
Abstract
In this paper we present a survey that classifies the
types of information contained in agent models and
describes various techniques that have been used in
the past to maintain up-to-date agent models. From
this discussion we present a model that captures the
agent modelling ideas. The presented model is then
used to describe the major issues in agent model-
ling research, and to suggest some future opportu-
nities and directions for agents-modelling-agents
research.

1 Introduction
An agent is often implemented as a goal-driven active com-
ponent that is embedded in an environment from which it
receives sensory data and based on the sensed data (or state
of the environment) makes decisions about which action to
carry out in the environment in order to achieve its goal(s).
In the simplest case, the environment contains only one such
agent and this embedded agent is always able to sense the
necessary data from the environment that it requires to make
a decision on which action to carry out to ensure that its
goals are met. An example of such a simple case is a ther-
mostat agent which is given the goal of maintaining a set
temperature level (desired_temp) for a room. In this case,
the agent’s sensor senses the current temperature
(room_temp) of the room and based on this value the agent
determines which of its possible actions to carry out in order
to maintain the desired room temperature. These actions, for
example, could include elements from a set of actions such
as {do_nothing, turn_heater_on, …, etc}. The agent selects
the action from this set that it expects to help achieve its
goal sometime in the future. This action selection assumes
that the agent possesses knowledge about the effect of its
actions on the state (i.e. room_temp) of the environment.
This knowledge can be encoded for the agent by the de-
signer as a set of condition-action rules, such as,

{
if room_temp < desired_temp then turn_heater_on,

 if room_temp = desired_temp then do_nothing,
 .
 .

 .
 Etc.
}

It is clear, therefore, that the selected action is driven by

what the agent believes to be true about the current state of
the environment. This belief is captured by the room_temp
variable, and is thus often called the environment model or
world model.

Consider a more complex case in which the environment
contains a set T of n thermostat agents, labeled t1, t2, .., tn
∈T, and in which each ti’s (1<=i<=n) goal is to maintain
the same desired_temp for the room (possibly for redun-
dancy). The condition-action rules for each ti in this case
can be expressed as

{
 If room_temp < desired_temp and t.action=do_nothing

}{ itTt −∈∀ then turn_heater_on,
 if room_temp = desired_temp then do_nothing,
 .
 .
 .
 Etc.
}

 where t.action }{ itTt −∈∀ refers to the action that
each of the other agents minus the agent making the deci-
sion has selected. The belief about the state of the world (i.e.
world model) is now captured by variables room_temp and
t.action }{ itTt −∈∀ . That is, the world model now con-
tains information about the environment and information
about the other agents in the environment. The information
stored about the other agents in an agent represents what
that agent believes about the other agents and are called
agent models.
In this paper, we present a survey of the processes involved
in the building and maintenance of these agent models. We
present these processes in a unified model that allows for
communicating the ideas involved in the modelling of other
agents. The goal of the model presented is to allow for
communication (within the research community), discussion
about the issues and solutions proposed in general for agent

A Condensed Roadmap of Agents-Modelling-Agents Research

Olayide Olorunleke, Gordon McCalla
ARIES Lab, Computer Science Department

University of Saskatchewan, Canada
{oto033, mccalla}@cs.usask.ca

modelling, and to propose possible new opportunities for
agent modelling research.

2 Agent Modelling
Agent modelling encompasses the processes, techniques, or
algorithms that can be used for the building and mainte-
nance of the knowledge stored about other agents (i.e. agent
models). Before presenting various examples of these
processes it is necessary to discuss and classify the types of
information that are usually stored in an agent model. Such
a classification will allow us to describe and understand the
differences between the inputs and outputs of the processes
that are involved in agent modelling.

2.1 Contents of Agent Models
In the previous example with n thermostat agents, the agent
models only contained one attribute that is assigned to each
agent, that is, the action that each agent has chosen to carry
out (t.action). In general, the agent model t for any agent
usually contains a combination of the following types of
information:

1. Observable features
This type of information includes any information
about the agent being modeled (i.e. the modelee) that
can be detected by the sensors of the modeler such as
t.orientation, t.location, etc.
2. Internally held beliefs
Internally held beliefs refer to the beliefs held by the
modelee. For example t.room_temp refers to agent t’s
belief about the room_temp. These types of information
are generally not observable via the agents’ sensors.
This could also contain beliefs such as what the mod-
eler believes the modelee believes the modeler believes
(e.g. tmodelee.tmodeler.room_temp), and so on. This type of
modelling is referred to as recursive modelling [Gmy-
trasiewicz et al., 1991].
3. Predictions relating to the agent being modeled
Predictions refer to the expectations of the modeler
about the modelee that are expected to be true at some
time in the future.
4. Other properties that can be attributed to each

agent.
This type of information includes properties than can be
attributed to other agents such as capabilities, reputa-
tion, sensor range, plans, goals, policies, etc.

