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Abstract

Research in Multi-Agent Systems extensively ap-
proached observation mechanisms from outside.
Agents are black boxes and much work allows in-
ferring internals or collective activities from the ob-
servation of their interactions. In this paper, we
propose to extend the expressiveness of software
agents and enact new observable features.
Our framework leads to an extended definition of
agent; the central role of a software environment
to deal with these agents; and a mechanism we
named oversensing to refer to the observation of
these agents. This paper presents these notions and
provides preliminary insights on their exploitation.

1 Introduction
Modelling others from observation aims at representing oth-
ers internal states or intentions, so that the observer can re-
act accordingly. In the context of Multi–Agent Systems
(MAS), agents are considered as ‘black boxes’ that encap-
sulate and hide internals from outside observation. De-
spite the encapsulation barrier, some internals can be in-
ferred indirectly by observing agents interactive behaviours
and applying recognition mechanisms [Kaminka et al., 2004;
Mitchell et al., 1994]. However, observing interactions and
applying recognition algorithms can be costly and error–
prone. The ‘indirect deduction’ of internals they yield can
be biased and lead to wrong decisions.

In this paper, we propose a framework to improve the ob-
servation of software agents in such a context. To this end,
we think of a software agent not only as an autonomous and
interactive entity but also endowed with an explicit bound-
ary that exposes a selection of internals. Such an extension
opens new possibilities for agent observation by expanding
expressiveness, and we will define oversensing as a mecha-
nism to perform such observations. In addition, we introduce
an explicit software environment as first–class entity in MAS
to regulate the framework exploitation and the execution of
oversensing.

In section 2, we motivate in further details this research.
Section 3 is devoted to define key concepts exploited in this
paper. Section 4 presents how our framework participates in

expanding the information that can be observed about agents.
Section 6 discusses this paper and refers to related work, and
finally section 7 concludes.

2 Motivations
Much research deals with observing interactions to deduce or
validate hypothesis on agent internals or their collective be-
haviours. For instance, statistical tools applied at runtime or
to log files can show trends in the interactivity of agents, ei-
ther software, human, or robots [Legras and Tessier, 2003;
Sabouret and Sansonnet, 2002; Mitchell et al., 1994 ]. Moni-
toring MAS with overhearing1 enacted non–intrusive system
surveillance, conversation recognition, or agent dynamic co-
ordination [Kaminka et al., 2002; Gutnik and Kaminka, 2004;
Legras and Tessier, 2003].

However, some scenarios involving software agents require
other observation techniques, and we illustrate an example
hereafter. In a simple settings of load–balancing, agents A
and B process incoming requests received from clients. If for
some reason A is overloaded and B becomes idle, it would
be pertinent to share the load with B. However, this is usually
addressed with a specific interaction protocol between A and
B. As A is overloaded, the preparation of such a protocol is
too costly. An alternative solution would be for B to recog-
nise that A is overloaded, so that B can ‘prehend’ tasks. This
might also be costly as B has to spend time and power on per-
forming the observation algorithm. In addition, recognition
might lead to erroneous deduction (‘A is fast’ instead of ‘A is
busy’), and consume even more time. As an alternative, we
propose in this paper a framework where A shows her busy
state explicitly, so that B can simply ‘read’ it to engage pos-
sible support.

In this example observation appears opportunistic in the
sense that the observer agent engaged his role suddenly, out
of context. This class of observable events is unpredictable,
but if software agents can expose ‘bootstraps’ about their
internals, like robots with their body or humans with their
emotions, agent interactions and their applications are signif-
icantly extended.

1Overhearing is an indirect communication type that allows
agents ‘listening to conversations’ without the status of addressee
[Dignum and Vreeswijk, 2004]. E.g. one can listen to the discus-
sion between two friends without being part of the exchange.



3 Definitions
In this section, we present definitions of agent and environ-
ment that fit our argument and we introduce oversensing that
augments software observation.

