
Abstract 
In this paper we present a survey that classifies the 
types of information contained in agent models and 
describes various techniques that have been used in 
the past to maintain up-to-date agent models. From 
this discussion we present a model that captures the 
agent modelling ideas. The presented model is then 
used to describe the major issues in agent model-
ling research, and to suggest some future opportu-
nities and directions for agents-modelling-agents 
research. 

1 Introduction 
An agent is often implemented as a goal-driven active com-
ponent that is embedded in an environment from which it 
receives sensory data and based on the sensed data (or state 
of the environment) makes decisions about which action to 
carry out in the environment in order to achieve its goal(s). 
In the simplest case, the environment contains only one such 
agent and this embedded agent is always able to sense the 
necessary data from the environment that it requires to make 
a decision on which action to carry out to ensure that its 
goals are met. An example of such a simple case is a ther-
mostat agent which is given the goal of maintaining a set 
temperature level (desired_temp) for a room. In this case, 
the agent’s sensor senses the current temperature 
(room_temp) of the room and based on this value the agent 
determines which of its possible actions to carry out in order 
to maintain the desired room temperature. These actions, for 
example, could include elements from a set of actions such 
as {do_nothing, turn_heater_on, …, etc}. The agent selects 
the action from this set that it expects to help achieve its 
goal sometime in the future. This action selection assumes 
that the agent possesses knowledge about the effect of its 
actions on the state (i.e. room_temp) of the environment. 
This knowledge can be encoded for the agent by the de-
signer as a set of condition-action rules, such as,  
 

{  
if room_temp < desired_temp then turn_heater_on, 

    if room_temp = desired_temp then do_nothing,  
 . 
 . 

 . 
 Etc. 
} 
 
It is clear, therefore, that the selected action is driven by 

what the agent believes to be true about the current state of 
the environment. This belief is captured by the room_temp 
variable, and is thus often called the environment model or 
world model. 

Consider a more complex case in which the environment 
contains a set T of n thermostat agents, labeled t1, t2, .., tn 
∈T, and in which each ti’s (1<=i<=n) goal is to maintain 
the same desired_temp for the room (possibly for redun-
dancy). The condition-action rules for each ti in this case 
can be expressed as  

 
{ 
 If room_temp < desired_temp and t.action=do_nothing  

}{ itTt −∈∀  then turn_heater_on, 
 if room_temp = desired_temp then do_nothing, 
 . 
 . 
 . 
 Etc.  
} 
 

 where t.action }{ itTt −∈∀  refers to the action that 
each of the other agents minus the agent making the deci-
sion has selected. The belief about the state of the world (i.e. 
world model) is now captured by variables room_temp and 
t.action }{ itTt −∈∀ . That is, the world model now con-
tains information about the environment and information 
about the other agents in the environment. The information 
stored about the other agents in an agent represents what 
that agent believes about the other agents and are called 
agent models. 
In this paper, we present a survey of the processes involved 
in the building and maintenance of these agent models. We 
present these processes in a unified model that allows for 
communicating the ideas involved in the modelling of other 
agents. The goal of the model presented is to allow for 
communication (within the research community), discussion 
about the issues and solutions proposed in general for agent 
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modelling, and to propose possible new opportunities for 
agent modelling research. 

2 Agent Modelling 
Agent modelling encompasses the processes, techniques, or 
algorithms that can be used for the building and mainte-
nance of the knowledge stored about other agents (i.e. agent 
models). Before presenting various examples of these 
processes it is necessary to discuss and classify the types of 
information that are usually stored in an agent model. Such 
a classification will allow us to describe and understand the 
differences between the inputs and outputs of the processes 
that are involved in agent modelling. 

2.1 Contents of Agent Models 
In the previous example with n thermostat agents, the agent 
models only contained one attribute that is assigned to each 
agent, that is, the action that each agent has chosen to carry 
out (t.action). In general, the agent model t for any agent 
usually contains a combination of the following types of 
information: 

1. Observable features 
This type of information includes any information 
about the agent being modeled (i.e. the modelee) that 
can be detected by the sensors of the modeler such as 
t.orientation, t.location, etc. 
2. Internally held beliefs 
Internally held beliefs refer to the beliefs held by the 
modelee. For example t.room_temp refers to agent t’s 
belief about the room_temp. These types of information 
are generally not observable via the agents’ sensors. 
This could also contain beliefs such as what the mod-
eler believes the modelee believes the modeler believes 
(e.g. tmodelee.tmodeler.room_temp), and so on. This type of 
modelling is referred to as recursive modelling [Gmy-
trasiewicz et al., 1991]. 
3. Predictions relating to the agent being modeled 
Predictions refer to the expectations of the modeler 
about the modelee that are expected to be true at some 
time in the future. 
4. Other properties that can be attributed to each 

agent. 
This type of information includes properties than can be 
attributed to other agents such as capabilities, reputa-
tion, sensor range, plans, goals, policies, etc. 
 

