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Abstract

This paper builds on existing work on learning pro-
tocol behaviour from observation to propose a new
framework for visual attention. The main contri-
bution of this work resides in the fact that atten-
tion is not given a priori to the vision system but
learned by induction from the active observation of
patterns in space. These patterns are sequences of
coloured objects that are placed by an agent in a
camera field of view. Therefore, in this work we
propose a method for learning the focus of atten-
tion from the visual observation of tasks executed
by an agent. The description of objects in space
in terms of observer-object relative frames of ref-
erences, named local cardinal systems is a second
contribution of this work.

1 Introduction
The subject of visual attention has been one of the most ne-
glected themes in computer vision and image understand-
ing. As surveyed in [Tsotsos, 2001], authors have been mak-
ing strong assumptions about attention in order to develop
other issues in computer vision. Assumptions such as: one-
to-one correspondence between figures in adjacent frames
[Siskind, 1995]; regions of interest in the image manually
given as inputs [Mann et al., 1997][Bobick, 1997], etc. A
few authors have proposed models for predicting where to
search for corresponding regions from image to image [Tsot-
sos, 1985][Shanahan, 2002][Dickmanns, 1992][Baluja and
Pomerleau, 1997]. However, the problem of how such ex-
pectancy models could be (themselves) automatically learned
from the visual observation of tasks has not yet been ad-
dressed.

This paper describes some preliminary steps towards the
construction of a computer vision system that is capable to
automatically induce the focus of attention from the visual
observation of patterns being created in space. In the current
stage of this work, patterns in space are formed by coloured
blocks that are stacked by an agent in such a way to cre-
ate repetitive arrangements of colours. An active vision sys-
tem tracks the blocks as they are being stacked. Data from
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this system feeds an inductive logic programming system
(ILP) that generates a model of expectancy about which ob-
ject should be placed and in which position. This provides
the basis for a spatial attention mechanism with which an au-
tonomous agent could predict where (and what) to expect in
a particular region of space or where and what to place a par-
ticular object. Therefore, the resulting model of spatial ex-
pectancy is learned from the observation of agents acting in
the external world.

A secondary contribution of this paper is the definition of a
new framework for representing qualitative spatial relations
to be input in the ILP system. A central element in this
representation is a observer-object relative cardinal reference
frame, named the local cardinal system.

This paper is organised as follows. The next section
presents the active vision system that forms a first layer for
visual attention. Visual attention is introduced in Section 3;
how the focus of attention is induced from visual observation
is discussed in Section 4. The local cardinal system is defined
in Section 4.1.

2 Active Vision
In this section we briefly explain some of the components of
the active vision system which is used in this work to con-
trol a pan-tilt camera1 and to provide data for inductive learn-
ing the focus of attention of an active observer. Currently no
robotic hands are used for moving objects, such as those used
in previous work [Fitzpatrick et al., 2003], although this is an
extension we wish to make.

The Active vision process can broadly be divided into four
components:

1. Bottom-up colour and motion saliency: that are mea-
sures applied everywhere in the image.

2. Figure-ground operations: incorporating some top-
down biases that are applied only at the focus of atten-
tion.

3. Active tracking: uses figure-ground operations.

4. Marker tracking: maintains a short-term memory of
interesting locations by using a combination of proprio-
ceptive transformation and figure-ground operations.

These processes are discussed in turns bellow.
1A logitech QuickCam Orbit.



2.1 Colour and Motion Saliency
Colour saliency is computed by applying a difference of
Gaussians (DOG) filter on the Red-Green (RG) and Blue-
Yellow (BY) channels, and taking the sum of the squares of
the results. The local-maxima of DOG filters applied to im-
ages indicates the centres of interesting blobs. Figure 1 shows
an example of the original image, the RG and BY DOG re-
sponses, and the sum squared image. The crosses in Figure
1(d) mark local-maxima in the sum-squared image, i.e. cen-
tres of salient blobs.

(a) The original image (b) RG DOG

(c) BY DOG (d) Sum Squared

Figure 1: Colour Saliency

Motion saliency is computed by two measures: one is
a correlation-based optical flow followed by a connected-
components and bounding box computation; and another is
the temporal derivative of the colour-saliency measure. The
second measure is more selective than the first because it is
tuned to moving coloured blobs at a particular scale (set by
the scale of the DOG filter).

