��� ����� possible joint
states. In this approach, the designer indicates the ideal state
of coordination, by specifying the desired joint states, a sub-
set of all possible joint states. The system observes the agents
during run-time, and uses plan-recognition in order to infer
their actual joint state. It then verifies that the actual joint
state is indeed a desired one. [Kaminka and Bowling, 2002]
present a scalable method for such assessment. Unfortu-
nately their method only enables detection of system failures
in cases where the desired joint states are in perfect agree-
ment.

This paper presents a systematic approach to detect-
ing coordination failures based on observation and plan-
recognition. It utilizes a model-based approach, wherein the
designer only specifies desired joint states, rather than all pos-
sible states of failure. The approach also takes accounts for
the inherent uncertainty that exists when another’s state is in-
ferred, e.g., due to ambiguity in plan recognition. We show
that we can compactly represent joint states using �
	�� matri-
ces, and thus reduce the potential

��� ����� check to a
��� ������

check in many cases.

3 Motivation
As we mentioned above, the main weakness of earlier meth-
ods, was their exponential complexity [Browning et al.,
2002]. For example, consider a management system for a
shop consisting of the following 6-agent crew: Annie the
manager, Benny the cashier, two sellers — Canny and Danny,
Ernie the storekeeper and a guard, Fanny. Agents may be in
one of eight possible states: dealing with customers, han-
dling equipment, taking a break etc. The agents may be
placed in various pre-defined combinations, considering their
states. For instance, the following combination is legitimate:�

Annie: watch, Benny: sell, Canny: dealing, Danny: break,
Ernie: equip, Fanny: guard � . However, the following com-
bination is illegitimate:

�
Annie: watch, Benny: sell, Canny:

negotiate, Danny: break, Ernie: sell, Fanny: guard � , since
Ernie is forbidden to sell while he has no substitute. Thus,
since any agent may be in any state, there are as many as ���
(262,144) possible combinations in this small shop. Any ad-
ditional state or agent increases the complexity exponentially.

At run-time, the system is provided with a simple plan
recognition capability that defines for each observed action,
what states the agent may occupy. For example, if Danny is
observed talking on the phone, he is either negotiation with
a customer (state negotiate), or making a private call during
his break time (state break). However, we are assured that he
is not guarding at the moment. The system uses this mecha-
nism to infer, for each agent, its possible states. The system
then combines these individual states and indicates all pos-
sible joint states the agent may be in. These are then com-
pared with the desired joint states list. The system can then

determine whether a failure exists (i.e., none of the inferred
possible states is a desirable state).

Nevertheless, the possibility of multiple joint states
presents us with the difficulty of deciding whether a failure
actually occurred since the list of inferred states contains de-
sired and undesired states (i.e., ambiguous conclusions). This
problem was addressed by [Kaminka and Tambe, 2000].

A key challenge involves the representation of potentially
exponential inferred (and desired) joint states in a way that re-
duces matching run-time. Since the number of possible joint
states in exponential, a simplistic approach would take expo-
nential run-time.

Our research offers means of avoiding the problem of ex-
ponential number of combinations. This is done by encap-
sulating different combinations into simple, relatively small
structures, called extended-combinations, or e-combs. For ex-
ample, suppose that our coordination requires that when the
guard, Fanny, is taking a break or talking to the manager, the
storekeeper must replace her, and the sellers are allowed to
deal with equipment at this situation. Suppose too, that simi-
lar logic is applied to the other agent, such that the following
is legitimate: Fanny’s state is break or inner-talk, Ernie’s state
is guard, Canny and Danny are either equipment, negotiate,
sell or break, Benny’s state is sell or break and Annie is either
watching or inner-talking. The example defines 128 joint-
state combinations. However, rather than enumerating them,
we defined them implicitly in the description above. Using
this kind of definition provide two significant features. First,
the design and definition of desired coordination becomes
much easier. Not only does it actually involve smaller struc-
tures, but it is also very logical and straight-forward. Second,
and more importantly: the complexity no longer depends in
the agents and states in an exponential manner.

