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Abstract

Software agents must have some degree of auton-
omy in order to be able to adjust to changing and
sometimes unpredictable situations due to commu-
nication problems. Introducing so-calledoverhear-
ers for monitoring team activities and helping re-
covery from failures seems to be a very promis-
ing approach. In this paper, we claim that having
a “global” representation of the interaction proto-
col can be useful to monitor team communication.
Moreover, using this global description of group in-
teractions, overhearers can monitor activities with-
out requiring a priori, precise knowledge of which
and how many agents are involved. We show how,
given a global description of a protocol in terms
of involved roles rather than agents, it is possible
for an overhearer to monitor its evolution and de-
tect, and recover from, certain types of failures.
We evaluated an implementation of the overhearer
monitoring a group of agents executing a Contract-
Net Protocol.

1 Introduction

In our increasingly complex and networked world, software
agents must have some degree of autonomy in order to be able
to adjust to changing and sometimes unpredictable situations.
We assume, by principle, that a software agent cannot be
really autonomous without understanding its “surrounding”
context. This necessarily implies that the agent must be able
to “oversee” and “overhear” what is happening in its environ-
ment, extract what is useful and filter out what is not, without
a-priori restricting its view or deciding what should be part of
the context it has to know and what not. Moreover, in large
distributed system like the Internet, communication problems
and unpredictable hosts can cause agents to die or messages
to be delayed or lost. The same happens when agents are
used for distributed ubiquitous applications with communica-
tion infrastructures (e.g., Wi-Fi or Bluetooth) inherently un-
reliable. So, the increasing use of the multi-agent paradigm
in networking and ubiquitous computing calls for increasing
robustness, for instance when failures occur during coordina-
tion activities or teamwork; in these cases, agents should be

able to recognize the disagreements they caused and some-
how recover, without necessarily replicating messages.

Handling failures increases the burden of agent develop-
ers; they have to anticipate and program the agents for all
the possible exceptions not just according to their own pos-
sible failures but also according to the failures of any other
agent involved in a team. Inherently robust distributed com-
putational models exists (e.g., nested transactions[Busettaet
al., 2003]) but they are not suitable to all types of problems
and environments. Moreover, some agents may be compu-
tationally limited; consider, for instance, wearable wireless
computers with limited power.

In the current literature on multi-agent systems, the role of
overhearing to monitor distributed systems is gaining atten-
tion, as demonstrated by some recent works, e.g.[Gutnik and
Kaminka, 2004; Nairet al., 2004; Legras and Tessier, 2003;
Kaminka et al., 2002]. Introducing so calledoverhearer
agents for monitoring team activities and helping recovery
from failures seems to be a very promising approach, but
anyway it sets challenges to the agent community. Overhear-
ers may detect certain message losses[Busettaet al., 2001;
Rossi and Busetta, 2004; Gutnik and Kaminka, 2004], and
act in order to pro-actively provide suggestions, influence be-
haviors and recover from failures. But, in order to do that, the
overhearer must have a model of the group interactions[Rossi
and Busetta, 2004] (for example of the protocols of commu-
nication) or a public specification of each agent’s behaviors
[Busettaet al., 2001].

To prove whether the overhearing principle can lead to a
practical software development methodology, we have been
exploring group communication. This means that every mes-
sage is received by many partners simultaneously, some of
which may be unknown to the sender, as an alternative to tra-
ditional direct point-to-point interactions among pairs. Group
communication is a means for providing multi-point com-
munication by organizing the receivers (and possibly the
senders) of a message in groups[Rossiet al., 2005]. Group
communication is common in collaborative applications of
all kinds, such as server replication, clustering, grid com-
puting, distributed transactions and database replication, dis-
tance learning, drawing on a shared white-board, video con-
ferences, application sharing, distributed interactive simula-
tions, on-line games and financial markets. It is also worth
noticing that, in a number of foreseeable cases – such as in-



telligent buildings filled with people carrying wearable and
mobile computers of all kinds –, the number of agents can be
fairly large, unknown and continuously changing.

We claim that having a “global” representation of the pro-
tocol (i.e., not from the perspective of a single agent but of
all the participants as a whole) can be useful to monitor com-
plex team activities. Moreover, we aim at a global description
of group interactions (i.e. group communication protocols)
without requiring precise knowledge of which and how many
agents are involved. The Joint Intention Theory[Levesque
et al., 1990] and the landmark based approach[Kumaret al.,
2002] support a high level formalization of this kind that is
logically well founded. Once that this is given, we can think
of dealing with failures and message losses at a group level.
In this sense we talk ofgroup coherencein contrast withsin-
gle agent coherencewith respect to a protocol.