3.1 Software Agent

In the frame of this paper, we focus on software agents. Al-
though accurate definitions were already given [Ferber, 1999;
Russel and Norvig, Edition 2003], we propose a version that
emphasises agent interactions

A software agent is an autonomous problem–
solving core endowed with an explicit boundary
that exposes:

sensors to receive information from the environ-
ment

actuators to send information to the environment
a public state of agent internals observable in the

environment

First, this definition separates agent internals from their in-
teractive capabilities. These ones are gathered in an ‘explicit
boundary’, in the way robots have a body shell with sensors
and actuators. Second, the usual sensors and actuators are
extended with a public state. The public state is intended to
expose some agent internals as observable features. Others
can observe the public state at a low cost since they can sim-
ply ‘read’ it.

A formalisation of this agent definition should then feature
the two parts of an agent, together with their relations as a
whole:

Agent = (ψ, ϕ, INF ) (1)

First in this formula, ψ denotes the problem–solving abili-
ties of the agent (it’s ‘mind’). Second, ϕ is the ‘body’ of the
agent. It refers to what we call the software body or softbody.
This second part of the agent architecture is a 3–tuple:

ϕ = (S,A,Ps) (2)

where S is the set of sensors of the agent, A the set of
actuators, and Ps the public state, which can be represented
by a list of variables.

The last element of the agent definition is the INF oper-
ator (we will read it ‘influence’) for the agent to act on its
softbody and modify its state:

INF : Ψ× Φ → Ψ× Φ
(ψ, ϕ) �→ (ψ′, ϕ′) = INF (ψ, ϕ) (3)

From an initial state of the softbody ϕ and the mind ψ, an
evolution occurs when ψ influences ϕ toward another state
pair: (ψ′, ϕ′) = INF (ψ, ϕ).

In the agent community, definitions usually refer to ψ with
sensors and actuators. The introduction of a softbody ϕ with
the public state extends this model so that the distinction soft-
ware agents, physical robots, and human–beings is reduced.
For this reason, we will now refer to software agents simply
as agent.

3.2 Environment
Our definition of agent lets them free to fake attitudes and
express any kind of Ps, so that observation is not guarantee
to be reliable. This is the reason why the environment has
a central role in definition 3.1 to isolate and structure agents
in MAS. The environment should manage and regulate the
performance of interaction in the system, so that agents have
to comply with system rules and cannot display fake states.

Our definition is based on Weyns et al. from [Weyns et al.,
2005] and it focuses on the management of agent interactions.

An environment is a software entity in which
agents exist and that:

• Structure the system
• Mediate all interactions
• Define and enforce interaction rules

An environment defines the structure of the system where
agents evolve. This evolution is mostly interaction and it is
mediated by the environment, so that it can enforce environ-
mental rules and perform specific mechanisms, such as the
one we will define for oversensing.

To formalise this definition, we propose the following:

Environment = (Ω,Φ, TRANS) (4)

First, Ω is a 2–tuple state representing the environment in-
ternals:

Ω = (T opology,Rules) (5)

where T opology describes the environment infrastructure
in terms of agents and their relations. In addition the topol-
ogy defines a ‘logical scope’ for each agent that determines
the ‘closeness of agents’ in the system. The scope of agents
indicates what they can observe in the environment and which
other agents can observe them. Rules is the policy that gov-
erns this environment. Rules define how the environment
manages the execution of agent interactions that can be ei-
ther direct, indirect, or they can also state ‘laws of Physics’ in
some applications (e.g. into water).

Φ is the set of softbodies to represent the population of
agents managed by the environment. Only softbodies are re-
quired since they are the observable part of agents. They are
shared interface between agent and environment whereby the
environment can uphold rules and ensure no incoherent or
fake attitudes can occur. The environment is an enforcing
infrastructure that can be tailored for specific observational
situations.

In order to show the influence of the environment on
agents, we introduce the TRANS operator (we will read it
‘transform’).

TRANS : Ω× Φ → Ω× Φ
(ω, ϕ) �→ (ω′, ϕ′) = TRANS(ω, ϕ)

(6)
From Ω and any softbody ϕ, TRANS produces a new

softbody ϕ′ and environment state Ω′ that represent the evo-
lution of ϕ under the influence of the environment. We can
imagine it as a state transition of the softbody constrained by
environmental rules and topology.



3.3 Oversensing
We define oversensing in the context of the previous sections
by the following:

Overhearing is an ensemble of techniques de-
voted to express and sense the environmental con-
tribution of other agents through their public states.