4 A Matrix Representation Approach
In order to contextualize our solution, we will present the for-
malism of observation-based failure-detection [Browning et
al., 2002].

Let � be a set of � agents, ��� �����
,
���

, ����� , � � � , where
each agent may be found at any time in one of � possible
states, !� �#"#�

,
"��

, ����� , "�$ � . At any given moment, the
agents are at a given joint state, that is, each one of them
is found in a specific state. Each joint state (which is also
referred as a combination) may be represented as an � -tuple
of states, % "#&('*)+"*&-,.) �����)+"*&-/10 , "*&-243 , where

"*&-2
represents

the state of agent
��5

. A system is defined by agents, states, and
the allowed combinations. These combinations, defined by
the program designer, signify the states in which each agent
is allowed to be.

Since the desired coordination is defined as a collection of
combinations, the complexity of space needed is bound by
the maximum number of combinations. Since each of the �
agents may be in � possible states, the number of combina-
tions is actually bounded by

��� ����� . Although this calcula-
tion represents a worst case scenario, the average case still
increases exponentially as agents are added.

During run-time, the system is provided with the possible
current states of each of the agents. This information is pro-
vided by an observer, who recognizes the agents particular

behavior in every state. Thus, one observation may be inter-
preted as many different states (and vice versa). The possible
states selected by the agents, resembling the allowed combi-
nations, are provided as a set of combinations.

Determining whether a failure has occurred is done by ana-
lyzing the desired coordination joint-states, and the hypothe-
sized current states, and testing whether at least one joint state
appears in both sets (this is an optimistic policy [Kaminka and
Tambe, 2000]). Hence, the time complexity is equivalent to
the space complexity. This is unacceptable when dealing with
large systems. Using this approach, even a system consisting
of a few dozens of agents, with a small number of states, will
be difficult to monitor.

We present a new representation of the allowed combina-
tions, called extended combinations, or e-combs. An e-comb
is a Boolean matrix of order ��� � . Each row of the ma-
trix is assigned to one agent and each column is assigned to
one state. The allowed combinations are defined by the 1 el-
ements in the matrix. That is, e-comb

�
defines all the com-

binations of the form:�1����"�&('*) ����� "*&-,#) �����) � � ��"*&-/�� � 5	� &-2 ��

Consider the example given in Section 3. Assume that the

agents are numbered 1 to 6, according to alphabetical order
(Annie is 1, Benny is 2 etc.). States are numbered 1 to 8 in the
following order: break, idle, negotiate, sell, inner-talk, watch,
guard, equipment. The appropriate ecomb would then be

��������
������
�

� ' � , ������������� �� �� �! ' "#"$"$"&% ')(*'+","
! , % ')(-"$".'/"0"#","!1� % ')(-".'$'/"0"#"2'
!3� % ')(-".'$'/"0"#"2'
!1� "#"$"$","0"&% ')(-"! % ')(-"$"$"2'4"#","

5766666
8

This e-comb represents all the combinations in
which agent

��5
is found in some state

":9
, such that; 5)� 9 �
 . For example, a legal combination is��� � � "=<)+� � � " �) �?>@� " �)+�BA�� " �) �?<@� "=C)+�?D�� " � � (denoted by

square brackets).
Let us now address the observations. In our system, aside

for the logical states of agents, which are the states
" & 3 ,

there is also a definition of the various observable actions the
agents may take, E � ��F��*)�F �.) �����)3F�G � . Returning to the shop
example once again, we will remember that while we had 8
states, we also had 9 actions (H �JI): talk (

F �
), phone (

F �
),

stand (
F1>

), walk (
F1A

), counter (
F1<

), put (
F �), get (

F1C
), carry (

F1D
)

and other (
F1K

). Every agent exists in one of these actions any
given moment. However, this is not a one-to-one mapping.
For example, if an agent is observed to be carrying a product
(i.e., taking action