In this paper, we show how, given a global description of
a protocol using JIT in terms of involvedroles rather than
agents, it is possible for an overhearer to monitor its evolu-
tion and detect, and recover from, certain types of failures
(Section 2). We propose a computational model for an agent
acting as an overhearer (Section 3). We demonstrate its use
in the case of agents coordinating via the Contract Net Pro-
tocol (Section 4); for practical purposes, the overhearer is a
specialized member of the team, but in principle nothing pre-
vents any other from overhearing, too. We conclude with a
short review of related works (Section 5) and draw some con-
clusions and directions for future works (Section 6).

2 Group Protocols vs. Pairwise Protocols

The increasing usage of multi-agents systems in complex ap-
plications commonly leads to situations where conversations
and interactions involve more than two agents. However,
most of the research on communication protocols and infras-
tructure is still focused in modeling multiparty communica-
tion as conversations between two parties at a time. Artificial
agents should be able to communicate with groups as well
as individuals, where group communication is not only in-
tended as the possibility to address messages to many individ-
ual addresses but also as the possibility to address messages
to groups without knowing which are the potential recipients
[Kumaret al., 2000]. A typical scenario is broadcast commu-
nication, but current mainstream agent communication lan-
guages and Web services lack adequate support for broad-
casting; publish/subscribe services move in that direction, but
imply the presence of specialized middleware, require addi-
tional operations such as registration to a server, and are typ-
ically implemented as pair-wise communication (event pro-
ducer to server, server to each event consumer), thus partially
missing the advantages of specialized group communication
protocols. For example, groupware applications such as web-
casting often use IP multicast to transmit data to all group
members using minimum resources. Efficiency is achieved
because the message needs to be transmitted once. In such sit-
uations, updating mutual beliefs (e.g. about a change of state
of a peer and its consequences on all others) by exchanging
pair-wise communicative acts requiresO(n2) messages. By
contrast, with messages addressed to groups we would have

justO(n) messages.
As highlighted in[Mazouzi et al., 2002], common for-

malisms take into account sequential processes only and are
limited in dealing with concurrency of interactions. We
would like to have a way of representing global description
of the group interaction (i.e. group communication protocol)
without having the knowledge of which and how many are the
agents involved into the interaction. The only knowledge that
we want to express is about the main roles involved into the
interaction[Rossi and Busetta, 2004]. In the representation
of conversation protocols by[Kumaret al., 2002], one way of
specifying protocols is to specify just a partially ordered set of
states (calledLandmarks) instead of state transitions. These
states can be intended as the subgoals that the group has to
achieve in order to reach the global goal, and can be charac-
terized by a conjunction of Joint Intention Theory[Levesque
et al., 1990] formulas.

Semantics of the FIPA communicative acts imposes the
precondition that the sender has certain beliefs about the men-
tal state of the (well known) addressee. Consequently, there is
no way to send messages to unknown agents. The group ex-
tension of many of the communicative acts made by[Kumar
et al., 2000; Rossiet al., 2005] is sufficient to model one-to-
many communicative interactions. Problems arise when try-
ing to describe many-to-one interactions (unknown numbers
of agents perform different communicative acts), or the even
worse scenario of many-to-many interactions. The main dif-
ficulty is that we do not know beforehand the order in which
the different senders perform their respective communicative
acts, so we cannot specify the various communicative acts as
a joint action expression. However, in our landmark-based
protocol formalization, we have that there are no dependen-
cies among the messages exchanged for going from a land-
mark to another. Roughly speaking, this is to say that to the
transitions, in our landmark representation, correspond sets of
independents messages, or that we have a partial order (a de-
pendence rule) on sets of mutually independent actions. So,
in the landmark representation we have that:

• For going from the current state to the next state,
the group can exchangen messages fromm differ-
ent agents. For example, in the Contract-Net Protocol
(CNP) (as formalized by Kumar et al., see[Kumaret al.,
2002]), each member of the group can send his own bid
and all these messages yields to only one state transition.