The results of computing colour and motion saliency are
used for motion triggering. Motion triggering is the process
by which the system decides whether a particular movement
is worth saccading to, and tracking or not. Naturally, this
is a top-down application dependent criterion. In this case,
only the movement of well-defined coloured blocks is worth
tracking. The blob centre closest to the centre-of-mass of
the colour-salience, temporal derivative is chosen as the most
likely-location for the centre of the moving blob.

2.2 Figure-ground at focus of attention
The figure-ground processes are always applied at the centre
of the image, as well as at any motion triggering points, if
they exist.

The steps in doing figure-ground are: the selection of a
colour that is present in the fovea (a small disc around the
centre of the image); the application of the DOG filter on the

selected colour image; and a spreading-activation in the zero-
crossing image from the centre. The result of the spreading
activation operation enables the system to decide whether the
object is well-bounded or just a background feature (in which
case the activation colours the entire image).

Therefore, the focus of attention does not always need to be
at the centre of the image. It could, for instance, be the result
of figure-ground operations at the triggering point. This helps
in the decision of whether there is a well-defined block at the
triggering location which is worth tracking.

2.3 Active Tracking

Once an object at the triggering location is found to be a well-
defined block, the system sets the tracking model to be the
characteristics of the block (colour and size) and immediately
saccades to that location. Now, given that the system has a
model of what it is supposed to be tracking, it can find the
best match to that model near the centre of the image and
saccade there.

(a) Active tracking (b) Object colour mask

(c) Marker creation (d) Marker tracking

Figure 2: Active tracking

Figure 2 shows an example where the system triggers on
and saccades to the block that suffered motion. Panel 2(a)
shows the focus of attention following the object in motion
(i.e. the camera actively tracks the object); panel 2(b) shows
the creation of a colour mask for the object; the marker cre-
ation is depicted in panel 2(c) and in 2(d) a marker is tracked
as the camera pan and tilts to focus somewhere else, keeping
the previously created mark.

It is worth noting that the tracked object needs only to be
salient to trigger the tracking (i.e. attract attention) but once
the system starts using the model of the object, the tracking
is robust and does not rely on the bottom-up saliency map at
all.



2.4 Marker Creation and Tracking

Once the tracked object comes to rest, a marker is dropped on
the object. A marker has the function of short-term memory
that binds “what” and “where” during a task (in effect, several
times during the same task). Marker positions therefore have
a retinal component as well as a proprioceptive component.
Being important to the task, markers are always tracked, no
matter what else the system is doing. If a marked object goes
out of the camera’s sight, tracking this object’s marker stops,
resuming as soon the object comes back in view. This is pos-
sible only because marker’s state includes proprioceptive in-
formation as well as a model of the object (the object’s signa-
ture). Marker tracking is therefore a combination of proprio-
ceptive to retinal transformations followed by active tracking
using the model of the marked object.

3 Attention

In this work, three levels of attention are used to schedule vi-
sual resources: data driven visual attention (A1), statistically
learned spatial attention (A2), and symbolically learned spa-
tial attention (A3). Both A2 and A3 are expectation driven
models which are learned from prior information. These
levels of attention combine to provide task driven attention,
since they are learned from prior observation of the typical
interactions of a human with a task at hand.

As the main interest of this work is (A3) we briefly
overview attention mechanisms (A1) and (A2), and concen-
trate on the discussion of the symbolically learned spatial at-
tention in Section 4.

3.1 Data driven visual attention (A1)

Data driven visual attention comprises exactly the active vi-
sion system described above. In an embodied agent, with a
restricted field of view, the camera needs to be able to move
to explore the whole of the scene. Therefore, the focus of
attention should follow salient objects through the scene.

In this level of attention, the set of markers are associated
with salient (interesting) objects to which the focus of atten-
tion is directed to.

This primary attention mechanism provides the means for
the process of learning spatial attention by the visual obser-
vation of tasks, as discussed in Section 4 below.

3.2 Statistically learned spatial attention (A2)

A probability density function in the form of a particle
distribution of prototype vectors is learned using an unsu-
pervised competitive learning neural network [Johnson and
Hogg, 1996], which is essentially an online vector quantisa-
tion method. This is used to move the camera to places where
objects are expected to be, and the active vision system is
used to locate the object, or to report that there is no object at
the location.