At any point in time, the contents of an agent model, which
are made up of a combination of the information types given
above, can be classified into two classes; class A and class
B.

2.1.1 Class A - Observations
This class contains the information that can be sensed di-
rectly from the agent’s sensors at that point in time. In ac-
cessible environments – that is, environments in which the
sensors are always able to sense the entire state of the world
– it is clear that all the observable features in type-1 will fall
into this class since their values can be sensed directly from

the environment. In inaccessible environments, however, the
agent’s sensor’s position or orientation may affect the range
of the environment’s states that can actually be sensed at a
point in time. For example, a camera can only record objects
within its view range; therefore, other objects that are not
within its view range will not be considered as observable
and will not belong to class A, even though they can be
picked up by cameras in general. These objects that are not
currently being picked up by the sensors are classified to be
in class B.

2.1.2 Class B - Inferences
Those things that cannot be currently sensed are classified
into this class. The inability to sense the values assigned to
these features implies that the modeler has to guess, infer, or
compute what the current values should be; based on the
currently sensed information and prior knowledge of the
relationships that exist between the sensed features and the
non-sensed ones, the history of values that have been as-
signed in the past to the non-sensed features, and the dy-
namics of the non-sensed features. Information-types 2, 3,
and 4 usually fall into this class since they are generally not
sense-able by the agent’s sensors. In inaccessible environ-
ments it is possible that some type-1 information can fall
under this class even though they are sense-able, but are not
currently being sensed.

2.2 Agent Modelling Processes, Algorithms, and
Techniques

Every agent modelling process, algorithm, or technique at-
tempts to maintain accurate and up-to-date values in the
agent models being stored. This involves the updating of
both the class A and class B information in the agent mod-
els. Updating the class A information in the models is a
pretty straight-forward task since it only involves getting the
observations from the sensors. This also often serves as the
first step in most modelling techniques. Once this update of
class A information is completed, the modelling process
then continues to use the class A information to infer values
for the unobservable class B information. For example, the
REal-time Situated Least-commitments (RESL) algorithm
[Kaminka et al., 1998] shown in Figure 1 depicts this proc-
ess.
As shown in the figure, the RESL algorithm begins by get-
ting the current observations – i.e. the class A information –
about the agent being modeled. The remainder of the algo-
rithm then attempts to infer the unobservable class B infor-
mation (plans and beliefs in this case) about that same agent.
To achieve this, RESL relies on the use of a plan recogni-
tion network that provides a link between the observations
made about the agent and the internal plans within the agent
that could produce those observations. Once the plans have
been flagged, RESL infers the agent’s internal beliefs by
ascribing the preconditions that must be true for those in-
ferred plans to be true and the termination conditions that
must be true for those plans that are inferred to have just
been terminated.
In general, updating the class B information from the class
A information alone is not possible. To carry out this task,

agent modelling algorithms usually use additional knowl-
edge that provides a means of connecting the observations
to the unobservable. In the RESL example, this additional
knowledge is provided by the plan recognition network
which is assumed to be a reactive plan [Firby, 1987] hierar-
chy that controls each agent. Huber and Simpson [2004]
also use a plan recognition network in maintaining values
for the unobservable. Other means that have been used to
encode this additional knowledge include use of plan librar-
ies [Ferguson, 1992; Geib and Harp, 2004], dynamic Bayes-
ian networks [Hamid et al., 2003; Rybski and Veloso, 2004;
Kaminka et al., 2002], hidden markov models [Bui et al.,
2002; Feldman and Balch, 2004], stochastic processes
[Lerman and Galstyan, 2004], behavior graphs [Kaminka
and Avrahami, 2004], and probabilistic state-dependent
grammars [Pynadath and Wellman, 2000].

RESL (plan recognition network, modeled agent)
{
get observations about agent
// primitive matching
for each operator that has a set of expected observations:
1. attempt to match observations to expectations
2. If succeed, flag operator as matching successfully
3. If fail, flag operator as failing to match
// propagate matching
for each operator that is flagged as matching
successfully,
• flag its parents as matching successfully
for each operator whose children (all of them) are flagged
as failing to match,
• flag it as failing to match
// preconditions
for each operator that is flagged as matching
successfully,
• flag its associated set of preconditions as possibly
true (the agent possibly believes this set of
preconditions)
// termination conditions
for each operator that has just stopped matching
successfully,
• flag its associated set of termination conditions as
possibly true
}