• For going from the current landmark to the next land-
mark, the agents can exchange different type of mes-
sages. For example in the CNP the transition to the fi-
nal state, where the job cannot be done or the escape
condition is true, can be performed by exchanging dif-
ferent messages. In other words, different actions can
lead to the same result. Another example is in our rep-
resentation of the CNP (see Sec. 4) where in one of the
transition the bidder can send an “ACCEPT” plus some
“REJECTs”.

• In computing the next expected state, one single mes-
sage can be compatible with more than one next state.
This means that, when dealing with a flexible and fault
tolerant protocol, actions can be ambiguous. For exam-



ple in our representation of the CNP a single “REJECT”
message may not be sufficient to understand which land-
mark will be the next one.

2.1 Global Coherence vs. Local Coherence
As we said above, researchers have mainly concentrated to
modeling dialogue from the perspective of a single agent in-
volved in a two-party dialogue at the time; a similar thing
happens in software engineering concerning agent behaviors
and recovering from failures. An agent (or in general a
system) is considered to be closed in nature, and hence re-
searchers have mainly focused in achieving local coherence
and managing failures from a single agent perspective. This
means that the intended functionality is designed by looking
only at local behavior, i.e. to each agent and its interaction
with others taken individually.

However, looking at group behavior, agents that are coher-
ent from their own perspective and their own protocol may be
incoherent with the behavior of their group as a whole when
observed from the outside. This can happen, for example, if
an agent loses a message or just for reasons of timing and
resource availability. With the increasing number and com-
plexity of multi-agent applications in sensitive domains, such
as assistance to disabilities and accident prevention in smart
homes, it becomes increasingly important that the entire sys-
tem exhibits a “global coherence”. This is different from the
notion of emergent behavior, because we attribute intention-
ality to agents. In other words, while an emergent behavior is
in the eye of the beholder (i.e., attributed by a third party to
the group of agents it is observing), we want that each agent
attempts to reach a local state (corresponding to achieving a
goal or accomplishing some task) which is coherent with the
global state (including goals and intentions) of the group it is
part of, and adapts when the latter changes.

The notion of global, as opposed to local, coherence fo-
cuses on the idea that there exist certain structures of rela-
tions between entities in an environment. These structures
can evolve over time and can emerge as a consequence of
interactions among the single agents. Ensuring that a multi-
agent system (MAS) exhibits coherent collective behavior is
a challenge, because most MAS’s lack of a systematic way to
maintain an updated global perspective on their evolution. In
this global perspective, coherence is a property of a MAS that
could be measured as the ability of the system (as a whole)
to recover from local failures. To this end, what is needed is
a shift of focus from the local perspective to a more general,
global one. We need a way to monitor the global behavior
and the global coherence of a multi-agent system in order to
be able to recover a single agent’s local failure in the context
of its group activity. Our claim is that it is not possible to
make recovery on complex interactions without having such
global perspective. In other words, only by recognizing the
group’s collective behavior we can understand which agents
are out of sync with the group and re-align them with the
global state.

3 The Overhearer Computational Model
In our approach, we assume that an overhearer wants to rec-
ognize social roles in order to pro-actively provide sugges-

Figure 1: Computational model for the Overhearer.

tions, influence behaviors[Conte and Dignum, 2001] and
help recovering from failures. The general computational
model we propose for an overhearer is composed of three
main concurrent processes (see Fig. 1), and it is a direct ex-
tension of the computational model presented in[Rossi and
Busetta, 2004]. In this previous work, we designed a simple
language that allows the definition of the interaction knowl-
edge meant as two types of rules. The first type associates a
message with the current state of the group and the intended
effects of such message, and the second associates a message
not only with a current state of the group but also with the
social roles of the sender and intended receivers.

We distinguish a mainoverhearing module from a
module dedicated to the recognition of the current state (land-
mark) of the group and the possible next states through the
application of the message rules. Goals ofoverhearing
are: (1) to handle a list of the agents within the organization;
(2) to assign to each agent and to modify, during the interac-
tion, a particular social role. This process is achieved by using
two external functions:is-consistent andget-role .
The first function checks the global consistency of a message
with the current state of the organization and with the possible
next states. If the message is consistent, it is forwarded to the
group-level module. The second function recognizes the
role played by the agent by applying social rules. Both func-
tions need to know the current state of the organization. This
value (as well as the possible next states) is maintained in a
global variable, so that it can be read by these functions and
written bygroup-level (we assume that any problem of
concurrency is handled by the implementation).