At any point in time, the contents of an agent model, which 
are made up of a combination of the information types given 
above, can be classified into two classes; class A and class 
B. 

2.1.1 Class A - Observations 
This class contains the information that can be sensed di-
rectly from the agent’s sensors at that point in time. In ac-
cessible environments – that is, environments in which the 
sensors are always able to sense the entire state of the world 
– it is clear that all the observable features in type-1 will fall 
into this class since their values can be sensed directly from 

the environment. In inaccessible environments, however, the 
agent’s sensor’s position or orientation may affect the range 
of the environment’s states that can actually be sensed at a 
point in time. For example, a camera can only record objects 
within its view range; therefore, other objects that are not 
within its view range will not be considered as observable 
and will not belong to class A, even though they can be 
picked up by cameras in general. These objects that are not 
currently being picked up by the sensors are classified to be 
in class B. 

2.1.2  Class B - Inferences 
Those things that cannot be currently sensed are classified 
into this class. The inability to sense the values assigned to 
these features implies that the modeler has to guess, infer, or 
compute what the current values should be; based on the 
currently sensed information and prior knowledge of the 
relationships that exist between the sensed features and the 
non-sensed ones, the history of values that have been as-
signed in the past to the non-sensed features, and the dy-
namics of the non-sensed features. Information-types 2, 3, 
and 4 usually fall into this class since they are generally not 
sense-able by the agent’s sensors. In inaccessible environ-
ments it is possible that some type-1 information can fall 
under this class even though they are sense-able, but are not 
currently being sensed. 

2.2 Agent Modelling Processes, Algorithms, and 
Techniques 

Every agent modelling process, algorithm, or technique at-
tempts to maintain accurate and up-to-date values in the 
agent models being stored. This involves the updating of 
both the class A and class B information in the agent mod-
els. Updating the class A information in the models is a 
pretty straight-forward task since it only involves getting the 
observations from the sensors. This also often serves as the 
first step in most modelling techniques. Once this update of 
class A information is completed, the modelling process 
then continues to use the class A information to infer values 
for the unobservable class B information. For example, the 
REal-time Situated Least-commitments (RESL) algorithm 
[Kaminka et al., 1998] shown in Figure 1 depicts this proc-
ess. 
As shown in the figure, the RESL algorithm begins by get-
ting the current observations – i.e. the class A information –
about the agent being modeled. The remainder of the algo-
rithm then attempts to infer the unobservable class B infor-
mation (plans and beliefs in this case) about that same agent. 
To achieve this, RESL relies on the use of a plan recogni-
tion network that provides a link between the observations 
made about the agent and the internal plans within the agent 
that could produce those observations. Once the plans have 
been flagged, RESL infers the agent’s internal beliefs by 
ascribing the preconditions that must be true for those in-
ferred plans to be true and the termination conditions that 
must be true for those plans that are inferred to have just 
been terminated. 
In general, updating the class B information from the class 
A information alone is not possible. To carry out this task, 



agent modelling algorithms usually use additional knowl-
edge that provides a means of connecting the observations 
to the unobservable. In the RESL example, this additional 
knowledge is provided by the plan recognition network 
which is assumed to be a reactive plan [Firby, 1987] hierar-
chy that controls each agent. Huber and Simpson [2004] 
also use a plan recognition network in maintaining values 
for the unobservable. Other means that have been used to 
encode this additional knowledge include use of plan librar-
ies [Ferguson, 1992; Geib and Harp, 2004], dynamic Bayes-
ian networks [Hamid et al., 2003; Rybski and Veloso, 2004; 
Kaminka et al., 2002], hidden markov models [Bui et al., 
2002; Feldman and Balch, 2004], stochastic processes 
[Lerman and Galstyan, 2004], behavior graphs [Kaminka 
and Avrahami, 2004], and probabilistic state-dependent 
grammars [Pynadath and Wellman, 2000].  

 
RESL ( plan recognition network, modeled agent ) 
{ 
get observations about agent 
// primitive matching 
for each operator that has a set of expected observations: 
1. attempt to match observations to expectations 
2. If succeed, flag operator as matching successfully 
3. If fail, flag operator as failing to match 
// propagate matching 
for each operator that is flagged as matching 
successfully, 
• flag its parents as matching successfully 
for each operator whose children (all of them) are flagged 
as failing to match, 
• flag it as failing to match 
// preconditions 
for each operator that is flagged as matching 
successfully, 
• flag its associated set of preconditions as possibly 
true (the agent possibly believes this set of 
preconditions) 
// termination conditions 
for each operator that has just stopped matching 
successfully, 
• flag its associated set of termination conditions as 
possibly true 
} 

