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Abstract 
Suspiciousness is not the same an anomalous-
ness.   Suspicion requires evidence of deception 
in observed attempts at concealment. We pro-
pose metrics for measuring suspiciousness of 
agents moving in a sensor field based on only 
periodic knowledge of their positions (as with 
large numbers of "small and cheap" sensors).  
This has applications to electronic sentries and 
counterterrorism.  This theory requires assess-
ment of the behavior, visibility, and noticeability 
of the average agent as well as the anomalous-
ness of the position, velocity, and acceleration 
vectors of a particular agent.  We conclude with 
a report on experiments with an implementation 
of our theory on a simulated sensor network. 

Content areas 
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ity, anomalies. 

1 Introduction 
Wireless sensor networks [Callaway, 2004] are increas-
ingly used for surveillance for "suspicious" behavior, as 
with the currently-popular topic in the United States of 
“homeland security”.  For instance, we would like to de-
tect thieves wandering about looking for theft opportuni-
ties or terrorists planting bombs [Hackwood and Potter, 
1999].  Suspicious behavior is rare and monitoring for it 
is tedious; witness the difficulties of detecting it in casi-
nos [Powell et al, 2003], one of the most active applica-
tions of surveillance.  So it would be desirable to auto-
matically detect suspicious behavior. 
 We will assume a persistent wireless sensor network 
with large numbers of small, inexpensive, limited-
capability sensors in just one sensing modality (" mi-
crosensors").   We assume sensors without cameras that 
can only estimate distances and/or directions to moving 
agents; cameras are more expensive, and image process-
ing to automatically find suspicious behavior is difficult 
and problematic in public areas.  Microsensors can moni-
tor sound levels, metal objects passing nearby, infrared 

body heat, or electromagnetic emissions.  For processing, 
we will assume a smaller number of “collector” sensors 
with strong antennas and more power that aggregate the 
data from the microsensors, a common design approach 
today [Horton et al, 2002].  Such large numbers of mi-
crosensors must be dispersed by semi-random methods 
such as dropping them from the air [Hynes and Rowe, 
2004].  An initialization phase can localize them by, for 
instance, sending a noisy device on a fixed path through 
the sensor field and analyzing the pattern of reports with 
least-squares fitting. 
 Collector sensor can localize moving agents using tri-
angulation or other types of fitting.  From this they can 
estimate velocity and acceleration, and (unambiguously 
except in very busy environments) track the agent.  With 
sufficient redundancy, tracking can be done in the pres-
ence of occlusions of microsensors using best-fit methods 
[Shin et al, 2003]. 
  A question is how much higher-level understanding of 
agent behavior we can obtain from their positions, veloci-
ties, and accelerations.  We believe that much inference is 
possible, since gross motions reflect plans and deceptive 
agents execute two or more inconsistent plans.  Then 
more sophisticated sensors or people could be invoked to 
study the phenomena more closely.  

2 Previous work 
Previous work on detecting suspicious behavior has fo-
cused heavily on the detection of anomalous behavior.  
For instance, [Wu et al, 2003] looked for suspicious be-
havior in a parking lot such as circling, zigzagging, and 
back-and-forth motions.  However, there are many rea-
sons that behavior could be anomalous without being sus-
picious, like surveys, repair work, and waiting to meet 
someone.  If we label such activities as suspicious and 
take measures against them, we may be engaging in dis-
criminatory or illegal behavior. 
 We postulate that suspicious behavior shows deliberate 
deception with concealment.  Deception is an important 
social phenomenon with many applications in law, busi-
ness, military operations, psychology, and entertainment, 
and a number of nonverbal clues can be used to detect it 
[Decaire, 2000; Qin et al, 2004], including: 



3.1 A general formula • Visual: increased blinking, increased self-
grooming, increased pupil dilation;  We will follow Occam's Razor and propose the sim-

plest possible theory that covers the major observed phe-
nomena.  If we choose our key factors carefully to be in-
dependent, Naive Bayes inference should be a reasonable 
assumption [Korb and Nicholson, 2004].   We will use the 
odds form: 

• Vocal: increased hesitation, shorter responses, 
increased speech errors, higher voice pitch; 

• Verbal: increased overgenerality, increased ir-
relevance, more frequent negations, more fre-
quent hyperbole 