Oversensing then refers to mechanisms whereby agents ex-
ploit public states. The next section stems from this definition
to detail these mechanisms, focusing on the static expression
of the public state and the environmental influence.

4 Oversensing Observation
4.1 Oversensing Types

a1 a2 a3

s1s2

p1p2p3

Figure 1: Agent in the environment Ω: Sensors s i sense Ω,
Actuators ai influence Ω, and the public state PS represents
the agent.

Oversensing can be conscious in the case where an ob-
server is searching for information, and we call it active over-
sensing. A simple algorithm can be designed to take the pub-
lic state into account in observation conducted by agents.

Algorithm 1 Observation Steps of an agent (active oversens-
ing)

1: x←Results of observing interactions
2: y ←Results of observing public states
3: z ←Summarise results (x, y)
4: Return z

All potential sources to be observed are represented on
Fig. 1: actuators and sensors of agents that participate in in-
teractions, and the public state. In algorithm 1, interactions
are first observed on line 1, then the public states of interest
on line 2, and the acquired knowledge is merged on line 3
before the agent uses them.

Other situations can be encountered without this will to ob-
serve, as they can be indirect and opportunistic. We can call
them passive oversensing. Work done on overhearing already
refers to this possibility when one is listening to the radio and
can catch relevant information [Busetta et al., 2002] or when
one receives unexpected messages about activities in the sys-
tem [Balbo and Pinson, 2001], and oversensing is tailored

to extend these results. Designing an algorithm in this case
is not straightforward. In fact, opportunistic interactions can
occur unpredictably and no agent is aware of such a situa-
tion until one realises she is observer or observed. Therefore
the algorithm cannot only rely on agents and the environment
shall be part of it. This will be the theme of the next section.

4.2 Passive Observation and Interaction Trigger
Figure 2 depicts a communication process for oversensing–
based observation. In this context, the term ‘communication’
should be understood as a mere information transfer.

1
p

3

PS (A1,p)
s
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A3

A2
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Figure 2: The environment informs agents about the public
state of each other in a given range. A3 is the only one to feel
A1 in this configuration.

A1 exposes p as public state, for instance “Sleeping mode”.
The dashed line represents the range of observability of A 1

defined in the topology and whereby any agent is influenced
by the environment about the state of A1. In the situation
represented on figure 2, A2 and A4 are out of range from A1

and consequently are not sensitive. However, A3 is in the
scope and the environmental process is performed. With the
notation introduced in section 3, we write for A3:

(Ω′, (S3 ← p,A3,Ps3)) = TRANS(Ω, (S3,A3,Ps3))
(7)

A sensor on the softbody of A3 is updated with p in the
assignment S3 ← p. Once sensed this information can reach
A3’s mind. On figure 2 the knowledge of A3 is completed
with the fact Ps(A1, p), i.e. ‘A1 expresses the state p’. Such
a mechanism can be illustrated by algorithm 2, distributed
over the various participants.

The environment has the central role to get the expression
of public states (from the update on line 2) and to spread it
to other agents according to propagation rules (lines 4 to 8).
However, the environment is just the medium of delivery and
it has no responsibility regarding the effect of what it carries.
In our example, p is mediated to A3 and presented to its sen-
sors. Depending on the configuration of A3, the information
sensed can be kept, discarded, or simply ignored.

In the case where A3 accepts the incoming information and
takes it into account, a reaction can occur. A3 may inform
A2 and A4 about this fact, wake up A1 for some reason, or



Algorithm 2 Passive Oversensing Principle
1: Part for agent with a new Ps (A1 in the example)
2: Execute update procedure: (ψ ′, ϕ′) = INF (ψ, ϕ)
3: Part for the environment
4: Validate updates: (Ω′, ϕ′′) = TRANS(Ω, ϕ′)
5: if ϕ′′ valid
6: Spread in the neighbourhood
7: if ϕ′′ not valid
8: Cancel the update
9: Part for agents in the neighbourhood (A3 in the exam-

ple)
10: Read new information delivered by the environment

act while it is sleeping. These potential scenarios are exam-
ples of additional opportunistic interactions that can be spon-
taneously triggered in agents.