Figure 1: The RESL algorithm

The common thread in the above examples is that they rep-
resent a paradigm that assigns the responsibility of inferring
the class B data to the modeler. This paradigm is referred to
by Grosz and Kraus [1999] as active monitoring, and an
example of such active monitoring is via plan recognition
[Kautz and Allen, 1986; Carberry, 1990; Huber and Durfee,
1995; Intille and Bobick, 1999]. A common assumption in
plan recognition is that the actions carried out by an agent
are controlled by a mental state that drives the synthesis of
plans that the agent intends to follow in order to achieve its
goals. It is also assumed that the modeler is aware of this

mechanism (or has learned this mechanism through a proc-
ess of reinforcement learning for example) for decision
making which the modelee uses, and hence the ability to
observe the selected actions allows the modeler to infer the
mental state from which they result.
Obviously, the types of information we have classified into
class B go beyond plans and beliefs, and therefore plan
recognition alone cannot be used to maintain values for
these. Another example of an active monitoring approach
that tries to maintain up-to-date values for the type-1
information that is a subset of the class B information is the
predictive memory approach [Bowling et al., 1996]. The
predictive memory approach maintains the state information
– such as the position, velocity, direction, etc – of other
agents (within the simulated RoboCup domain [Kitano et
al., 1997]). Being that the type of information that the
predictive approach addresses are usually sense-able (i.e.
can be picked up by sensors), the need for a process to
maintain values for them only arises in inaccessible
environments; hence, their being classified into class B.
This predictive memory approach works by storing an
additional value – for each type-1 information – that
describes the confidence in the accuracy of the current value
assigned to it. This is achieved by storing the confidence as
a probability that represents how confident the agent is in
the accuracy of the value currently assigned to that feature.
At every point of memory update, the predictive memory
approach updates the values of those features of agents that
are directly observable from the sensory information
obtained from the environment (class A) – a step similar to
that shown in RESL. Additionally, the probabilities attached
to these values are set to 1.0. For those values that cannot be
obtained from sensory input (class B), the predictive
memory approach uses two phases to achieve the update.
The first phase – called the internal phase – considers those
changes that should occur based on the agent’s own most-
recent actions. For example, if the agent’s last action was a
turn by angle a, then it is possible to update the positions of
the other agents by correcting for this turn (since they are
stored as relative positions).
The second phase – which is called the external phase – in
the update of the data stored in memory about the states
features applies particularly to mobile objects (the ball and
other agents in RoboCup). The assumption is that mobile
objects tend to continue in their direction of motion and thus
– even when out of view – there is a short-lived certainty
that the objects will continue moving in that direction. Thus
the unseen mobile object’s positions are updated using their
last-observed velocities and positions. To account for this
guess, the probability values attached to these unseen data
items are reduced – by multiplying by a decay factor (e.g.
0.9) – to reflect a reduction in the certainty in the accuracy
of the maintained data. Additionally, the last observed ve-
locity that was used to update the object’s position is also
decayed, to reflect the possibility that moving objects even-
tually slow down. A threshold can be used to determine at
which point the update from memory is to be considered
inaccurate. Bowling et al. used a threshold value of 0.5.

Thus, if a confidence decay of 0.9 per update cycle and a
confidence threshold of 0.5 are used, then an object can re-
main unseen for 6 cycles – as shown in Table 1 – with rela-
tively accurate values (or at least relatively confident val-
ues) still maintained about it. At the 7th cycle the object’s
confidence goes below the set threshold.
This approach, in a similar way to RESL and the other plan
recognition approaches, also assumes some other knowledge
which allows the connection from past values of the unob-
servable information to be used to estimate what the current
values should be. In the case of RoboCup, the rules of the
game and the physics driving the system allows this connec-
tion to be made. In general, applying the predictive memory
approach is dependent on the domain, since it relies on the
knowledge of the rules governing the dynamics of the sys-
tem.

Table 1. This table shows how the confidence in the values associ-
ated with unseen objects is decayed. After the 7th cycle of not
being seen an object goes below the threshold of confidence.

Another active monitoring approach adopted – called ideal-
model-based behavior outcome prediction (IMBBOP) – by
Stone et al. [2000] for predicting (the type-3 information)
the actions that are expected of other agents within the Ro-
boCup domain. IMBBOP works by predicting other agents’
future actions in relation to the behavior considered optimal
for them in any given situation. The prediction is carried out
based on information that is readily available in the world
and thus, the prediction that is made is not dependent on the
agent being modeled, but on the world dynamics and the
actions considered to be optimal by the modeler in that
situation. In this regard of dependence on world situation
and dynamics, IMBBOP can be classified as being a focal
point approach that is used for coordinating the action pre-
dicted and the action which the modelee actually chooses to
carry out. Essentially, focal points are defined as prominent
solutions that stand out from a set of possible solutions
[Schelling, 1963; Kraus and Rosenschein, 1992]. The opti-
mal nature (i.e. prominent solution) of the predicted action
is what makes it a focal point.
A second paradigm for maintaining values for the class B
information in the agent models relies on communication
between the agents. These communication-based ap-
proaches are referred to as passive monitoring approaches
[Grosz and Kraus, 1999] or report-based approaches
[Kaminka et al., 2002]. This approach is particularly ideal