These are not directly observable from positional 
information, but have analogies.  Increased blinking and 
self-grooming have an analogy in uncertainty about path 
direction and speed; increased hesitation and increased 
errors have an analogy in unnecessary stops and starts; 
and shorter responses and higher voice pitch have an 
analogy in increased speed and acceleration of the agent.  
So a sensor network can look for such clues. 
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where o represents odds (so o(X) = p(X)/(1-p(X)) where 
p(X) is the probability of X), S is the condition of suspi-
ciousness of an agent, A is the condition of anomalous-
ness, and D is the condition of deceptiveness.  The odds 
of A and D will depend on additional factors.  Statistics 
can be collected for a sensor field to estimate these odds.  Deceptive behavior also has higher-level clues in the 

form of "discrepancies" from normal behavior [Heuer, 
1982].  So a sensor network could keep baseline statistics 
and note when behavior of an agent exceeds them.  For 
instance, an agent with high acceleration magnitudes 
around other agents may be a thief engaged in theft. 

 We could use this formula at every time interval, but 
this will magnify short-term perturbations if the time in-
tervals are closely spaced.  So we will compensate with: 
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 Deceptive activities are common in warfare.  A classic 
problem for the recognition of suspicious behavior with 
primarily positional data is air defense, the process of 
analyzing aircraft motions, obtained from radar, to dis-
cover aircraft which pose potential threats to a site 
[Liebhaber and Smith, 2000].   An enemy aircraft that 
wants to threaten will try to conceal their intentions, and 
will not often provide electronic identification or other 
obvious clues.  But it is difficult to conceal locations and 
we can track them over time.  

for some number of timesteps M, the "learning time".  
This slows down the rate by which o(S) is changed for 
M>1 since a fractional power of a positive number is al-
ways closer to 1 than the original number.  
 Note that odds can differ for different times of day and 
times of the week.  For instance, if the sensor field is an 
commercial area, we would expect to see more activity 
during the daytime on weekdays. 

3.2 Measuring anomalies in state vectors  Detection of suspicious behavior is done routinely with 
intrusion-detection systems for computer networks [Proc-
tor, 2001] where the issue of false alarms is also impor-
tant.  Most methods use strong clues such as attack signa-
tures, but some measure discrepancies from baselines. 

 Figure 1 shows an example sensor field with unidirec-
tional arrows representing the mean of the acceleration 
vectors in that vicinity, bidirectional arrows representing 
the mean of the velocity vectors, and circles representing 
visit frequency to that area of the terrain.  These statistics 
can be obtained by dividing the area into a uniform rec-
tangular grid and counting observations for each grid cell. 

3 Assessing suspicious behavior 
We will address detecting suspicious behavior in a two-
dimensional sensor field, especially for urban or indoor 
terrain.  Video imagery [Gibbins, Newsam, and Brooks, 
1996; Wu et al, 2003] provides a variety of clues, but we 
will confine ourselves here to the positional state vectors 
only: positions, velocities, and accelerations.  Such infor-
mation also often is all that is available from military in-
telligence gathering from encrypted electronic transmis-
sions [van Meter, 2002].  Atypical values for positions, 
velocities, and accelerations are suspicious, and are wor-
thy of additional study or "attention" as in [Chu et al, 
2004].  [Shao et al, 2000] defined suspicious behavior as 
that having high velocities, but unusual locations and un-
usual accelerations are equally suspicious when velocities 
are normal.  Accelerations are important since F=ma re-
lates them to forces which usually reflect volition on the 
part of agents. 

 Then we can estimate the anomalousness of the state 
vector of an agent at time t that is inside grid cell (i,j) as a 
weighted average of the atypicality of location, velocity, 
and acceleration as r(t):    

|  where t is the 

time a particular agent is observed, , , and c  are 
constants set by experiments, g is the "traffic rate" or av-
erage frequency of an agent in a random grid cell, p(i,j) is 
the average frequency of an agent in grid cell (i,j), v(i,t) is 
the average velocity of agents, v(t) is the observed veloc-
ity of the particular agent, a(i,t) is the average acceleration 
of agents, a(t) is the observed acceleration of the particu-
lar agent, and the bars mean the norm.  Velocity and ac-
celeration are handled differently because the least  
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Figure 1: Example mean acceleration vectors     
(unidirectional arrows), velocity vectors (bidirec-
tional arrows), and positional frequency (circles) 

for a simple sensor field. 