FLD
), it may do that either while making

order in the shop (i.e., found in state
" D

– equipment), or it
may carry it to a customer during a sell (

" A
) state. In the

opposite direction, during a sell (
"�A

) the agent may also take
the action of sitting near the counter (

F <
) or getting a product

from the shelf (
F C

).
We represent the relation between the agents state and its

actions using a matrix, to abstract the plan recognition pro-
cess. The matrix M (stands for Interpretation) is a Boolean
matrix of order �N�OH . In this matrix, the value of an elementM 9�� & is ‘1’ if once the agent’s state is

":9
it may take action

F�&
;

in other words, if the agent is observed to be acting
F�&

, we

may interpret it as being in (possibly) state
":9

. Note that this
says nothing about the plan recognition algorithm itself, other
than that it requires it to be able to support the interpretation
of what states are possible, given observed actions. In our ex-
ample, this is how the interpretation matrix is defined for the
shop system:

PQ����RS�
����������
�

T ' T , T � T � T � T T T � T R� ' '+'/'U"/"+"V"+",'
� , "+",'U"/"+"V"+"/"��� '+'W"+"/"+"V"+"/"
�X� "+"/"+",'U"$'+'W"
��� 'U"/"+"/"+"V"+"/"� 'U",'+'W"+"V"+"/"
�Y "+",'+'W"+"V"+"/"� � "+"/"#'W"#'V'+'W"

57666666666
8

Row 4 of this matrix, for example, shows that the possible ac-
tions in state

"ZA
(sell) are

FL<
(counter),

FLC
(get) and

F1D
(carry).

Column 8 shows that if an agent is being observed as actingF D
(carry), it may be in one of the states

" A
(sell) or

" D
(equip-

ment).
During run-time, observation of agent action is conducted

by an additional system with relevant sensors. At any given
time, an agent is observed performing exactly one action. We
represent it as a Boolean matrix [of order �\�]H (� represents
the agents’ size and H the actions’ size), called observation
matrix. In this matrix, there is exactly one element which
is ‘1’ in each row. Thus, if ^ 5)� & is 1, it means that agent��5

is observed as acting
F�&

. For example, in the following
observation matrix at time _ ,

`����Ra �
������
�

T ' T , T � T � T � T T T � T R! ' "/"#'W"+"V"+"/"+"! , "/"#'W"+"V"+"/"+"
!1� ",'U"/"+"V"+"/"+"
!3� "/"+"/"+"V"#'W"+"!1� "/"+"/"+"V"+",'U"
! "/"+",'U"V"+"/"+"

5766666
8

Annie (
� �

) was observed standing (
FL>

), as was Benny (
� �

),
Canny (

� >
) is on the phone (

F(�
) etc.

The possible states in which each agent is found at that
moment (_), then, are calculated using the formula:bdc �e[c =Mgf
where

bdc
is an �-� � Boolean matrix (that is, an e-comb),

in which each element h in row i represents whether it is pos-
sible that agent

� 5
is now in state

" 9
(‘1’ entry) or not (‘0’

entry). Note that each element
bjc 5)� 9

is the sum of multiply-
ing each element k in row i of [c by element k in column h
of M f . This multiplication, of course, is ‘1’ iff both of them
are ‘1’. Since each row in [c has exactly one element which
is ‘1’, the value of each element in

blc
will be at most ‘1’.

In our previous example:

m 3���a �n` apo Prqs�
������
�

� ' � , ���t�X�-����� �Y u� �! ' '4'v"$"$"0'$'v"! , '4'v"$"$"0'$'v"
!1� 'v"0'V"$"4"$"4"
!3� "4"4".'V"4"$"0'!1� "4"4".'V"4"$"0'
! "4"4"$"$"0'$'4'

5 66666
8

For example, our observation may lead us to conclude that
Annie’s state is either

"#�
or
"��

or
" � or

" C
.