for use in teams of agents that are assumed to share a com-
mon language and ontology, and can be assumed to be
committed to each other. Through communication, there-
fore, the modeler receives the class B information from the
other agents that know such information rather than using
any of the active monitoring approaches described earlier.
The information sent to the modeler could be in response to
a query from the modeler or a proactive inference on the
part of the other agents that the modeler needs such infor-
mation. Finally, a third paradigm combines both the active
and passive approaches for maintaining the class B informa-
tion [Parker, 1993].

3 Example Applications of Agent Models and
Agent Modelling Techniques

Agent models have been used for various purposes in multi-
agent systems. In this section, we highlight a few of these.

Recognition and Critiquing
Agent models have been used in the recognition and provi-
sion of appropriate feedback to human agents during the
problem-solving processes of the human agents. Examples
include [Mengshoel and Wilkins, 1996].

Natural Language Discourse
Agent models have been used both in selecting appropriate
response from a stream of observational inputs [e.g. Green
and Lehman, 1996], and making decisions about what
should be said, by whom, and when it should be said [e.g.
Donaldson and Cohen, 1996].

Failure Detection and Recovery
Kaminka and Tambe [1997] used the contents of agent
models for failure detection and recovery. This approach,
called SOCFAD1 (SOcial Comparison for FAilure Detec-
tion), uses the other agents as sources of information to
which the modeler compares its own beliefs, plans, goals,
etc with those of the other modeled agents, and then reasons
about the differences observed in order to draw conclusions
about the correctness of their own behavior.

Finding Helpers for Helpees
The I-Help project [Vassileva et al., 2002] attempts, in an e-
learning context, to match helpees with possible helpers
based on the contents of agent models of both helpers and
helpees.

3 A Model of Agent Modelling Research
In this section we present a model that summarizes the
analysis of agents-modelling-agents research that we have
outlined in section 2. The aim behind such a model is to
serve as a tool in service of (1) correctly classifying and
understanding how new research ideas fit into or comple-
ment other pre-existing modelling ideas, techniques, or

1 Later expanded and called Socially Attentive Monitoring
(SAM) in Kaminka and Tambe [1998].

Time
object

observed?
old

confidence
decay
factor

new confi-
dence

t yes Any value 0.9 1
t+1 no 1 0.9 0.9
t+2 no 0.9 0.9 0.81
t+3 no 0.81 0.9 0.729
t+4 no 0.729 0.9 0.6561
t+5 no 0.6561 0.9 0.59049
t+6 no 0.59049 0.9 0.531441
t+7 no 0.531441 0.9 0.4782969

processes and (2) understanding where new opportunities
for agent modelling research lie. We do not claim that this
model is the only such model that can summarize the ideas
in agent modelling, but since to our knowledge no other
such model exists, we believe that the presented model adds
value to agent modelling research.
As shown in Figure 2, Modelxy refers to the model that
agent x (shown in the bottom right corner of the figure)
keeps about another agent y (not shown in the figure). The
figure shows that the contents of the model are partitioned
into the previously discussed class A and B partitions, with
the class A partition consisting only of type-1 information,
and the class B partition consisting of type-2,3, and 4 parti-
tions with the possibility of also containing type-1 informa-
tion in inaccessible environments.

Figure 2: Contents of agent models

Maintaining up-to-date values for the class A data is easily
achieved by wiring the agent’s sensors (the circled eye in
the diagram) to the class A information in the model.

Figure 3: The active monitoring paradigm

For the class B data, which is unobservable, the active
monitoring paradigm suggests, as shown in Figure 3, that a
set of functions F should exist that take elements of class A,
with the possibility of some external knowledge sources and
elements of class B as input, and compute an element of
class B. That is, if f F∈ then

f: A × Class A × [Ks] × [Class B] →Class B
where A is the agent being modeled and the input parame-
ters in square brackets (i.e. Ks and Class B) are optional.
The optional nature of these parameters is depicted as dotted
arrows in Figure 3. The optional feedback connection
(i.e.[Class B]) signifies the possibility of doing recursive
modelling or making predictions arbitrarily far into the fu-
ture. Any function that satisfies the above definition can be
called an active monitoring agent modelling technique. Ex-
amples of such functions that we have already outlined ear-
lier-on include: RESL, the predictive memory approach, and
IMBBOP.
The passive monitoring paradigm, on the other hand (as
shown in Figure 4), suggests that the class B data be up-
dated using communication ideas such as asking other
agents for information about the contents of class B, sub-
scribing to such information, or proactively communicating
such information.