 
Figure 1: The RESL algorithm 

 
The common thread in the above examples is that they rep-
resent a paradigm that assigns the responsibility of inferring 
the class B data to the modeler. This paradigm is referred to 
by Grosz and Kraus [1999] as active monitoring, and an 
example of such active monitoring is via plan recognition 
[Kautz and Allen, 1986; Carberry, 1990; Huber and Durfee, 
1995; Intille and Bobick, 1999]. A common assumption in 
plan recognition is that the actions carried out by an agent 
are controlled by a mental state that drives the synthesis of 
plans that the agent intends to follow in order to achieve its 
goals. It is also assumed that the modeler is aware of this 

mechanism (or has learned this mechanism through a proc-
ess of reinforcement learning for example) for decision 
making which the modelee uses, and hence the ability to 
observe the selected actions allows the modeler to infer the 
mental state from which they result. 
Obviously, the types of information we have classified into 
class B go beyond plans and beliefs, and therefore plan 
recognition alone cannot be used to maintain values for 
these. Another example of an active monitoring approach 
that tries to maintain up-to-date values for the type-1 
information that is a subset of the class B information is the 
predictive memory approach [Bowling et al., 1996]. The 
predictive memory approach maintains the state information 
– such as the position, velocity, direction, etc – of other 
agents (within the simulated RoboCup domain [Kitano et 
al., 1997]). Being that the type of information that the 
predictive approach addresses are usually sense-able (i.e. 
can be picked up by sensors), the need for a process to 
maintain values for them only arises in inaccessible 
environments; hence, their being classified into class B. 
This predictive memory approach works by storing an 
additional value – for each type-1 information – that 
describes the confidence in the accuracy of the current value 
assigned to it. This is achieved by storing the confidence as 
a probability that represents how confident the agent is in 
the accuracy of the value currently assigned to that feature. 
At every point of memory update, the predictive memory 
approach updates the values of those features of agents that 
are directly observable from the sensory information 
obtained from the environment (class A) – a step similar to 
that shown in RESL. Additionally, the probabilities attached 
to these values are set to 1.0. For those values that cannot be 
obtained from sensory input (class B), the predictive 
memory approach uses two phases to achieve the update.  
The first phase – called the internal phase – considers those 
changes that should occur based on the agent’s own most-
recent actions. For example, if the agent’s last action was a 
turn by angle a, then it is possible to update the positions of 
the other agents by correcting for this turn (since they are 
stored as relative positions).  
The second phase – which is called the external phase – in 
the update of the data stored in memory about the states 
features applies particularly to mobile objects (the ball and 
other agents in RoboCup). The assumption is that mobile 
objects tend to continue in their direction of motion and thus 
– even when out of view – there is a short-lived certainty 
that the objects will continue moving in that direction. Thus 
the unseen mobile object’s positions are updated using their 
last-observed velocities and positions. To account for this 
guess, the probability values attached to these unseen data 
items are reduced – by multiplying by a decay factor (e.g. 
0.9) – to reflect a reduction in the certainty in the accuracy 
of the maintained data. Additionally, the last observed ve-
locity that was used to update the object’s position is also 
decayed, to reflect the possibility that moving objects even-
tually slow down. A threshold can be used to determine at 
which point the update from memory is to be considered 
inaccurate. Bowling et al. used a threshold value of 0.5. 



Thus, if a confidence decay of 0.9 per update cycle and a 
confidence threshold of 0.5 are used, then an object can re-
main unseen for 6 cycles – as shown in Table 1 – with rela-
tively accurate values (or at least relatively confident val-
ues) still maintained about it. At the 7th cycle the object’s 
confidence goes below the set threshold. 
This approach, in a similar way to RESL and the other plan 
recognition approaches, also assumes some other knowledge 
which allows the connection from past values of the unob-
servable information to be used to estimate what the current 
values should be. In the case of RoboCup, the rules of the 
game and the physics driving the system allows this connec-
tion to be made. In general, applying the predictive memory 
approach is dependent on the domain, since it relies on the 
knowledge of the rules governing the dynamics of the sys-
tem. 
 
Table 1. This table shows how the confidence in the values associ-
ated with unseen objects is decayed. After the 7th cycle of not 
being seen an object goes below the threshold of confidence. 
 