Using these matrices, we can now explain the failure de-
tection algorithm. Failure is defined as a situation wherein
none of an agents possible assigned state (according to

b\c
)

appear on the ‘allowed combination’ list, designated as w

(the desired coordination e-comb). In order to examine possi-
ble matches we will operate a logical and between w and

bjc
in an element-by-element process, to get the results matrix,� ��� $, � 5	� 9 � ; 5	� 9���� c 5)� 9 . Being a Boolean ����� matrix,

�
itself is in fact an e-comb.�

represents all the agents-assigned combinations that sat-
isfy w according to observation. E-comb

�
represents all the

combinations in which agent
��5

is found in one of the states" 9
that match ‘1’ element in row

� 5
. Thus, if in each row i

in
�

there is at least one ‘1’ element, it implies that at least
one combination exists. In this case, we may assume that the
agents will be found in one of those joint states. If, However,�

defines no combination, then the assigned agents states are
definitely forbidden. In this case, a failure alert is warranted.

If at least one combination is found,
�

must include at least
one assignment for each agent. In other words: at least one 1
element on each row. If an all-zero row exists, it indicates
a no-assignment situation in

�
, in which case

�
does not

define any combination. This operation takes only
��� � ���

operations (counting the ‘1’s for � elements on each of
�

’s� rows). Returning to the shop example, matrix
�

will be
the result of an element-by-element ‘and’ operation between
the desired coordination w and the interpretation e-comb

b\c
,

which were both presented earlier. This provides the matrix

� a � m a
	 � a �
������
�

� ' � , ���-�������t� �Y -� �! ' "4","4"4"0'/"4"
! , 'v","4"4"4","4"
!1� 'v"2'v"4"4","4"!3� "4","0'v"4","0'
!1� "4","4"4"4","4"
! "4","4"4"4","4"

5766666
8��

in this e-comb, the two bottom lines, representing Ernie and
Fanny, are all-zero. No desired combination can explain their
actions. A failure has been detected.

5 Complex Coordination
One e-comb will usually not suffice for a full desired coor-
dination definition. Thus, e-comb w that we introduced ear-
lier, only partially defines the allowed combinations in the
shop desired coordination. It deals only with Ernie replacing
Fanny in guard duty.

However, we cannot add another state to w , by just chang-
ing

; � � C (Fanny:guard) from 0 to 1. This would allow un-
desired combinations, such as Ernie and Fanny guarding si-
multaneously. Hence, we much provide a general notation
that allows the definition of multiple types of coordination.
The idea is to extend the e-comb approach so that it consists
of more than one e-comb, without becoming exponentially
complex.

5.1 E-combs Operators
The most important operator used to join a few e-combs is
the ‘or’, which is notated as ‘ ’. Defining two sets of co-
ordination w � w � , means that the set of allowed combi-
nations in the system is the union of all the combinations
defined by w � and all the combinations defined by w � . As
long as

b c
satisfies the ‘none all-zero row’ property with ei-

ther w � or w � (or both, of course), there is no failure. This
operator may be extended to longer expressions, of the kindw � w � ��� w�� .

We call this extended structure of combined e-combs us-
ing operators — a rule. Testing an interpretation e-comb

bjc
against a rule � �Uw � w � ��� w � is simple. One
must perform the ‘all-zero’ test presented earlier for each
of the � e-combs. That is, for each w & in � , calculating
the result matrix

� &
by logically ‘and’ing

blc
with w & in an

element-by-element fashion, and then check whether
� &

has
an all-zero row or not. Due to the nature of the operator ‘ ’,
it is enough to verify that at least one such

� &
has no all-zero

row for assuming the agents are coordinated. Only if in each
of the result matrices

� &
there is an all-zero row, it indicates

a coordination error; in this case, we are sure that the agents
are not found in any allowed combination. Note that the com-
plexity of such a simple rule, that involves no other operators
than ‘or’, is

��� � ��� � , where � is the number of e-combs in
the rule.