Figure 4: The passive monitoring paradigm

The model representing the third paradigm can be generated
by combining figures 3 and 4 (This is trivial so the figure is
not shown to save space). This paradigm allows for actively
computing some elements of class B while some others are
updated via communication links, or using the elements of
class B received via communication to confirm the locally
computed values assigned to them, and so on.

The external knowledge that is stored in the knowledge
source (Ks) that is used in modelling other agents can be
classified into two categories. The first category encom-
passes the knowledge/information that represents what is

Incoming
messages

F

Knowledge
source (Ks)

Modelxy

Class A

Class B
Type-1

Type-2

Type-3

Type-4

Type-1

Modelxy

Class A

Class B
Type-1

Type-2

Type-3

Type-4

Type-1

Modelxy

Class A

Class B
Type-1

Type-2

Type-3

Type-4

Type-1

known about the modelee on account of a priori knowledge
of how the modelee selects its actions. For example, within
the RoboCup domain, Stone [1998] refers to this as the
locker-room agreement. Examples of such include the for-
mation used by a team in which each agent’s position on the
pitch depends on the location of the ball. Hence, knowing
the location of the ball is enough to infer where the other
agents are (or are trying) to be.
The second category in a very similar way also encompasses
the knowledge or information that is known a priori about
the modelee that accounts for its action selection. The dis-
tinguishing factor between the two categories lies in the
source of the knowledge. For the first category, the source
of the knowledge is assumed to be the designer of the mod-
elee and therefore applies usually to modelling teammates.
On the other hand, the knowledge that falls into the second
category is usually obtained by observing the behavior of
the modelee and encoding the relationship between the ob-
servations and the actions selected by the modelee. Essen-
tially the difference is that the knowledge is given in the
first category (by the designer of the modelee) while the
knowledge is learnt in the second category through a rein-
forcement learning process for example.

5 The Issues Involved

Since the contents of the agent models are used for action-
selection, it is very important that the agent models contain
accurate information. Inaccurate information in the agent
models will result in the selection of actions that are inap-
propriate for the current context. The presence of any such
inaccuracies in the models is referred to as (or results in)
delusion [Olorunleke and McCalla, 2003; 2004a] or model-
entity discrepancy [Ferguson, 1992]. A desirable property of
any agent modelling technique, therefore, is that it mini-
mizes the presence of delusion in the agent models. This
means that sensors should return accurate data, active moni-
toring approaches should make accurate inferences, the pas-
sive approaches should communicate accurate data to each
other, and the external knowledge sources should contain
accurate information. Olorunleke [2002] demonstrates how
reinforcement learning can be used to remove delusion in
the information about agent capabilities (which fall into the
type-4 information category). The use of reinforcement
learning in this case is possible because of the assumption
that agent capabilities do not change very often; therefore,
there is an opportunity to learn the capability of each agent
and use this information in the assignment of tasks. Avoid-
ing the spread of delusions from agent to agent is particu-
larly important when passive modelling approaches are
used. The reason for this is that an error in one agent’s
model can be easily passed to other agents via communica-
tion, and if such information is always believed then delu-
sion will spread easily through the system. Three strategies
are discussed in [Olorunleke and McCalla, 2004a] to solve
this problem, with general guidelines for maintaining delu-
sion-free models also given.

To illustrate the second important requirement of agent
modelling techniques consider the situation in Figure 5 in
which the modeler now maintains models for n other agents.

Figure 5: Multiple (n) agent models

As shown in the figure, agent x must now use the agent
modelling techniques that it has available to it for each of its
models at every update opportunity. This could be achieved
using an algorithm such as:

Update_Models()
{
 for i = 1 to n
 {
 curAgent = Modelxi

∀ f, f(curAgent,Class A, Ks, Class B) | f∈F
}

}

Before action-selection, therefore, the Update_Models func-
tion is called to ensure that action-selection is based on the
most recent information about the state of the world. This
means that the time spent updating the agent models is time
taken away from selecting an action and carrying out the
actual actions that will enable the agent in achieving its
goals. In real-time domains (such as simulated RoboCup,
for example, in which the agent only has 100ms to sense,
Update_Models, action_select, and act) it is particularly
desirable that the Update_Models function executes in the
shortest possible time to guarantee that the selected action is
still a valid action when it is actually carried out in the envi-

F

Knowledge
source (Ks)