 
 
 
 
 
 
anomalous velocity is that of previous visitors to that grid 
cell, whereas the least anomalous acceleration is zero.  
 The idea is that the sum of three factors will be more 
likely to be a normally-distributed random variable, by 
the Central Limit Theorem of probability theory, and be a 
more reliable indicator of an anomaly.  Note that this 
formula will flag a variety of suspicious behavior: hiding 
(suggesting attempts to surprise), too-fast motion (sug-
gesting attacks), too-slow motion (suggesting loitering), 
speed changes (suggesting avoidance), and sudden lateral 
accelerations (suggesting surprise). The directions of ve-
locity vectors are as important as their magnitudes, in 
order to recognize turns.  However, many observed veloc-
ity-direction distributions will be bimodal with peaks 180 
degrees apart, indicating bidirectional corridors of travel; 
we eliminate this problem by doubling the directional 
angles of our observed velocity vectors before averaging 
them, then halving the average.  

3.3 Excuses for anomalies 
Not all anomalous state vectors are equally suspicious.  
One issue is that there may be excuses for anomalies, 
nearby events that could have influenced them.  Such 
events should set r(t) to zero.  An excuse can be a large 
grid-wide event like a loud noise.  It can also be collision 
avoidance, defined as situations in which the projected 
distance between two agents, assuming their current ve-
locity vectors, is less than a minimum safety radius.  The 
safety radius will vary with the danger of the agents, so it 
will be larger for a vehicle agent than a human agent. 
 An important class of excuses relate to social activities 
such as meeting someone (which can happen with vehicle 
agents as well as people).  Conversation events can be 
detected when two or agents converge, decelerate, and 

stop at a typical conversation distance from one another 
with visibility between participants.  The typical distance 
is closer under more crowded conditions.  The duration of 
a conversation event is important, and is usually at least 
10 seconds; shorter periods suggest theft instead.  Note 
that stopping is generally important, although a more so-
phisticated theory could allow for conversations between 
agents moving side by side, but not where one is follow-
ing the other. 
 Apparent conversations can either decrease or increase 
suspicion, depending on how suspicious we are of the 
participants individually.  Generally speaking, the differ-
ence in the suspiciousness of the participants should de-
crease after a conversation.  So if an unsuspicious agent 
meets a suspicious agent, that should increase the former's 
suspiciousness.  Relaxation methods can be used to itera-
tively improve estimates when many social interactions 
are observed.  An important part of antiterrorism intelli-
gence analysis is finding connections from known suspi-
cious people to others [Coffman et al, 2004]. 

3.4 Visibility 
On the other hand, events associated with visibility 
changes should be additionally suspicious.  For instance, 
when an agent doubles back on its path after another 
agent disappears from view, that is suspicious because it 
suggests the agent has things to do that it does not want 
seen. Visibility estimation must take into account occlu-
sion by obstacles, terrain, and other agents.  It is often 
difficult for people to do this because they have eyes only 
on one side of their heads, and it is hard at a distance to 
tell whether someone is watching you.  Nonetheless, we 
assume that deceptive agents can estimate their visibility 
based on current known locations of other agents and a 
general knowledge of the degree to which they are likely 
to be visible in an area.   
 Visibility decreases monotonically with distance be-
tween agents.  Suspiciousness assessment depends mostly 
on linear resolution which decreases inversely with the 
distance.  However, there is a minimum distance (since an 
observer cannot observe well if they are too close) and a 
maximum distance (since faint signals fall below the 
threshold of noticeability).  We need to estimate the aver-
age unoccluded distance within these limits in every di-
rection from a point, as illustrated in Figure 2.  With grid-
ded data, we can estimate average visibility of an agent at 
location (x(t),y(t)) to every other point as w(t,i,j): 
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where t is the time, p(i,j) is the probability of an agent 
being in cell (i,j), and b(t,i,j) is the probability that the line 
between the agent at (x(t),y(t)) and grid cell (i,j) is unoc-



(i2,j2) 

(i3,j3) 

(i1,j1)

(x(t),y(t)) 

4 Experiments 
To test our ideas, we created a program to estimate suspi-
ciousness of behavior.  We use a rectangular grid to rep-
resent terrain.  Figure 3 shows an example of an indoors 
room like an office; shaded areas represent untraversable 
and view-blocking obstacles, and thickened lines repre-
sent entry doors.   