There may be cases in which use of will be less effi-
cient, or more difficult for the designer. Thus, we present the
second basic operator, ‘and’, which is notated by a ‘ � ’. The
expression w � � w � represents all the combinations that are
found in the intersection of those that are defined by w � and
those defined by w � . In other words, the ‘non all-zero row’
property for

blc
must hold for both w � and w � . In fact, one

might notice that any expression of the form w � � w � , may
be reduced to an equivalent e-comb, that represents exactly
the same set of combinations. This is the e-comb that is the
result of a logical-and in an element-by-element fashion be-
tween w � and w � .

In order to motivate the and operator, let us return to the
shop example. Suppose that our shop, and an additional shop
are running successfully and we would like the two shops to
cooperate. The basic coordination rules of both shops are left
untouched. However, now that two mangers are available, we
add a constraint saying that one must always supervise the
workers. At least one of the two managers must be watching
(
" �) at any given time. Using previous methods, a new model

would have required. E-combs with only an or operator might
be easier, but will still require redesigning. This is due to
the fact that the current system allows the manager to either
watch or talk with its employees. Using the and operator,
substantially simplifies our task.

Suppose that the shops use � � and � � as coordination
rules. The first task would be to assemble all agents into one
system. Instead of using e-combs of order �l� � we use
��d� �
e-combs, as described below. In order to avoid collision in
agent names, we first renumber the agents of shop no. 2 as

� C
to
�1� �

. We now have 12 agents,
���

to
�1� �

. Then, we must up-
date definitions from both shops from a � � � domain to the
new unified one. For this purpose, we expand each e-comb
of � � with six new rows, 7 to 18, which are all filled with
1s. This ensures that the desired coordination of the first shop
is left untouched — since all rows, except for the first six,
are defined as all ones. The other shop agents state is of no
consequence, only the first 6 rows (agents) are meaningful.
The same is done for the second shop rule, � � . In this case,
we will expand the original e-combs in such a way that they
will become rows 7 to 12 of the new e-combs, and fill rows
1–6 with all ones. Now, we have both shops running on the
same system, each with its original rules. The only thing left

is to add the management restriction. This may be achieved
by allowing one of following cases:

1. When manager 1,
���

, is watching the shop (
" �), the other

manager,
�pC

, may either watch (
" �) or talk with its em-

ployees (
"=<

),

2. When manager 2,
�pC

, is watching the shop (
" �), the other

manager,
� �

, may either watch (
" �) or talk with its em-

ployees (
" <

).

This is expressed by two e-combs; the first is

� ' , ���' �

���������������
�

� ' � , �X�-�X�����t� �� -� �! ' "4","4"4"0'/"4"
! , '4','4'4'4','4'
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.! '4','4'4'4','4'

!L "4","4"0'4'/"4"
! � '4','4'4'4','4'
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.! '�� '4','4'4'4','4'

5 66666666666666
8
�

We build
� �

in a similar way. Then, we define the ‘manager
rule’ to be ��� � � � � �

. Finally, we define the rule

� cooperative � � � � � � � � � �
The next section presents an algorithm for calculating of this
kind of rules.

5.2 Computing Complex Rules
This section presents the general algorithm that tests a coor-
dination rule which includes or and and operators against a
given e-comb interpretation. The algorithm uses a tree repre-
sentation of the rule. The leaves are the rules e-combs, and
the inner nodes are the operators. The trees depth is then re-
duces until it consists of a simple or expression that can be
easily calculated.

The first phase of the algorithm deals with the logical op-
erators that construct the rule. The tree reduction is accom-
plished through images. An image represents, for each node
in the tree, the possible combinations that are defined by the
sub-tree whose this node is its root. The image is, in fact, one
or more encapsulated e-combs. However, an image logically
represents one node. In this way, we work our way up from
the leaf nodes. The sub-tree of every node is replaced with an
equivalent image.

The translation of a sub-tree is quite simple. It begins, re-
cursively, from the root and runs in DFS until it reaches a
leaf. On its way back, it replaces each node with an im-
age. The manner, in which a node (sub-tree) is translated
into an image, depends on the node-type. Since the sub-tree
replacement is done during the DFS backtracking, the nodes
offspring are already guarantied translation into images.