This attention mechanism competes with (A3) in order to
provide an accurate model for the focus of attention. Re-
search on the interplay between statistically and symbolically
learned attention is well under way.

4 Symbolically learned spatial attention (A3)
In this section we discuss how spatial attention can be learned
from observation of examples of activity.

This work uses inductive logic programming to learn pat-
terns in the space formed by object positions and colours.
For instance, if the system observes a human agent build-
ing a tower of coloured blocks defining a repetitive pattern
of colours (e.g. blue blocks on top of red blocks and vice
versa), the symbolic learning should be able to find a set of
rules with which a synthetic agent could predict which would
be the next block on the tower, and its position in it. For this
end, we need to define a spatial frame of reference and an ap-
propriate set of spatial relations to describe the states of the
world.

As frame of reference we define an observer-object relative
reference system, named the local cardinal system (LCS),
which is discussed in Section 4.1. The set of spatial relations
assumed in this work is introduced in Section 4.2, while the
symbolic learning executed with this representation system is
presented in section 4.3.

4.1 Representation: the local cardinal system
The observer-object relative frame of reference used to de-
scribe objects in space in this work is shown in Figure 3.
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Figure 3: The local cardinal system.

The local cardinal system works in the following way, each
object that is placed on the table defines its own cardinal ref-
erence frame that is used to describe the other objects around
it. An object is only described within the nearest frame of ref-
erence available. Moreover, as a simplifying assumption, an
object is only described within the reference frame of another
if the former is placed after the latter. I.e., objects already
placed on the table are not described in the reference frame
of newly placed ones.

Therefore, the local cardinal system is object relative, as
each object is represented with respect to another, but also
observer relative as the cardinal directions will be dependent
on the observer’s viewpoint2.

2For instance, the direction north w.r.t. an object will always
point in the same direction as the observer’s gaze.



In order to avoid ambiguous descriptions when an object
falls on the threshold lines between cardinal regions, we de-
fine that an object is only described within the cardinal region
w.r.t. a LCS of another if most of its occupancy region over-
laps with that cardinal region.

4.2 Representation: from continuous data to
symbolic relations

Symbolic descriptions of the scene, written using the syntax
of prolog facts3, are formulated at each key-frame. A key-
frame occurs at the end of a motion event. This allows for
a compact representation of objects and actions in the scene.
For each key-frame, we note the following objects and rela-
tions:

• For each salient object, its existence and properties:

– object(obj1).
– rel(property, o1, colour4), meaning that the object

o1 has the property colour4.

• The displacement of one object which is placed on the
cardinal position w.r.t. the local frame of reference of
another object:

– rel(move, o2, ne, o1), meaning the object o2 was
moved to a position northeast (ne) w.r.t. o1.

Assume that the symbols lgray and dgray refer to, re-
spectively, light gray and dark gray (relating to the
colours of the blocks in Figure 3), and a symbol ne rep-
resenting the direction northeast. It is now possible to
describe the sequence of objects shown in Figure 3 by
the set of statements in Figure 4 below.

obj(o1).
rel(property, o1, lgray).
obj(o2).
rel(property, o2, dgray).
rel(move, o2, ne, o1).
obj(o3).
rel(property, o3, lgray).
rel(move, o3, ne, o2).

Figure 4: Symbolic description of Figure 3.

Such sets of statements are handled by an Inductive Logic
Programming system that contributes with a model for the
focus of attention that provides the expectation about what
object should be placed in which position. This constitutes
our spatial attention mechanism.

4.3 Reasoning: symbolic learning using Inductive
Logic Programming

The spatial attention is learned using the Inductive Logic Pro-
gramming system named Progol [Muggleton, 1995; 2001].
Progol works by generalising a set of positive only examples
according to user-defined mode declarations. Mode decla-
rations are a set of instructions on the general form of the

3In the syntax of prolog constants are represented with lower-
case characters while variable with upper case.

data generalisation required. Informally, Progol allows a set
of noisy positive examples to be generalised by inductively
subsuming the data representations by more general data rep-
resentations/rules (with the aim of reducing representational
complexity, without over-generalising).