Figure 3: Example indoor terrain (a room). 

Figure 2: Average visibility calculation: b(t,i1,j1)=1, 
b(t,i2,j2)=0, and b(t,i3,j3)=0.  

cluded by an obstacle or another agent.  So w(t,i,j)=1 in 
an unobstructed area. 
 It is valuable to distinguish visibility from noticeability 
n(t) or lack of "cover".  Given two people at an equal dis-
tance, the one in the larger crowd will appear less notice-

able.  We propose 
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 Lacking statistics, we first estimated frequency of 
agents within each grid cell by finding all possible 
straight unblocked paths between doors and/or corners of 
obstacles.  Corners were used because optimal paths in 
regions of uniform cost with obstacles are found by 
searching the graph of the vertices of the obstacles and 
possible start points.  The resulting relative frequencies of 
visits are shown in Figure 4 for a 10 by 12 approximation 
of the room of Figure 3, where "00" indicates an obstacle.  
This incorporates a baseline visit rate of 5 (representing 
nontraversal behaviors such as accessing files in an office, 
assumed to be evenly apportioned over the room) and 
some averaging of frequencies into their neighbors (mod-
eling the tendency of agents to wander a bit from the op-
timal paths).  These numbers are on a scale of 0 (never 
visited) to 1000 (visited all the time); values were normal-
ized so they would average to a specified traffic rate of 
g=0.01 (10 on the 0-1000 scale), the probability that some 
agent would be observed in a randomly chosen grid cell at 
a random time. 

3.5 Mapping anomalousness and visibility to odds 
Given r(t), w(t,i,j), and n(t), we must calculate the condi-
tional odds of suspicious behavior.  Both of these map-
pings are subjective and will vary with context.  But both 
are monotonic since greater anomalousness, lesser visibil-
ity, and lesser noticeability all mean greater suspicion.  
Following Occam's Razor, we can use 

)(
)(

)|(
6 trc

So
ASo

= and 
)()()(

)|( 7

tntv
c

So
DSo

= .   

This gives overall: 
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19 13 06 06 06 05 05 05 06 07 10 11 This gives a way to update the suspiciousness estimate at 

each timestep. 20 08 08 09 09 08 13 07 13 07 06 06 
23 14 09 08 08 15 24 21 20 10 03 02  This formula assumes that our sensor network is not 

known to the agents, at least in all of its detail.  Thus the 
formula is not the degree of suspicion that agents moving 
in the sensor field have.  For them, invisibility and unno-
ticeability have the opposite effect because a normal agent 
will not expect suspicious behavior and will only notice it 
when it is quite visible and noticeable.  We thus propose 
for reasoning by nonsuspicious agents in the sensor field: 

18 00 00 00 00 00 16 10 17 00 00 00 
19 00 00 00 00 00 16 09 13 00 00 00 
28 15 08 07 07 15 28 16 13 00 00 00 
24 13 09 10 10 15 29 18 19 00 00 00 
14 00 00 00 00 00 17 19 29 17 14 17 
12 00 00 00 00 00 17 19 29 17 14 17 
14 11 08 08 08 12 18 23 30 21 17 18 
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   Then we compute the average visibilities of all points 
in the room using our above formula.  This calculation 
includes a penalty representing that the line of sight is 
more likely to be occluded in high-traffic areas.  Results 
for Figure 3 are shown in Figure 5, with a scale of 0 (in-
visible) to 100 (perfect visibility). 
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Figure 6: Some agent paths in the room. 

 
62 58 59 62 69 77 80 81 80 64 56 52 
64 58 56 57 61 74 81 83 81 61 56 52 
60 51 46 47 48 66 82 82 79 54 45 41 
44  0  0  0  0  0 74 74 73  0  0  0 
47  0  0  0  0  0 77 80 72  0  0  0 
63 53 54 63 64 74 84 85 76  0  0  0 
59 52 52 50 58 78 84 87 84  0  0  0 
39  0  0  0  0  0 77 80 81 65 67 65 
36  0  0  0  0  0 78 81 81 72 70 68 
53 38 39 45 44 57 79 82 81 74 69 65 

 
Figure 5: Calculated visibility for each point. 