E-Combs: These are in fact the leaves of the tree; each e-
comb node becomes an image which includes only one
e-comb.

‘Or’ nodes: Each or node is replaced by an image that in-
cludes all the e-combs from the nodes image offspring.

‘And’ nodes: An and node that has a few image offspring
performs according to the distribution law. It becomes
an image that contains all the and combinations between

e-combs from each of the offspring. In other words, if
a node has k image offspring, each consisting of � & dif-
ferent e-combs, then it will be replaced with an image
that includes �

&5	� � � & e-combs. Each of those e-combs
is built of a different combination of k e-combs, which
are logically anded in an element-by-element fashion.

In order to demonstrate, let us refer to the following rule
on some e-combs

� �
to
� K

:

� � � � � �X� � � > � � �X� A � < � � � � ��� C � � D � � K �
Its tree form is represented in Fig. 1.

C1

C7 C9 C8

C3 C2 C5 C4

C6

Figure 1: The Rule Tree for �

The root has four offspring, two of which (the first and the
third) are simple e-combs. The rightmost is an or node with
three simple, e-combs offspring. The second one, is an and
node, with two offspring, themselves sub-trees, each consist-
ing of an or node and two e-combs offspring. We show how
the algorithm reduces the tree, step by step. The first node
is the leftmost node. It is, in fact, just a simple e-comb. It
is therefore replaced by a simple image node that includes
exactly this e-comb.

C7 C9 C8

C6 C1

C2,3 C4,5

Figure 2: Rule Tree Reduction – step 1

C7 C9 C8

C6 C1 C2*4 C2*5 C3*4 C3*5

Figure 3: Rule Tree Reduction – step 2

In the next stage, the same thing is done to the next leaf
(the e-comb

� �
) and then to its sibling,

� >
. Later, their parent

node (of type ‘or’) becomes an image that includes both im-
ages (as a notational shortcut, we use the form

� �:� >
as a sub-

stitution of
� �.) � >

). The algorithm then continues the same

C6 C7 C1 C2*4 C2*5 C3*4 C3*5 C8 C9

Figure 4: Rule Tree Reduction – step 3

process on the next sub-tree, and creates an image consisting
of
� A � <

(Figure 2).
Next, we have an ‘and’ node, with two image offspring,

each of which consists of two e-combs. As we saw earlier, the
‘and’ node is replaced by an image that includes all possible
combinations of

� � �) � > � and
� � A) � < � . These are the com-

binations
��� � � � A �) �X� � � � < �) ��� > � � A �) ��� > � � < � , for

short,
� ��� A) � ��� <) � > � A) � > � <

(Figure 3). As was already
mentioned, an e-combs ‘and’ (�) is in fact identical to an
element-by-element ‘and’. Hence, each of the expressions�
�
�
� is in fact one e-comb. During the next stage, the node

of
� � is replaced by an image with only this e-comb. Then

the rightmost ‘or’ node, with three offspring (
� C.) � D�) � K

) is
replaced with one image of those three e-combs (Figure 4).
At this stage, we reach the root ‘or’ node, which has four im-
age offspring.

After reducing the whole tree, we are left with one image.
This image includes multiple e-combs. Thus, in fact, it may
be treated as a collection of e-combs that are all combined
by an ‘or’ (‘ ’) operator. As we noted earlier, a failure is
detected if for all of them, the result of ‘and’ing with

bjc
pro-

vides an e-comb with an all-zero row.
5.3 Complexity
As we saw in section 4, the complexity of a rule that consists
of or operators only is

��� � � � � , where � is the number of
e-combs in the rule. The complexity of a rule that combines
or and and cannot be described by a simple formula, and is
highly related to the structure of the rule. However, gener-
ally, it grows linearly in the number of agents (�) and the
number of possible states (�). The main factor is the com-
plexity of the rule tree. Of course, common sense dictates
that the more agents and states get involved, the greater the
complexity of the rule. However, it does not necessarily grow
exponentially. This is a very important property, since the
complexity of other approaches is exponential in the number
of agents, regardless the structure of the allowed combina-
tions.