In order to recover from message loss or delay, we added a
process for monitoring the behavior of the team of agent. The
role monitoring process receives fromoverhearer
only the messages that are consistent from the global point



Algorithm 1 MONITORING
. AGENTS≡ {(Ai, srole)|Ai ∈ Agent-identifier, srole∈ SRoles}: known

agent/social-role couples

. si = Current state of the organization

. Wl = {Ai} waiting list for the current landmark

. bufferOfMessages ={mi|mi ∈ messages }: Buffer of consistent messages

1 repeat
2 sj = si

3 Wl = ∅
4 repeat

(Aj , rj) = FIRST-OF({(Ai, srole)})
if EXIST-S-RULE(rj , sj)

Wl = Wl + (Aj)
5 until {(Ai, srole)}= ∅.

. Create the waiting list for the current Landmark from the Agent/Role list

according to the SocialRoles Rules

. Let’s notice that if the waiting list is empty we don’t have information for

making monitoring activities or we are at the beginning of the protocol

6 repeat
mi = DEQUEUE-MESSAGE;
Ai = GET-AGENT({mi});
REMOVE(Ai, Wl);
. Remove the agent from the waiting list (if it is present)

until TIMEOUT ∨Wl = ∅ ∨ sj 6= si

7 if Wl 6= ∅
NEW-RECOVERY(Wl)

8 until STOP-EXECUTION.

Figure 2: The Monitoring Process.

of view. Roughly speaking, the monitoring process consists
of two main activities (see Fig. 2). The first is to create
a “waiting list” of the agents that are expected to send a
message in the current state of the group. This list is cre-
ated according to the list of agents and roles created by the
agent-level recognition process. The second activity
consists in updating such list when the monitor receives a co-
herent message. Every time there is a change of state (as rec-
ognized bygroup-level ) or a timeout expires, the mon-
itor checks the waiting list and, if this is not empty, it sends
the list of agents to therecovery module.

Recovery has the only function of sending error notifi-
cations to the agents. When an agent receives an error notifi-
cation, it has to resend the last message to the specified recip-
ient. Note that the agents involved in the interaction do not
have to store all the messages they send; the only ones they
are required to store are the messages they sent during the last
transition of landmark. This is motivated by the fact that, at
each landmark, the overhearer checks the global consistency
of the state of the agents, and so the possible inconsistencies
are evaluated and corrected at each transition. The recovery
mechanism is applied in two cases: 1) the overheard message
is inconsistent with the current landmark; and, 2) the moni-
toring process was expecting a message from an agentx, but
it received nothing. However, suspecting a possible inconsis-
tency or a crash is not the same as actually detecting a crash;
the suspected agent may have sent the message but only the
overhearer has lost it. In a real network, it is impossible to
achieve any deterministic decision about the reason for not
overhearing a message. Moreover, intervening if the over-
hearer was the only agent losing a message would increase the

agent communication for no real reason. Given these consid-
erations, the overhearer decides whether to intervene or not
according to the social role of the agent involved. This means
that, if the agent has an important role for the accomplish-
ment of the protocol, the overhearer intervenes immediately,
otherwise it waits to catch any inconsistencies until the fol-
lowing message; agents suspected of inconsistency are added
to the waiting list.

4 An Example: Monitoring on the Contract
Net Protocol

The purpose of this experiment was to evaluate how the
knowledge about the roles influences the performance of the
monitoring process of multi-agent systems when there are
message losses. To do so, we set up a first experimentation
made on a group of agents that use a group version of the well
known Contract Net Protocol (CNP), used to allocate a task
for execution to a member of a group of agents. The “call
for proposal” (CFP) (Fig. 3(1)) is clearly a case of group
communication – there are multiple intended recipients, so
the intended recipient is a group, and moreover, the sender
may not know which agents will respond so the intended ac-
tors are unknown. By contrast, during the PROPOSAL stage
(Fig. 3(2)), we have many-to-one communication, i.e. each
agent in the group can send its own proposal to the contrac-
tor agent, but we do not know in which order the agents will
send their messages. Moreover, more than one proposal can
be accepted. This fact may be motivated by the need for hav-
ing reliable information after the computation is done, so, in
order to deal with a single point of failure, it is preferable to
have more than one machine performing the same task.