Modelxn

Class A

Class B
Type-1

Type-2

Type-3

Type-4

Type-1

Incom-
ing
mes-
sages

ronment. Possible solutions include implementing functions
in F such that the quality of the resulting model is traded off
against faster computation time (using ideas such as anytime
algorithms [Dean and Boddy, 1988], flexible computations
[Horvitz, 1987], imprecise computations [Liu et al., 1991],
limited rationality [Russell and Wefald, 1989], and ap-
proximate processing [Lesser et al., 1988]), or actively
monitoring only a subset of the agent models available. This
latter approach to the problem is referred to as the monitor-
ing selectivity problem [Kaminka, 2000].
Approaches that have been used to tackle the selectivity
problem include limiting perceptual intake [Ferguson,
1992], using hierarchical layouts [Jennings, 1995], and us-
ing social relationships (such as formations, role-similarity,
mutual exclusion, and teamwork [Kaminka, 2000]; para-
digmatic agents [Tambe, 1995]) that exist between the
agents being modeled.

6 Future Directions for Agents-Modelling-
Agents Research and Conclusions

When we consider the solution of trading-off the quality of
the resulting model for faster model update, we are led to
ask questions such as how do we implement anytime ver-
sions of algorithms such as RESL, IMBBOP, and the pre-
dictive approach? In general, how do we implement the ac-
tive monitoring agent modelling techniques in F? This ques-
tion has not received attention from the agent modelling
research community.
A common assumption made by active monitoring ap-
proaches that infer values for type-2, type-3 and type-4 in-
formation is that the modeler possesses complete and accu-
rate information in its knowledge source. For instance, the
plan recognition network used in RESL is assumed to con-
tain complete and accurate information about the reactive
plan-library used by the modelee for selecting actions, and
thus, observing the actions always allows for an explanation
of why the modelee has chosen the observed action. This
assumption limits the use of such techniques to agents be-
longing to the modeler’s team, since it is usually the case
that the same designer designs all the agents in a team. What
is needed, therefore, is active monitoring approaches that
can still maintain high quality models even when the
knowledge source is not accurate or cannot completely ex-
plain observed behavior. A step in this direction is the use of
reinforcement learning in building the knowledge source.
Such learning is possible offline. It is not yet clear, however,
how the knowledge source can be updated online, while
being used by the modelling functions in F at the same time.
One of the design guidelines suggested by Olorunleke and
McCalla [2004a] is that agents should be designed such that
they can detect when their sensors have failed. How can this
be achieved? It is clear that this suggests, at least, that the
agent should have a self-model that contains information
about the operational state of its sensors. What kinds of
techniques can be brought to bear in maintaining such in-
formation accurately? Are there other strategies that can be
used to avoid the spread of delusion from agent to agent

other than those suggested by Olorunleke and McCalla
[2004a]? Are there other unexplored solutions to the selec-
tivity problem?
In conclusion, we have presented a survey of agent model-
ling ideas and presented a diagrammatic model in a way that
allows new researchers to easily join the community and
find ways of contributing to the problems being studied. Our
classification of model contents into various types will be
useful in comparing various techniques against each other.
For example if we have to compare 2 modelling techniques,
the starting point will be to determine what type of informa-
tion is being computed by each. Clearly, it makes no sense
to compare RESL with the predictive memory approach
since (from the model presented) they compute different
types of information (type-2 and type-4 vs. type-1) and use
different knowledge sources (plan-libraries vs. past values).
Thus, we can make decisions about which modelling tech-
niques to compare (or replace) another approach with by
determining what type of information is being computed,
and where the inputs to the modelling functions are drawn.
Finally, it is clear that compiling an exhaustive list of all
past research related to agents-modelling-agents will require
a larger volume than this, but we believe that the model pre-
sented is a good starting point, for a model in which other
works that have been left out can be plugged in.

References
[Bowling et al., 1996] Bowling, M., Stone, P., and Veloso,

M. (1996) Predictive Memory for an Inaccessible Envi-
ronment. In Proceedings of the IROS-96 Workshop on
RoboCup, pp. 28-34, 1996.

[Bui et al., 2002] Bui, H.H., Venkatesh, S., and West,
G.(2002) Policy Recognition in the Abstract Hidden
Markov Model. In Journal of Artificial Intelligence Re-
search, Vol.17, pp. 451-499, 2002.

[Carberry, 1990] Carberry, S. (1990) Plan Recognition on
Natural Language Dialogue. The MIT Press, 1990.

[Dean and Boddy, 1988] Dean, T., and Boddy, M. (1988)
An Analysis of Time-Dependent Planning. In Proceed-
ings of the Seventh National Conference on Artificial In-
telligence, pp.49–54, Menlo Park, California, 1988.

[Donaldson and Cohen, 1996] Donaldson, T. and Cohen, R.
(1996) Turn-Taking in Discourse and Its Application To
The Design of Intelligent Agents, Agent Modelling 1996,
pp. 17-23, 1996.