 
Another active monitoring approach adopted – called ideal-
model-based behavior outcome prediction (IMBBOP) – by 
Stone et al. [2000] for predicting (the type-3 information) 
the actions that are expected of other agents within the Ro-
boCup domain. IMBBOP works by predicting other agents’ 
future actions in relation to the behavior considered optimal 
for them in any given situation. The prediction is carried out 
based on information that is readily available in the world 
and thus, the prediction that is made is not dependent on the 
agent being modeled, but on the world dynamics and the 
actions considered to be optimal by the modeler in that 
situation. In this regard of dependence on world situation 
and dynamics, IMBBOP can be classified as being a focal 
point approach that is used for coordinating the action pre-
dicted and the action which the modelee actually chooses to 
carry out. Essentially, focal points are defined as prominent 
solutions that stand out from a set of possible solutions 
[Schelling, 1963; Kraus and Rosenschein, 1992]. The opti-
mal nature (i.e. prominent solution) of the predicted action 
is what makes it a focal point. 
A second paradigm for maintaining values for the class B 
information in the agent models relies on communication 
between the agents. These communication-based ap-
proaches are referred to as passive monitoring approaches 
[Grosz and Kraus, 1999] or report-based approaches 
[Kaminka et al., 2002]. This approach is particularly ideal 

for use in teams of agents that are assumed to share a com-
mon language and ontology, and can be assumed to be 
committed to each other. Through communication, there-
fore, the modeler receives the class B information from the 
other agents that know such information rather than using 
any of the active monitoring approaches described earlier. 
The information sent to the modeler could be in response to 
a query from the modeler or a proactive inference on the 
part of the other agents that the modeler needs such infor-
mation. Finally, a third paradigm combines both the active 
and passive approaches for maintaining the class B informa-
tion [Parker, 1993]. 

3 Example Applications of Agent Models and 
Agent Modelling Techniques 

Agent models have been used for various purposes in multi-
agent systems. In this section, we highlight a few of these. 
 
Recognition and Critiquing 
Agent models have been used in the recognition and provi-
sion of appropriate feedback to human agents during the 
problem-solving processes of the human agents. Examples 
include [Mengshoel and Wilkins, 1996]. 
 
Natural Language Discourse 
Agent models have been used both in selecting appropriate 
response from a stream of observational inputs [e.g. Green 
and Lehman, 1996], and making decisions about what 
should be said, by whom, and when it should be said [e.g. 
Donaldson and Cohen, 1996]. 
 
Failure Detection and Recovery 
Kaminka and Tambe [1997] used the contents of agent 
models for failure detection and recovery. This approach, 
called SOCFAD1 (SOcial Comparison for FAilure Detec-
tion), uses the other agents as sources of information to 
which the modeler compares its own beliefs, plans, goals, 
etc with those of the other modeled agents, and then reasons 
about the differences observed in order to draw conclusions 
about the correctness of their own behavior. 
 
Finding Helpers for Helpees 
The I-Help project [Vassileva et al., 2002] attempts, in an e-
learning context, to match helpees with possible helpers 
based on the contents of agent models of both helpers and 
helpees. 

3 A Model of Agent Modelling Research 
In this section we present a model that summarizes the 
analysis of agents-modelling-agents research that we have 
outlined in section 2. The aim behind such a model is to 
serve as a tool in service of (1) correctly classifying and 
understanding how new research ideas fit into or comple-
ment other pre-existing modelling ideas, techniques, or 
                                                 

1 Later expanded and called Socially Attentive Monitoring 
(SAM) in Kaminka and Tambe [1998]. 

Time 
object  

observed? 
old  

confidence 
decay 
factor 

new confi-
dence 

t yes Any value 0.9 1
t+1 no 1 0.9 0.9
t+2 no 0.9 0.9 0.81
t+3 no 0.81 0.9 0.729
t+4 no 0.729 0.9 0.6561
t+5 no 0.6561 0.9 0.59049
t+6 no 0.59049 0.9 0.531441
t+7 no 0.531441 0.9 0.4782969



processes and (2) understanding where new opportunities 
for agent modelling research lie. We do not claim that this 
model is the only such model that can summarize the ideas 
in agent modelling, but since to our knowledge no other 
such model exists, we believe that the presented model adds 
value to agent modelling research. 
As shown in Figure 2, Modelxy refers to the model that 
agent x (shown in the bottom right corner of the figure) 
keeps about another agent y (not shown in the figure). The 
figure shows that the contents of the model are partitioned 
into the previously discussed class A and B partitions, with 
the class A partition consisting only of type-1 information, 
and the class B partition consisting of type-2,3, and 4 parti-
tions with the possibility of also containing type-1 informa-
tion in inaccessible environments. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Contents of agent models 
 
Maintaining up-to-date values for the class A data is easily 
achieved by wiring the agent’s sensors (the circled eye in 
the diagram) to the class A information in the model.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: The active monitoring paradigm 

 
For the class B data, which is unobservable, the active 
monitoring paradigm suggests, as shown in Figure 3, that a 
set of functions F should exist that take elements of class A, 
with the possibility of some external knowledge sources and 
elements of class B as input, and compute an element of 
class B. That is, if f F∈ then  
 

f: A ×  Class A × [Ks] × [Class B] →Class B 
where A is the agent being modeled and the input parame-
ters in square brackets (i.e. Ks and Class B) are optional. 
The optional nature of these parameters is depicted as dotted 
arrows in Figure 3. The optional feedback connection 
(i.e.[Class B]) signifies the possibility of doing recursive 
modelling or making predictions arbitrarily far into the fu-
ture. Any function that satisfies the above definition can be 
called an active monitoring agent modelling technique. Ex-
amples of such functions that we have already outlined ear-
lier-on include: RESL, the predictive memory approach, and 
IMBBOP. 
The passive monitoring paradigm, on the other hand (as 
shown in Figure 4), suggests that the class B data be up-
dated using communication ideas such as asking other 
agents for information about the contents of class B, sub-
scribing to such information, or proactively communicating 
such information.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: The passive monitoring paradigm 
 