To recognize or to model simple patterns of interaction (i.e.
natural policies or protocols), one of the most obvious ways
to proceed is, as we see from the current literature, to model
them as Finite States Machines. A finite state machine is an
abstract machine consisting of a set of states, a set of input
events and a state transition function. Recently, Kumar et
al. [Kumar et al., 2002] and Chopra et Singh[Chopra and
Singh, 2004] pointed out that a state machine representation
of a protocol has many limitations. The main criticism is that,
by labelling arcs with communicative actions, these actions
are fixed, so in open multi-agent systems, where agents are
autonomous and heterogeneous, such agents cannot handle
exceptions and opportunities. Also, there can be several ac-
tions (communicative and non-communicative) that can lead
to the same result[Kumaret al., 2002]. It is easy to see that
this kind of representation leads to a huge number of possible
states, because the number of the possible interactions grows
exponentially with the number of group members. Finally,
we can be also in a situation where we do not exactly know
who such members are and so we cannot describe the states
of the group as a product of their finite state machines.

In the representation of conversation protocols made by
[Kumar et al., 2002], instead of specifying the state transi-
tions, the authors specify just a partially ordered set of states,
called landmarks. We started from the landmark represen-
tation of the CNP[Kumar et al., 2002] and we made a few
extensions in order to obtain a group protocol (see Fig 3). As
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(5) [∀x γaccept(x) ⊃ (ACCEPT α β x)] ∧
[∀x γreject(x) ⊃ (REJECT α β x)]

(6) ∀x γaccept(x) ⊃ (INFORM x β α (DONE x a))

(7) (INFORM α β γaccept (BEL α (DONE γaccept a)))

(8) [∀x γaccept(x) ⊃ (INFORM x β α ¬ϕ)] ∨
[∀x γaccept(x) ⊃ (INFORM x β α 2¬(DONE x a))] ∨
[(CANCEL α β γaccept a ϕ)] ∨
[(INFORM α β γaccept ¬ϕ)] ∨
[(INFORM α β γaccept 2¬(DONE γaccept a))

(9) [(INFORM α β γaccept (BEL α ¬ϕ))] ∨
[(INFORM α β γaccept

(BEL α 2¬(DONE γaccept a)))] ∨
[∀x γaccept(x) ⊃ (INFORM x β α (BEL x ¬ϕ))] ∨
[∀x γaccept(x) ⊃ (INFORM x β α

(BEL x 2¬(DONE γaccept a))]

Figure 3: Landmark representation of the CNP.

previously mentioned, the landmark approach is a formalism
within the framework of Joint Intention Theory (JIT), where
conversation protocols are regarded as having an associated
goal that the agents are meant to achieve. A landmark is char-
acterized by the propositions that are true in the state repre-
sented by that landmark.

In this paper, for the sake of simplicity, we do not present
the complete formalization of the CNP using the group land-
mark extension, although we provide a graphical representa-
tion of the state (see Fig 3) and some of the possible com-
municative acts in order to make a transition from a state to
another state. The semantics of these communicative acts is
a direct extension of the semantic presented in[Kumaret al.,
2002], as made in[Rossiet al., 2005]. The termsα, β, and
γ in the communicative acts can represent either groups or
individuals. If a(α, β, γ) is a communicative act,α is the
entity performing the act,β is the recipient (including the
overhearers) of the request message, andγ is the intended
actor [Kumar et al., 2000; Rossiet al., 2005]. A group is
defined by a characteristic function such as the membership
property. This can be captured by a predicate consisting of a
free variable that ranges over individuals. With Greek letters
we will represent groups’ names, and we use the same symbol

in a functional notation to denote the associated membership
predicate. For example,γ is a group having the membership
predicateγ(x) wherex is a free variable. The group prop-
erty for the groupγpropose specifies the agents who chose
to propose from a rational choice between proposing or not.
The groupγpropose is also specified by noting that it con-
sists of those agents who performed an PROPOSE within
the specified timeout period after the original CFP was per-
formed. In either case, the group predicate is evaluated ret-
rospectively, i.e. by looking backwards from a future point
in time to determine which agents “proposed”. The group
γaccept is specified by noting that it consists of those agents
who performed a PROPOSE within the specified timeout pe-
riod after the original CFP was performed, and whose pro-
posal is accepted. Similarly, the group property forγreject

specifies the agents whose proposal was rejected after the
original PROPOSE was performed. In this case, the groups
γaccept andγreject are dynamically created byα (who sent
the CFP) when it sends REJECTs and ACCEPTs. Note that,
in order to establish a joint commitment or to discharge a
precedent commitment, the entityα has to send to each agent
that made a PROPOSAL either a REJECT or an ACCEPT
(γpropose ≡ γaccept ∪ γreject).