[Feldman and Balch, 2004] Feldman, A. and Balch, T.
(2004) Modeling Honey Bee Behaviour for Recognition
Using Human Trainable Models. In Proceedings of
MOO 2004 Workshop, pp. 17-24, 2004.

[Ferguson, 1992] Ferguson, I.A. (1992) TouringMachines:
An Architecture for Adaptive, Rational, Mobile Agents.
PhD Thesis – Technical Report 273, Computer Labora-
tory, University of Cambridge, UK, 1992.

[Firby, 1987] Firby, J. (1987) An investigation into reactive
planning in complex domains. In Proceedings AAAI-87,
1987.

 [Geib and Harp, 2004] Geib, C.W. and Harp, S.A. (2004)
Empirical Analysis of a Probabilistic Task Tracking
Algorithm. In Proceedings of MOO 2004 Workshop, pp.
65-71, 2004.

[Gmytrasiewicz et al., 1991] Gmytrasiewicz, P.J., Durfee,
E.H., and Wehe, D.K. (1991) A Decision Theoretic Ap-
proach to Coordinating Multiagent Interactions. In Pro-
ceedings of IJCAI-91, pp. 62-68, 1991.

[Green and Lehman, 1996] Green, N. and Lehman, J.
(1996). Comparing Agent Modeling for Language and
Action. Agent Modeling 1996, 1996.

[Grosz and Kraus, 1999] Grosz, B. and Kraus, S. (1999)
The Evolution of SharedPlans. In Foundations and
Theories of Rational Agencies, A. Rao and M.
Wooldridge, eds. pp. 227-262, 1999.

[Hamid et al., 2003] Hamid, R., Huang, Y., and Essa, I.
(2003) ARGMode – Activity Recognition Using Graphi-
cal Models. In Proceedings of Conference on Computer
Vision and Pattern Recognition Workshop, Vol.4, pp.
38-44, 2003.

[Horvitz, 1987] Horvitz, E. J. (1987) Reasoning about Be-
liefs and Actions under Computational Resource Con-
straints. In Proceedings of the 1987 Workshop on Uncer-
tainty in Artificial Intelligence, Seattle, July 1987.

[Huber and Durfee, 1995] Huber, M.J. and Durfee, E.H.
(1995) On Acting Together: Without Communication. In
American Association for Artificial Intelligence, Spring
Symposium Working Notes on Representing Mental
States and Mechanisms, Stanford, California, pp. 60-71,
1995.

[Huber and Simpson, 2004] Huber, M.J. and Simpson, R.
(2004) Recognizing the Plans of Screen Reader Users. In
Proceedings of MOO 2004 Workshop, pp. 1-8, 2004.

[Intille and Bobick, 1999] Intille, S.S. and Bobick, A.F.
(1999) A Framework for Recognizing Multiagent Action
from Visual Evidence. In Proceedings of the Sixteenth
National Conference on Artificial Intelligence (AAAI-
99), pp. 518-525, 1999.

[Jennings, 1995] Jennings, N.R. (1995) Controlling Coop-
erative Problem Solving in Industrial Multi-Agent Sys-
tems using Joint Intentions, Artificial Intelligence, Vol.
75(2), pp. 195-240, 1995.

[Kaminka, 2000] Kaminka, G. (2000) Execution Monitoring
in Multi-Agent Environments. Ph.D. Dissertation, Uni-
versity of Southern California, Computer Science De-
partment, 2000.

[Kaminka and Tambe, 1997] Kaminka, G., and Tambe, M.
(1997) Towards Social Comparison for Failure Detec-
tion: Extended Abstract. In Proceedings of the "Socially
Intelligent Agents" 1997 AAAI Fall Symposium, 1997.

[Kaminka and Tambe, 1998] Kaminka, G., and Tambe, M.
(1998) What's Wrong With Us? Improving Robustness
through Social Diagnosis. In Proceedings of AAAI-98,
1998.

[Kaminka et al., 1998] Kaminka, G., Tambe, M., and
Hopper, C. (1998) The Role of Agent-Modeling in
Agent Robustness. In AI Meets the Real-World: Lessons
Learned (AIMTRW-98), 1998.

[Kaminka et al., 2002] Kaminka, G.A., Pynadath, D.V., and
Tambe, M. (2002) Monitoring Teams by Overhearing: A
Multiagent Plan Recognition Approach. In Journal of
Artificial Intelligence Research, Vol. 17, pp. 83-135,
2002.

[Kaminka and Avrahami, 2004] Kaminka, G.A. and Avra-
hami, D. (2004) Symbolic Behaviour Recognition. In
Proceedings of MOO 2004 Workshop, pp. 73-79, 2004.