The model representing the third paradigm can be generated 
by combining figures 3 and 4 (This is trivial so the figure is 
not shown to save space). This paradigm allows for actively 
computing some elements of class B while some others are 
updated via communication links, or using the elements of 
class B received via communication to confirm the locally 
computed values assigned to them, and so on. 
 
The external knowledge that is stored in the knowledge 
source (Ks) that is used in modelling other agents can be 
classified into two categories. The first category encom-
passes the knowledge/information that represents what is 
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known about the modelee on account of a priori knowledge 
of how the modelee selects its actions. For example, within 
the RoboCup domain, Stone [1998] refers to this as the 
locker-room agreement. Examples of such include the for-
mation used by a team in which each agent’s position on the 
pitch depends on the location of the ball. Hence, knowing 
the location of the ball is enough to infer where the other 
agents are (or are trying) to be.  
The second category in a very similar way also encompasses 
the knowledge or information that is known a priori about 
the modelee that accounts for its action selection. The dis-
tinguishing factor between the two categories lies in the 
source of the knowledge. For the first category, the source 
of the knowledge is assumed to be the designer of the mod-
elee and therefore applies usually to modelling teammates. 
On the other hand, the knowledge that falls into the second 
category is usually obtained by observing the behavior of 
the modelee and encoding the relationship between the ob-
servations and the actions selected by the modelee. Essen-
tially the difference is that the knowledge is given in the 
first category (by the designer of the modelee) while the 
knowledge is learnt in the second category through a rein-
forcement learning process for example. 

5  The Issues Involved 
 
Since the contents of the agent models are used for action-
selection, it is very important that the agent models contain 
accurate information. Inaccurate information in the agent 
models will result in the selection of actions that are inap-
propriate for the current context. The presence of any such 
inaccuracies in the models is referred to as (or results in) 
delusion [Olorunleke and McCalla, 2003; 2004a] or model-
entity discrepancy [Ferguson, 1992]. A desirable property of 
any agent modelling technique, therefore, is that it mini-
mizes the presence of delusion in the agent models. This 
means that sensors should return accurate data, active moni-
toring approaches should make accurate inferences, the pas-
sive approaches should communicate accurate data to each 
other, and the external knowledge sources should contain 
accurate information. Olorunleke [2002] demonstrates how 
reinforcement learning can be used to remove delusion in 
the information about agent capabilities (which fall into the 
type-4 information category). The use of reinforcement 
learning in this case is possible because of the assumption 
that agent capabilities do not change very often; therefore, 
there is an opportunity to learn the capability of each agent 
and use this information in the assignment of tasks. Avoid-
ing the spread of delusions from agent to agent is particu-
larly important when passive modelling approaches are 
used. The reason for this is that an error in one agent’s 
model can be easily passed to other agents via communica-
tion, and if such information is always believed then delu-
sion will spread easily through the system. Three strategies 
are discussed in [Olorunleke and McCalla, 2004a] to solve 
this problem, with  general guidelines for maintaining delu-
sion-free models also given. 

To illustrate the second important requirement of agent 
modelling techniques consider the situation in Figure 5 in 
which the modeler now maintains models for n other agents. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5: Multiple (n) agent models 

 
As shown in the figure, agent x must now use the agent 
modelling techniques that it has available to it for each of its 
models at every update opportunity. This could be achieved 
using an algorithm such as: 
 