4.3 Public State Management
The softbody is the place where the public state of an agent
is expressed in the environment. Its management is shared
between the agent and the environment in a balanced way.

Agent and environment can influence the softbody in dif-
ferent ways such as conscious moves the agent wants to
perform, environmental moves when a water stream car-
ries someone, or generally the combination of both effects.
However, forces are unequal. Any action from the agent is
counter–balanced to comply with the ‘universal’ rules of the
environment, so that the agent is not completely free to act.
Typically, talking under water is not possible due to the en-
vironment, even if the agent wants it. Environmental effects
have an overwhelming strength, and the agent can only par-
tially balance them. Figure 3 shows the interplay on the soft-
body.

pp � p+1

p � p+1 ?

p � p+2

Figure 3: When agents want to update their public state
(p←p+1), the environment rules the transaction and balances
it according to its local laws (the effective change becomes
p←p+2).

Any action denoted by an arrow from the ψ of the agent is
filtered by the environment before the actual modification of
the public state p. Conversely any action emitted by the envi-
ronment is applied directly on the state p, although the agent
can compensate the effect afterwards by another action. With

our notation, the management of the softbody is conducted as
follows.

INF (ψ, (S,A,Ps))→ (S,A,Ps,to be validated)
TRANS(Ω, (S,A,Ps,to be validated))→ (S,A,P ′

s)
(8)

In a given state ϕinitial = (S,A,Ps), the agent mind ψ
influences the softbody in the part between brackets. This in-
fluence is in turn compensated by the environmental regula-
tion with the term Ω, so that the new softbody state ϕresult =
(S,A,P ′

s) is produced.
When the environment acts on a softbody, the performance

is however directly applied:

TRANS(Ω, (S,A,Ps))→ (S,A,P ′
s) (9)

The agent is required to act next if it intends to counter
this influence, and the effect of this new action will still be
compensated by the environment (agent reactions are always
regulated to enforce the correctness of their behaviour).

5 A Scenario
AgentA has boarded a flight and is sleeping. The temperature
inside the plane is rather low and when agentB from the crew
walks by A, B covers A with a blanket after observing the
public state of A expressing ‘I am getting cold’.

This scenario can be represented in our framework by the
following sequence. The public state of agent A is a vari-
able T to represent her temperature in the interval [0..10] and
a variable is Shaking to express that A is cold. The initial
state is T = 10 and is Shaking is false, and we consider A
displays her cold feeling for T < 5 and turns is Shaking to
true. For sake of space and readability, we only represent the
public state in the formula for the softbody (we omit sensors
and actuators). We also suppose the state of the environment
is constant, i.e. Ω is not influenced in this example by tem-
perature changes.

Algorithm 3 Scenario stages
1: Agent A falls asleep. T = 10
2: The temperature of A cools down to 5 by environmental

effects:
3: TRANS(Ω, (T, false))→ (T−1, false) is repeated

five times.
4: When the temperature ofA reaches 4 at the next iteration,
is Shaking becomes true:

5: TRANS(Ω, INF (ψA, (4, false))) → (4, true) is
attempted by the agent, where the environment has no
opposition.

6: When B walks by A, she puts the blanket on her.
7: The temperature now goes up:
8: TRANS(Ω, (4, true))→ (5, false) after the first it-

eration.

6 Discussion and Beyond
6.1 Present Status
Oversensing is aimed at providing more matters to observe.
Pragmatic benefits remain to be evaluated against the sup-
plementary cost in terms of storage of the public state and



process complexity with the environment. These measure-
ments should allow comparing oversensing with other tech-
niques for common situations, and also show the intrinsic cost
of oversensing for its original features.

Considering observation of the public state, a full decision
process to compile a public state from system specifications is
not addressed yet. However, if the aimed system has an anal-
ogy with a physical one, a heuristic might be to rely on natural
senses. In the case of artificial systems without such an anal-
ogy, some insights may be inherited from the object–oriented
programming community where ‘public’ and ‘private’ scopes
are applied to object attributes and methods [UML, ver 2005].
But the question that remains to be clarified is the mapping
between concepts at the agent and implementation level.