6 Summary and Future Work
In this paper we presented a new formal approach to
observation-based fault detection. We defined a new matrix-
based notation—the e-combs—which serves as a general
framework for coordination design and definition in multi
agent systems. At run-time the observer of the multi-agent
system builds a similar matrix of the hypothesized states se-
lected by the agents. Using this representation, we showed an
efficient fault detection algorithm in a space and time com-
plexity that is linear by the number of agents and state. The
space and time needed for this algorithm are mainly depen-
dent in the complexity of the rule—how many e-combs in-
volve and in what kind of relations.

This research is novel in that it presents a solution that is
both general and efficient for large-scale teams. It also eases
the design of coordination requirements and allows modular-
ity and reuse of already existing systems.

In the future we plan to add partial observations capabili-
ties which will find the minimum set of agents that will to-
gether provide the complete information, or at least the best
possible information. Combining this with explicit commu-
nication among agents may result a system that is cheap in
resources, yet very reliable. In addition, at the moment our al-
gorithm assumes that the coordination among the team mem-
bers is defined at the beginning and must be consistent along
the system lifetime. However, real-world multi-agent systems
are dynamic, and the desired coordination may change, so we
plan to extend our algorithm to dynamic coordination.

References
[Browning et al., 2002] Brett Browning, Gal Kaminka, and

Manuela Veloso. Principled monitoring of distributed
agents for detection of coordination failures. In Proceed-
ings of Distributed Autonomous Robotic Systems 6, pages
319–328. Springer-Verlag, 2002.

[Gutnik and Kaminka, 2005] G. Gutnik and G. A. Kaminka.
A scalable petri-net representation of interaction protocols
for overheaing. In Developments in Agent Communica-
tionLNAI Volume 3396, van Eijk, R.; Huget, M. P. and
Dignum, F. (Eds), Springer-Verlag. In press, 2005.

[Horling and Lesser, 1999] Bryan Horling and Victor Lesser.
Using Diagnosis to Learn Contextual Coordination Rules.
Proceedings of the AAAI-99 Workshop on Reasoning in
Context for AI Applications, pages 70–74, July 1999.

[Horling et al., 2001] Bryan Horling, Brett Benyo, and Vic-
tor Lesser. Using Self-Diagnosis to Adapt Organizational
Structures. Proceedings of the 5th International Confer-
ence on Autonomous Agents, pages 529–536, June 2001.

[Kaminka and Bowling, 2002] Gal A. Kaminka and Michael
Bowling. Towards robust teams with many agents. in Pro-
ceedings of Autonomous Agents and Multi Agent Systems
(AAMAS-02), 2002.

[Kaminka and Tambe, 2000] Gal A. Kaminka and Milind
Tambe. Robust multi-agent teams via socially-attentive
monitoring. Jornal of Artificial Intelligence Research,
12:105–147, 2000.

[Klein and Dellarocas, 1999] Mark Klein and Chris Dellaro-
cas. Exception handling in agent systems. Proceed-
ing of the Third International Conference on Autonomous
Agents, May 1999.

[Kraus et al., 1998] Sarit Kraus, Sycara Katia, and Amir
Evenchik. Reaching agreements through argumentation: a
logical model and implementation. Artificial Intelligence,
104(1–2):1–69, 1998.

[Parker, 1998] Lynne E. Parker. ALLIANCE: An archi-
tecture for fault tolerant multirobot cooperation. IEEE
Transactions on Robotics and Automation, 14(2):220–240,
April 1998.

[Poutakidis et al., 2002] D. Poutakidis, L. Padgham, and
M. Winikoff. Debugging multi-agent systems using de-
sign artifacts: The case of interaction protocols. in Pro-
ceedings of Autonomous Agents and Multi Agent Systems
(AAMAS-02), 2002.