Update_Models() 
{ 
 for i = 1 to n 
 { 
  curAgent = Modelxi 
   

∀ f, f(curAgent,Class A, Ks, Class B) | f∈F 
} 

} 
 
Before action-selection, therefore, the Update_Models func-
tion is called to ensure that action-selection is based on the 
most recent information about the state of the world. This 
means that the time spent updating the agent models is time 
taken away from selecting an action and carrying out the 
actual actions that will enable the agent in achieving its 
goals. In real-time domains (such as simulated RoboCup, 
for example, in which the agent only has 100ms to sense, 
Update_Models, action_select, and act) it is particularly 
desirable that the Update_Models function executes in the 
shortest possible time to guarantee that the selected action is 
still a valid action when it is actually carried out in the envi-
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ronment. Possible solutions include implementing functions 
in F such that the quality of the resulting model is traded off 
against faster computation time (using ideas such as anytime 
algorithms [Dean and Boddy, 1988], flexible computations 
[Horvitz, 1987], imprecise computations [Liu et al., 1991], 
limited rationality [Russell and Wefald, 1989], and ap-
proximate processing [Lesser et al., 1988]), or actively 
monitoring only a subset of the agent models available. This 
latter approach to the problem is referred to as the monitor-
ing selectivity problem [Kaminka, 2000]. 
Approaches that have been used to tackle the selectivity 
problem include limiting perceptual intake [Ferguson, 
1992], using hierarchical layouts [Jennings, 1995], and us-
ing social relationships (such as formations, role-similarity, 
mutual exclusion, and teamwork [Kaminka, 2000]; para-
digmatic agents [Tambe, 1995]) that exist between the 
agents being modeled.  

6 Future Directions for Agents-Modelling-
Agents Research and Conclusions 

When we consider the solution of trading-off the quality of 
the resulting model for faster model update, we are led to 
ask questions such as how do we implement anytime ver-
sions of algorithms such as RESL, IMBBOP, and the pre-
dictive approach? In general, how do we implement the ac-
tive monitoring agent modelling techniques in F? This ques-
tion has not received attention from the agent modelling 
research community.  
A common assumption made by active monitoring ap-
proaches that infer values for type-2, type-3 and type-4 in-
formation is that the modeler possesses complete and accu-
rate information in its knowledge source. For instance, the 
plan recognition network used in RESL is assumed to con-
tain complete and accurate information about the reactive 
plan-library used by the modelee for selecting actions, and 
thus, observing the actions always allows for an explanation 
of why the modelee has chosen the observed action.  This 
assumption limits the use of such techniques to agents be-
longing to the modeler’s team, since it is usually the case 
that the same designer designs all the agents in a team. What 
is needed, therefore, is active monitoring approaches that 
can still maintain high quality models even when the 
knowledge source is not accurate or cannot completely ex-
plain observed behavior. A step in this direction is the use of 
reinforcement learning in building the knowledge source. 
Such learning is possible offline. It is not yet clear, however, 
how the knowledge source can be updated online, while 
being used by the modelling functions in F at the same time. 
One of the design guidelines suggested by Olorunleke and 
McCalla [2004a] is that agents should be designed such that 
they can detect when their sensors have failed. How can this 
be achieved? It is clear that this suggests, at least, that the 
agent should have a self-model that contains information 
about the operational state of its sensors. What kinds of 
techniques can be brought to bear in maintaining such in-
formation accurately? Are there other strategies that can be 
used to avoid the spread of delusion from agent to agent 

other than those suggested by Olorunleke and McCalla 
[2004a]? Are there other unexplored solutions to the selec-
tivity problem? 
In conclusion, we have presented a survey of agent model-
ling ideas and presented a diagrammatic model in a way that 
allows new researchers to easily join the community and 
find ways of contributing to the problems being studied. Our 
classification of model contents into various types will be 
useful in comparing various techniques against each other. 
For example if we have to compare 2 modelling techniques, 
the starting point will be to determine what type of informa-
tion is being computed by each. Clearly, it makes no sense 
to compare RESL with the predictive memory approach 
since (from the model presented) they compute different 
types of information (type-2 and type-4 vs. type-1) and use 
different knowledge sources (plan-libraries vs. past values). 
Thus, we can make decisions about which modelling tech-
niques to compare (or replace) another approach with by 
determining what type of information is being computed, 
and where the inputs to the modelling functions are drawn. 
Finally, it is clear that compiling an exhaustive list of all 
past research related to agents-modelling-agents will require 
a larger volume than this, but we believe that the model pre-
sented is a good starting point, for a model in which other 
works that have been left out can be plugged in. 
 

References 
[Bowling et al., 1996] Bowling, M., Stone, P., and Veloso, 

M. (1996) Predictive Memory for an Inaccessible Envi-
ronment. In Proceedings of the IROS-96 Workshop on 
RoboCup, pp. 28-34, 1996. 

[Bui et al., 2002] Bui, H.H., Venkatesh, S., and West, 
G.(2002) Policy Recognition in the Abstract Hidden 
Markov Model. In Journal of Artificial Intelligence Re-
search, Vol.17, pp. 451-499, 2002. 

[Carberry, 1990] Carberry, S. (1990) Plan Recognition on 
Natural Language Dialogue. The MIT Press, 1990. 

[Dean and Boddy, 1988] Dean, T., and Boddy, M. (1988) 
An Analysis of Time-Dependent Planning. In Proceed-
ings of the Seventh National Conference on Artificial In-
telligence, pp.49–54, Menlo Park, California, 1988. 

[Donaldson and Cohen, 1996] Donaldson, T. and Cohen, R. 
(1996) Turn-Taking in Discourse and Its Application To 
The Design of Intelligent Agents, Agent Modelling 1996, 
pp. 17-23, 1996. 