The environment is a critical part in this approach to com-
pensate agent activities in a MAS and enact faithful observa-
tions. In the case of open MAS this turn to be a natural mean
to regulate the system. However, its complexity and overload
needs to be evaluated and compared against other approaches.
The highest maintenance cost of the environment should oc-
cur when the ratio (number of agents / frequency of ‘logical
movements’) is close to one in significantly large MAS2. In
such settings, the environment must compute for each agent
the oversensing range of each neighbour and evaluate whether
public states must be published. Distributed environments
can support similar issues [Mamei and Zambonelli, 2004;
Omicini and Zambonelli, 1999] and provide potential solu-
tions.

The operators defined for handling the softbody structure
all interactions. Regarding the complexity, influence and
transformation operators differ due to their nature. Influ-
ences have no cyclomatic cost since they are mere assign-
ments of new values to variables in the public state. However,
transformations require the review of environmental rules to
ensure the application is valid. The transformation cost is
thus directly related and proportional to the number —and
complexity— of rules.

Another point with operators is their synchrony. Influences
are assignments, usually considered as atomic events, so that
agent internals and body are synchronised. Transformations
are also synchronised, since the execution of the correspond-
ing interaction is ‘blocked’ until the environment validates it.
Agent interactions are however asynchronous when consid-
ered from end–to–end. The transaction is mediated by the
environment, but only the beginning and the end are synchro-
nised with agents. In–between, the environment processes
the delivery but the system is not blocked. This should allow
maintaining flexibility in the system, for example in the case
of Internet applications.

6.2 Related Work
Coordination artefacts were recently proposed for the devel-
opment of open MAS [Ricci et al., 2005]. They provide
agents with a standard interface to other entities in the envi-
ronment, so that coordination issues and the consequent inter-
action concerns are managed locally. Coordination artefacts

2Movements are logical since the geometry of the environment
can be anything, especially more than 3 dimensions

provide information about the entity they wrap to let agent
exploit them ‘seamlessly’, and our softbody provides similar
interface. However, the softbody belongs to the agent and is
tailored for agent interactions and general observation. Coor-
dination artefacts address related issues but are not appropri-
ate for observation since they are not coupled to agents (many
agents can use the same artefact).

The View Definition Language (VDL) describes agents as
a ‘white box’ (by opposition to the black box we presented
in this paper) [Sabouret, 2002]. The complete logics and in-
ternal state of the agent is compiled in a single file that is
rewritten along the execution. Our softbody is a configurable
solution between the usual black box describing agents and
VDL. We think this is a critical feature to preserve the inter-
nal integrity of agents [Gouaı̈ch et al., 2005], while leverag-
ing the exposition of part of internal states as developed in
this paper.

Finally, the Behavioural Implicit Communication (BIC)
was proposed as agent interaction paradigm [Castelfranchi,
2004; Tummolini et al., 2005]. With BIC the authors argue
that agents can express meaning when acting, in a different
way that ‘non–verbal’ signs, either cultural or pre–decided
codes, usually referring to facial expressions. On the con-
trary BIC is not codified and such interactions carry mean-
ing without language. An example given in [Castelfranchi,
2004] is about a prey that escapes her predator. She actually
discloses her position and intentions just by moving. The au-
thors explain that she does not communicate this information
‘intentionally’, but the predator can understand she is running
away and to which direction just by observing her behaviour.
Different BIC levels are defined and we think the oversensing
observation covers some of them. Tummolini also exploited
the term ‘oversensing’ in [Tummolini et al., 2005] to refer to
a possible extension of the concept of overhearing in the case
of BIC. Our approach seems compatible and is intended to be
pragmatic compared to this theory.

7 Conclusion

Oversensing is a communication and interaction mean that
is not addressed in MAS to our knowledge. Even robots do
not usually exploit their body that is mostly thought of as an
‘inexpressive shell’. Oversensing relies on the agent logical
environment and on the notion of softbody to build both a
dynamic and static observation scheme. In this paper we in-
troduced these concepts as foundation for our work.

Our ongoing endeavours on oversensing aim at refining the
concepts and designing appropriate algorithms. Then, imple-
mentations of the softbody and the environment should allow
validating our approach.
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