 
 Finally, suppose we have four agents visiting this room 
as indicated by the numbers in Figure 6.  Each number 
represents an observation of an agent at that time at the 
location.  Agent locations were matched between 
timesteps by projecting observed velocities and finding 
the closest match, and the approximate inferred paths are 
shown as thin lines; newly appearing agents were as-
sumed to come from the nearest door. 
 We then applied the suspicion formula to track the cu-
mulative suspiciousness of each agent's path.  Noticeabil-
ity was not used because there were so few agents.  We 
added to the a priori visibility of the agent w(t,i,j) a 
weighting of the specific visibility by other agents u(t,i,j), 
to suggest that deceptive agents only know half the time 
who can see them; w(t,i,j) is the average visibility of an 
agent at cell (i,j) at time t, while u(t,i,j) is the number of 
agents that can see (i,j) at time t.  The "learning time" M 
was set to 2, and we used only the difference in the angle 
of twice the velocity vectors because the velocity magni-
tude was not meaningful with our method of estimating 
visit frequencies discussed above.  Reasonable weights 
for r(t) were obtained by experiment.  In total, we used 
the updating formula: 
 o  

  
 

 
where "o " denotes the inner product of vectors. 
 Our program assessed an average suspicion of 0.34 for 
the agent going south to northwest, 0.91 for the agent 
going east to west to northeast, 0.25 for the agent moving 
in the northwest corner, and 0.25 for the agent moving 
only in the northeast corner.  These are reasonable be-
cause the first agent is unsuspicious, the others make sig-
nificant direction changes, the second agent spends time 
in the "alley" with lower visibility, and the third and 
fourth agents apparently meet at times 6 and 7 (thus ex-

cusing their nonzero accelerations during the meeting).  
We would need to conduct experiments with human sub-
jects to compute a threshold value to decide at what level 
of suspicion we should take action; for instance, we could 
observe a public area where subjects would be directed to 
simulate tasks such as planting a bomb. 

5 Strategies for the deceptive agent 
The theory we have developed also predicts heuristic 
strategies for a deceptive agent to minimize o(S) in some 
task such as stealing a wallet or planting a bomb: 
• Suspiciousness-minimizing strategy: Reduce r(t) 
by following well-traveled routes with minimal changes 
of direction.  However, deceptive agents must necessarily 
try to achieve at least some goals incompatible with this. 
• Visibility-minimizing strategy: Reduce w(t,i,j) 
by spending much time in low-visibility parts of the field 
(e.g., loiter in alleys).  However, it is hard to anticipate all 
viewing angles, and an agent observed trying to be invisi-
ble is additionally suspicious. 
• Fast-execution strategy: Do suspicious actions 
quickly so the timesteps for which r(t) is a nonnegligible 
are few (for instance, run in and throw a bomb, then run 
out).  But fast activities are intrinsically anomalous and 
suspicious. 
• Loitering-timing strategy: Delay suspicious ac-
tivities to periods of low visibility from other agents (for 
instance, pace back and forth until there aren't people 
around, then plant a bomb).  This makes r(t) only large 
when w(t,i,j) is small, thereby keeping their product low.  
But loitering itself is suspicious since it requires accelera-
tion changes and velocity reversals. 
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• Distributed-suspiciousness strategy: Distribute 
the suspiciousness over several deceptive agents (for in-
stance, have one agent bring a bomb and another agent 
install it).  This works when r(t) is a concave function of 
the number of suspicious clues offered.  This requires 
difficult coordination, and a concave function may be 
impossible.  For instance, both an agent that brings a 
bomb and an agent that installs it must visit the same sus-
picious low-visibility location. 



• Diversion strategy: Create a diversion during 
suspicious activities, reducing n(t) then.  This also re-
quires coordination by the deceptive agents, and will not 
work repeatedly as the non-deceptive agents will eventu-
ally realize they are being manipulated. 

6 Conclusions 
We have proposed a new approach to detecting suspicious 
behavior in areas under low-level surveillance.  If one can 
afford many cameras and real-time image-processing soft-
ware, much such surveillance can be automated.  But this 
is an expensive solution, only appropriate for high-
security areas.  For monitoring for theft and terrorist 
activity in broad areas, simple footfall or motion sensors 
may be all that are feasible.  We have showed that a good 
deal can be learned from even such simple sensors, by 
noticing anomalous location, velocity, and acceleration 
data and correlating it with visibility and noticeability by 
other agents.  Our next step will be to test our ideas with 
real-world experiments. 
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