[Feldman and Balch, 2004] Feldman, A. and Balch, T. 
(2004) Modeling Honey Bee Behaviour for Recognition 
Using Human Trainable Models. In Proceedings of 
MOO 2004 Workshop, pp. 17-24, 2004. 

[Ferguson, 1992] Ferguson, I.A. (1992) TouringMachines: 
An Architecture for Adaptive, Rational, Mobile Agents. 
PhD Thesis – Technical Report 273, Computer Labora-
tory, University of Cambridge, UK, 1992. 



[Firby, 1987] Firby, J. (1987) An investigation into reactive 
planning in complex domains. In Proceedings AAAI-87, 
1987. 

 [Geib and Harp, 2004] Geib, C.W. and Harp, S.A. (2004) 
Empirical Analysis of a Probabilistic Task Tracking 
Algorithm. In Proceedings of MOO 2004 Workshop, pp. 
65-71, 2004. 

[Gmytrasiewicz et al., 1991] Gmytrasiewicz, P.J., Durfee, 
E.H., and Wehe, D.K. (1991) A Decision Theoretic Ap-
proach to Coordinating Multiagent Interactions. In Pro-
ceedings of IJCAI-91, pp. 62-68, 1991. 

[Green and Lehman, 1996] Green, N. and Lehman, J. 
(1996). Comparing Agent Modeling for Language and 
Action. Agent Modeling 1996, 1996. 

[Grosz and Kraus, 1999] Grosz, B. and Kraus, S. (1999) 
The Evolution of SharedPlans. In Foundations and 
Theories of Rational Agencies, A. Rao and M. 
Wooldridge, eds. pp. 227-262, 1999. 

[Hamid et al., 2003] Hamid, R., Huang, Y., and Essa, I. 
(2003) ARGMode – Activity Recognition Using Graphi-
cal Models. In Proceedings of Conference on Computer 
Vision and Pattern Recognition Workshop, Vol.4, pp. 
38-44, 2003. 

[Horvitz, 1987] Horvitz, E. J. (1987) Reasoning about Be-
liefs and Actions under Computational Resource Con-
straints. In Proceedings of the 1987 Workshop on Uncer-
tainty in Artificial Intelligence, Seattle, July 1987. 

[Huber and Durfee, 1995] Huber, M.J. and Durfee, E.H. 
(1995) On Acting Together: Without Communication. In 
American Association for Artificial Intelligence, Spring 
Symposium Working Notes on Representing Mental 
States and Mechanisms, Stanford, California, pp. 60-71, 
1995. 

[Huber and Simpson, 2004] Huber, M.J. and Simpson, R. 
(2004) Recognizing the Plans of Screen Reader Users. In 
Proceedings of MOO 2004 Workshop, pp. 1-8, 2004. 

[Intille and Bobick, 1999] Intille, S.S. and Bobick, A.F. 
(1999) A Framework for Recognizing Multiagent Action 
from Visual Evidence. In Proceedings of the Sixteenth 
National Conference on Artificial Intelligence (AAAI-
99), pp. 518-525, 1999. 

[Jennings, 1995] Jennings, N.R. (1995) Controlling Coop-
erative Problem Solving in Industrial Multi-Agent Sys-
tems using Joint Intentions, Artificial Intelligence, Vol. 
75(2), pp. 195-240, 1995. 

[Kaminka, 2000] Kaminka, G. (2000) Execution Monitoring 
in Multi-Agent Environments. Ph.D. Dissertation, Uni-
versity of Southern California, Computer Science De-
partment, 2000. 

[Kaminka and Tambe, 1997] Kaminka, G., and Tambe, M. 
(1997) Towards Social Comparison for Failure Detec-
tion: Extended Abstract. In Proceedings of the "Socially 
Intelligent Agents" 1997 AAAI Fall Symposium, 1997. 

[Kaminka and Tambe, 1998] Kaminka, G., and Tambe, M. 
(1998) What's Wrong With Us? Improving Robustness 
through Social Diagnosis. In Proceedings of AAAI-98, 
1998. 

[Kaminka et al., 1998] Kaminka, G., Tambe, M., and 
Hopper, C. (1998) The Role of Agent-Modeling in 
Agent Robustness. In AI Meets the Real-World: Lessons 
Learned (AIMTRW-98), 1998. 

[Kaminka et al., 2002] Kaminka, G.A., Pynadath, D.V., and 
Tambe, M. (2002) Monitoring Teams by Overhearing: A 
Multiagent Plan Recognition Approach. In Journal of 
Artificial Intelligence Research, Vol. 17, pp. 83-135, 
2002. 

[Kaminka and Avrahami, 2004] Kaminka, G.A. and Avra-
hami, D. (2004) Symbolic Behaviour Recognition. In 
Proceedings of MOO 2004 Workshop, pp. 73-79, 2004. 