The aim of inductive learning in this work is two fold.
First, it is to obtain a set of rules for deciding which block
to move, and where to move it according to the pattern of ob-
jects observed. A second motivation is to use these rules to
guide the focus of attention. We may wish to say:

• move block obj16 to a spatial position;

• move a block with property colour4 to a spatial position;

• move any block to a spatial position;

• pan and tilt the camera to a position where a particular
object is expected to be placed.

From running Progol for a synthetic data set representing a
similar situation to that in Figure 3, but containing 20 objects
(positive examples), we obtained the rules in Figure 5.

rel(move,A,ne,B) :- rel(prop,A,lgray), rel(prop,B,dgray).
rel(move,A,ne,B) :- rel(prop,A,dgray), rel(prop,B,lgray).

Figure 5: Induced rules with respect to the example in Figure
3.

The rules in Figure 5 state that any object A should be
moved to a position northeast of any object B if A is light
(dark) gray and B is dark (light) gray. These learned rules can
be used either to predict which object should be placed w.r.t.
another object (and in which position) or to actually move an
object to a position according to the pattern observed.

In order for an agent to use this learned guide-rules for fo-
cus of attention, it needs to convert back from a symbolic spa-
tial description to a continuous pan-tilt angle description, this
is done by choosing the appropriate position that would place
the object at the cardinal position inferred and at a distance
that is equal to the distance between the nearest object (that
provided the former a reference frame) and the latter own ref-
erent object (that provided its frame of reference). Figure 6
illustrates the possible positions in which an object could be
placed.

It is worth pointing out that Progol needed not fewer than
20 examples to learn a proper model of expectancy from syn-
thetic data about this domain. The quality of the learned rules
degraded gracefully with respect to a decrease in the number
of examples available. A considerable increase in the size of
the data sets may be needed if real data were used. An evalua-
tion of our solution in this case is left for future investigations.

The next section introduces, by means of examples, some
of the future experiments that are going to be used to evaluate
the performance of our spatial attention mechanism from data
provided by the vision system described in Section 2.

5 Further examples (or future experiments)
Figure 7 shows four settings where the system above is going
to be tested. The first three arrangements (Figures 7(a),7(b)
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Figure 6: The location of possible positions in which to place
objects given a spatial description, where ’d’ is a distance
value.

and 7(c)) are just variations of the example depicted in Fig-
ure 3. Learning rules concerning the focus of attention in
these cases are straightforward tasks, according to experi-
ments with synthetic data. However, applying our solution
to real data from many different spatial domains will allow
us to evaluate the robustness of the entire system with respect
to different spatial dimensions. Moreover, error in pan-tilt an-
gles may generate different kinds of spurious formulae during
the inductive learning process, warrantying further research
in inductive logic programming. The example in Figure 7(d)
may come as a challenge for Progol to learn, as we have en-
countered problems in inducing facts dependent on various
previous states [Needham et al., 2005]. This problem indi-
cates roads for future investigations.

6 Discussion and future works
This paper discussed work in progress that aims the induc-
tive learning of focus of attention from the visual observa-
tion of agents executing tasks in the world. The tasks as-
sumed so far are the construction of repetitive patterns with
coloured blocks, so that the system (after assimilating the pat-
tern) could build a model of expectancy about where to place
the objects in the pattern and which object should be placed.

In the present stage of this research an active vision system
was developed that comprises a first level of attention, named
data driven visual attention. On a second level, a neural net-
work provides a statistical model of expectancy that should
compete with a symbolic model learned by inductive logic
programming.

In this work, we discussed some examples of how this sys-
tem could be evaluated on real data, so far the system has only
been used on synthetic data. Future work shall focus on this.
However, due to our previous success on integrating com-
puter vision with inductive logic programming for learning
protocols from observation [Needham et al., 2005][Santos et
al., 2004][Magee et al., 2004], we are very confident that the
framework proposed in this paper will provide a powerful so-
lution for learning visual attention.

A key issue, left for future research, is how to scale the
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(b) Vertical stack.
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(c) Two towers.
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(d) Longer repetition se-
quence.

Figure 7: Examples.

methodology presented in this work for learning visual atten-
tion from the observation of more complex actions than those
discussed above.
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