This kind of formalization allows us to reason about group
of agents without knowing a priori who and how many are
such members. In this sense it is impossible to model our
protocol by legal combination of individual agent states. In-
deed, let us stress again that we do not know how many agents
are involved, and so how many states. To further enforce this
point, let us take state L3 as an example. L3 is reached by
sending a number of ACCEPTs and a number of REJECTs
from the contractor to all the agent that made a PROPOSE;
since the number of accepted agents (which correspond a par-
ticular internal state of the contractor) and the number of the
rejected agents (which correspond a different internal state)
are chosen dynamically, we cannot imagine to have the rep-
resentation of the global state just as a cartesian product of
the agent internal states.

4.1 Experimental Results
We performed experiments on monitoring a group of agents’
execution of the Contract-Net Protocol, implemented in Java.
We use a multicast communication infrastructure LoudVoice
[Busettaet al., 2002] to support the communication needs of
the agents. LoudVoice uses the fast but inherently unreliable
IP multicast and XML for message encoding. LoudVoice is
language-independent: we currently have a Java implementa-
tion of the API and a beta version of the C# porting that runs
both on handheld devices and PCs.

In the first experiment we considered the case where only
the overhearer loses messages. If the number of lost mes-
sages (n) is less than the number of messages required to
make a transition from a landmark to one of its successors
(m), in our approach the overhearer can follow the behavior
of the group; the computational complexity of the problem
is linear and depends of the number of messages and social
rules. We can demonstrate that the computational complexity
of our algorithms, when the number of lost sequential mes-
sages is more than the one required for making a transition,



Figure 4: Overhearing recovery rate in varying the percentage
of lost messages.

is equivalent of the complexity obtained using a final state
machine representation.

In the second experiment, we evaluated the performance of
our monitor process. To this end, we assumed that the over-
hearer does not lose any message. We ran our experiments
on a local network, and so we added a random error genera-
tor within each agent in the group and we modified the error
rate from 10% of messages lost up to 50%. We considered
only errors in the process of sending a message; this means
that when an error occurs all the members of the group do not
receive such message. Of course in a real network it may hap-
pen that a message is received only by part of the group, but
we left this experimentation to future works. Let us just ob-
serve that a message loss by a subgroup composed ofl agents
is equivalent tol message losses in pairwise communication;
the same considerations made above about the limitations of
modeling group states as cartesian product of individual states
apply here. Getting back to our experiment, our group was
composed by 20 agent and we randomly generated the num-
ber of agent to be accepted and the number of agent to be
rejected. For each rate of error, we performed 50 runs and
we measured the total numbers of messages sent, lost, and
recovered. From the analysis of our results, we had that the
recovery rate (the number of recovered messages divided by
the number of lost messages) decreases with the increment of
the percentage of lost messages. In particular, starting with a
performance of 80% at the rate of 10% of lost messages, we
arrive at 50% when the rate of message lost is 60% (Fig. 4).

This type of behavior in the performance of the monitor
process depends on the fact that the overhearer does not know
who and how many are the members of the group. In fact, a
strong impact on the overall performance of the monitor pro-
cess is due to the loss of the first message of an agent. If
the overhearer loses the first message (i.e., the PROPOSE), it
cannot recognize the role of that agent. Moreover, the agent
will be not included in the interaction by the group (they also
lost the message) and the overhearer will have no chance to
recover from the failure. By contrast, if we consider the per-
formance of the monitoring process on the subgroup of agents
that starts correctly the interaction, the overhearer can recog-
nize and recovery from every failures. This limitation feeds
back into the criteria for group protocol design when over-
hearing is adopted: the first message sent by an agent should
be duplicated or somehow recovery mechanisms must be built

into the protocol itself to avoid that an agent is simply kept
out of the group. For instance, in a practical case (the policy
negotiation protocol described in[Busettaet al., 2004]), the
protocol is inherently redundant. Its goal is to reach an agree-
ment on a set of objects known by everybody (policies, in this
instance), and this is obtained by having each agent repeating
multiple times (at least twice for the protocol to work in ab-
sence of message loss) what it thinks being the set of common
objects and which agents they refer to. Notwithstanding this
redundancy, the total number of messages exchanged is well
below what would have been required by pairwise communi-
cation.