[Kautz and Allen, 1986] Kautz, A. and Allen, J.F. (1986) 
Generalized Plan Recognition. In Proceedings of AAAI-
87, pp.32-37, Menlo Park, AAAI Press, 1986. 

[Kitano et al., 1997] Kitano, H., Kuniyoshi, Y., Noda, I., 
Asada, M., Matsubara, H., & Osawa, E. (1997). 
RoboCup: A challenge problem for AI. AI Magazine, 
vol. 18(1), pp. 73–85, 1997. 

[Kraus and Rosenschein, 1992] Kraus, S. and Rosenschein, 
J.S. (1992) The Role of Representation in Interaction: 
Discovering Focal Points Among Alternative Solutions. 
In Decentralized AI, Vol. 3, Amsterdam, Elsevier Sci-
ence Publishers, 1992. 

[Lerman and Galstyan, 2004] Lerman, K. and Galstyan, A. 
(2004) Automatically Modeling Group Behaviour of 
Simple Agents. In Proceedings of MOO 2004 Workshop, 
pp. 49-55, 2004. 

[Lesser et al., 1988] Lesser, V., Pavlin, J., and Durfee, E. 
(1988) Approximate Processing in Real-Time Problem 
Solving. AI Magazine, Vol. 9(1), pp. 49–61, 1988. 

[Liu et al., 1991] Liu, J., Lin, K.J., Shih, W.K., Yu, A.C., 
Chung, J.Y., and Zhao, W. (1991) Algorithms for 
Scheduling Imprecise Computations. IEEE Computer 
Vol.(24), pp.58–68, 1991. 

[Mengshoel and Wilkins, 1996] Mengshoel,O., and Wilkins, 
D. (1996) ReCognition and Critiquing of Erroneous 
Agent Actions. Agent Modeling 1996, pp. 61-68, 1996. 

[Olorunleke, 2002] Olorunleke, O. (2002) Fragmented 
Agent Modelling. Master’s Thesis, Department of Com-
puter Science, University of Saskatchewan, Canada, Au-
gust, 2002. 

[Olorunleke and McCalla, 2003]Olorunleke, O. and 
McCalla, G. (2003) Overcoming Agent Delusion. In 
Proceedings of AAMAS-2003, pp. 1086-1087, Mel-
bourne, Australia, 2003. 

[Olorunleke and McCalla, 2004a]Olorunleke, O. and 
McCalla, G. (2004) The Study of Delusion in Multiagent 
Systems. In Proceedings of MOO 2004 Workshop, pp. 
33-40, 2004. 



[Olorunleke and McCalla, 2004b] Olorunleke, O. and 
McCalla, G. (2004) Model Sharing in Multiagent Sys-
tems. In Proceedings of AAMAS-2004, pp. 1412-1413, 
New York, 2004. 

[Parker, 1993] Parker, L.E. (1993) Designing Control Laws 
for Cooperative Agent Teams. In Proceedings of the 
IEEE Robotics and Automation Conference, pp. 582-
587, 1993. 

[Pynadath and Wellman, 2000] Pynadath, D.V. and 
Wellman, M.P. (2000) Probabilistic State Dependent 
Grammars for Plan Recognition. In Proceedings of the 
Sixteenth Conference on Uncertainty in Artificial Intelli-
gence, 2000. 

[Russell and Wefald, 1989] Russell, S.J., and Wefald, E.H. 
(1989) Principles of Metareasoning. In Proceedings of 
the First International Conference on Principles of 
Knowledge Representation and Reasoning, 1989. 

[Rybski and Veloso, 2004] Rybski, P.E. and Veloso, M.M. 
(2004) Using Sparse Visual Data to Model Human Ac-

tivities in Meetings. In Proceedings of MOO 2004 Work-
shop, pp. 9-16, 2004. 

 [Stone, 1998]Stone, P. (1998) Layered Learning in Multi-
Agent Systems. PhD thesis, Computer Science Depart-
ment, Carnegie Mellon University, Pittsburgh, PA, Dec. 
1998. 

[Stone et al., 2000] Stone, P., Riley, P. and Veloso, M. 
(2000) Defining and Using Ideal Teammate and Oppo-
nent Models. In Proceedings of IAAI 2000,  2000.    

[Tambe, 1995] Tambe, M. (1995) Recursive Agent and 
Agent-group Tracking in a Real-time, Dynamic Envi-
ronment. In Proceedings of ICMAS-95, AAAI Press, 
1995. 

[Vassileva et al., 2002] Vassileva, J., McCalla, G. and 
Greer, J. (2002) Multi-Agent Multi-User Modelling in I-
Help. In User Modelling and User Adapted Interaction, 
e. Andre and A. Paiva (eds.) Special Issue on User Mod-
elling and Intelligent Agents, 2002. 

 
 
 