[Kautz and Allen, 1986] Kautz, A. and Allen, J.F. (1986)
Generalized Plan Recognition. In Proceedings of AAAI-
87, pp.32-37, Menlo Park, AAAI Press, 1986.

[Kitano et al., 1997] Kitano, H., Kuniyoshi, Y., Noda, I.,
Asada, M., Matsubara, H., & Osawa, E. (1997).
RoboCup: A challenge problem for AI. AI Magazine,
vol. 18(1), pp. 73–85, 1997.

[Kraus and Rosenschein, 1992] Kraus, S. and Rosenschein,
J.S. (1992) The Role of Representation in Interaction:
Discovering Focal Points Among Alternative Solutions.
In Decentralized AI, Vol. 3, Amsterdam, Elsevier Sci-
ence Publishers, 1992.

[Lerman and Galstyan, 2004] Lerman, K. and Galstyan, A.
(2004) Automatically Modeling Group Behaviour of
Simple Agents. In Proceedings of MOO 2004 Workshop,
pp. 49-55, 2004.

[Lesser et al., 1988] Lesser, V., Pavlin, J., and Durfee, E.
(1988) Approximate Processing in Real-Time Problem
Solving. AI Magazine, Vol. 9(1), pp. 49–61, 1988.

[Liu et al., 1991] Liu, J., Lin, K.J., Shih, W.K., Yu, A.C.,
Chung, J.Y., and Zhao, W. (1991) Algorithms for
Scheduling Imprecise Computations. IEEE Computer
Vol.(24), pp.58–68, 1991.

[Mengshoel and Wilkins, 1996] Mengshoel,O., and Wilkins,
D. (1996) ReCognition and Critiquing of Erroneous
Agent Actions. Agent Modeling 1996, pp. 61-68, 1996.

[Olorunleke, 2002] Olorunleke, O. (2002) Fragmented
Agent Modelling. Master’s Thesis, Department of Com-
puter Science, University of Saskatchewan, Canada, Au-
gust, 2002.

[Olorunleke and McCalla, 2003]Olorunleke, O. and
McCalla, G. (2003) Overcoming Agent Delusion. In
Proceedings of AAMAS-2003, pp. 1086-1087, Mel-
bourne, Australia, 2003.

[Olorunleke and McCalla, 2004a]Olorunleke, O. and
McCalla, G. (2004) The Study of Delusion in Multiagent
Systems. In Proceedings of MOO 2004 Workshop, pp.
33-40, 2004.

[Olorunleke and McCalla, 2004b] Olorunleke, O. and
McCalla, G. (2004) Model Sharing in Multiagent Sys-
tems. In Proceedings of AAMAS-2004, pp. 1412-1413,
New York, 2004.

[Parker, 1993] Parker, L.E. (1993) Designing Control Laws
for Cooperative Agent Teams. In Proceedings of the
IEEE Robotics and Automation Conference, pp. 582-
587, 1993.

[Pynadath and Wellman, 2000] Pynadath, D.V. and
Wellman, M.P. (2000) Probabilistic State Dependent
Grammars for Plan Recognition. In Proceedings of the
Sixteenth Conference on Uncertainty in Artificial Intelli-
gence, 2000.

[Russell and Wefald, 1989] Russell, S.J., and Wefald, E.H.
(1989) Principles of Metareasoning. In Proceedings of
the First International Conference on Principles of
Knowledge Representation and Reasoning, 1989.

[Rybski and Veloso, 2004] Rybski, P.E. and Veloso, M.M.
(2004) Using Sparse Visual Data to Model Human Ac-

tivities in Meetings. In Proceedings of MOO 2004 Work-
shop, pp. 9-16, 2004.

 [Stone, 1998]Stone, P. (1998) Layered Learning in Multi-
Agent Systems. PhD thesis, Computer Science Depart-
ment, Carnegie Mellon University, Pittsburgh, PA, Dec.
1998.

[Stone et al., 2000] Stone, P., Riley, P. and Veloso, M.
(2000) Defining and Using Ideal Teammate and Oppo-
nent Models. In Proceedings of IAAI 2000, 2000.

[Tambe, 1995] Tambe, M. (1995) Recursive Agent and
Agent-group Tracking in a Real-time, Dynamic Envi-
ronment. In Proceedings of ICMAS-95, AAAI Press,
1995.

[Vassileva et al., 2002] Vassileva, J., McCalla, G. and
Greer, J. (2002) Multi-Agent Multi-User Modelling in I-
Help. In User Modelling and User Adapted Interaction,
e. Andre and A. Paiva (eds.) Special Issue on User Mod-
elling and Intelligent Agents, 2002.