5 Related Works
The work of[Pauroballyet al., 2003] also analyzes the prob-
lem of consistency for a group that follows a protocol. In par-
ticular, this work is focused on ensuring the consistency of
mutual beliefs among a group of agents when the communi-
cation is faulty. As in our approach, the state of the interaction
is represented by the propositions believed by all the agents.
The main difference between this work and ours is in the way
of achieving such consistency. While in the former coherence
is achieved by a synchronization protocol (which consists of
repeating messages) and the detection of communication fail-
ures is provided by the lower communication layer of the in-
frastructure, in ours the detection of incoherence is kept at the
agent reasoning level by the overhearer. Moreover, mutual
beliefs among agents are achieved by defaults and so we do
not need the repetition of messages except in the case when
we have the detection of an inconsistency. In this sense, Pau-
robally’s approach is more related to the work of[Busetta
et al., 2004] where the protocols for the group of agents are
derived from a high level representation of landmarks, and
the consistency of the group beliefs is achieved by periodi-
cally sending some particular messages (called “reminders”)
whose only purpose is, indeed, stating what an agent thinks is
the groups’ perspective. Finally, in the protocol formalization
made in[Pauroballyet al., 2004], the members of the group
have to be known a priori, and communication is still single
agent to single agent.

Kaminka and Tambe in[Kaminka and Tambe, 2000] ana-
lyzed the concept of socially-attentive monitoring for team-
work. They focus on detecting failures in the social relation-
ships that have to hold among agents in a team. Even if the
work of Kaminka and Tambe is mainly concerned with plan
recognition and not with communication protocols, it is re-
lated to ours because social relationships which should hold
among the team members enable the generation of expected
ideal behaviors of the agents, and can help in selecting the
agent to be monitored according to their roles. The notion of
consistency among the beliefs of the agents involved in the
teamwork is also present.

6 Discussion and Future Works
We have briefly presented a way to describe interaction pro-
tocols that enables overhearing for monitoring the progress of
the protocols themselves when the number of the agents in-
volved is not known a priori. Protocol representations of the



interaction from the perspective of single agent (i.e. “local”
perspectives) differ from “global” perspectives. In the local
perspective, the common approach is to define a finite state
machine for each agent and then, if we want a global view
of the process, we need to find a way to interconnect such
machines in one global, large machine. Assuming that such
formalization is actually possible for large groups, we fore-
see that its representation leads to a huge number of possible
states, because the number of the possible interactions grows
exponentially with the number of group members. Finally,
we can be also in a situation where we do not exactly know
how many the members are and so we cannot describe the
states of the group as a product of their finite state machines.

We described monitoring for systems in which we do not
have direct access to an agent’s internal state, but we can over-
hear all the messages exchanged through a multicast channel.
For this reason, our protocols are modeled as joint states of
the interaction by means of a landmark-based approach and
some simple extensions to Joint Intention Theory formulas.
In actual applications, the recognition of social roles enables
the overhearer to detect some faults of agents due to message
losses. The key novelty in this paper consists in achieving
group monitoring while the number and the members of the
group are unknown a priori thanks to the dynamic recognition
of social roles. The use of group communication allows us to
model different types of teams as in[Rossiet al., 2005] but
is still an open issue for agent communication languages. Fi-
nally, the use of JIT and of the landmark formalization allow
us to represent interaction protocols in a compact and logi-
cally well founded way, since we can represent communica-
tion among groups and, by using groups, the roles involved
within the interaction from a global point of view.

The problem of monitoring multi-agent systems when the
number of agent increases will unavoidably lead to a high
computation complexity. So, implementations of monitoring
processes can require significant computation and communi-
cation overhead, which prevents them for being effective as
the number of agents is scaled up or the number of failures
increases. In order or overcome these problems, some issues
regarding selection mechanisms have to be faced. If we are
able to dynamically associate roles to agents, and so we are
able to make some predictions about the behaviors of the lat-
ter, we expect to be able to make a selection of the events
expected from specific agents and of the events to analyze on
behalf of their roles. For example, in some state transitions
a message loss by the overhearer (which may well be volun-
tary, i.e. when the agent is overrun by the amount of commu-
nication and has to discard input) has no effect on the ability
of tracking the group state. Moreover, we argue – and will
attempt to demonstrate in future work – that the overhearer,
once that the social roles are recognized, can focus on moni-
toring only particular agents whose roles are deemed critical
for the development of the interaction.
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