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Abstract

This paper presents a decision theoretic model of interac-
tions between assistive technology and users during activ-
ities of daily living. The model is a partially observable
Markov decision process whose goal is to monitor a user,
assist the user during each activity, maintain indicators of
overall user health, and adapt to changes. The key idea be-
hind the model is that it is relatively easy to specify, and can
be applied to many activities of daily living with little mod-
ification. The key contribution of this paper is to show how
such a model can be learned without knowing the classes of
behaviors of the user a priori. This semi-supervised learn-
ing will enable assistive technologies to be applied ubiq-
uitously for many different activities. We give some results
from a preliminary version of the model for the task of hand-
washing.

1 Introduction

Older adults living with cognitive disabilities (such as
Alzheimer’s disease or other forms of dementia) have diffi-
culty completing activities of daily living (ADLs), and are
usually assisted by a human caregiver who prompts them
when necessary. Assistive technology will allow this el-
derly population to age-in-place by non-invasively monitor-
ing users in their homes during ADLs, providing guidance
or assistance when necessary [15].

The user’s progress in an ADL is characterised by the
interaction between three principal elements. We will il-
lustrate these elements using the example of a person with
moderate dementia being aided by a human caregiver dur-
ing handwashing, as shown in Figure 1. First, the task state
is a characterisation of the high-level state of the user, and is
related to the goals in the task. For example, the handwash-
ing ADL can be described by task variables such as hands
wet and hands dirty which characterise the set of task states.
Second, the behavior of the user is the course of action the
user takes to change the task state. Common behaviors in
the handwashing ADL may be things like rinsing hands or
using soap. Third, the caregiver’s action is what the care-
giver does to help the user through the ADL. In Figure 1, the

caregiver prompts the patient to use the soap prior to frame
1395. The patient duly follows the prompt and performs a
behavior of putting soap on their hands up to frame 1745.
This behavior causes a change in the task state: the patient’s
hands become soapy. The task state is what we are really
interested in: it tells us about the progress the user is mak-
ing in the task, and a utility function can be defined over it.

1331 1395 1403 1422

1445 1505 1546 1745

"I want you to use some soap now"

Figure 1: Example sequence in which a patient is prompted
to put soap on their hands.

Our goal is then to design a system that will monitor the
task state by observing the behavior of the user as a reac-
tion to the actions of the caregiver. Assuming the task state
is defined, the standard approach is to first use expert knowl-
edge to define the behaviors that will occur in the ADL, and
to train a classifier to recognise these statically defined be-
haviors using supervised learning. A second learning phase
then builds a model of the relationship between the behav-
iors and the task. The problem with this approach is the
need to specify behaviors a priori. This is a labor-intensive
task requiring expert knowledge. Further, different individ-
uals perform the same behaviors in different ways, exhibit
different behaviors to perform the same task, and change
their behaviors over time, usually as a result of their chang-
ing state of health. These considerations make it very diffi-
cult in many cases to define a single set of recognisable be-
haviors, a fact that is emphasised in the rehabilitation liter-
ature extensively [15]. Further, the recognition of all possi-
ble behaviors (as specified by some expert), may be compu-
tationally wasteful during interaction with particular users,
who may only require assistance for a small number of as-
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pects of a task. A system that can learn which behaviors are
necessary to recognise in order to achieve task completion
avoids this wasteful recognition process.

Our approach is to use a learning method that discovers
the behaviors that are being exhibited, and learns their re-
lationship to the task simultaneously. These relationships
allow the model to predict the state of the task, and to moni-
tor the user’s progress. Ultimately, these predictions will be
used to optimize an automated prompting strategy by max-
imising some notion of utility over the possible outcomes
given visual observations of the user. In this paper, we ap-
proach the intermediate goal of learning the model that can
monitor the progress of the user in the ADL from video ob-
servations. As such, the rewards and costs in the POMDP
will not play a role in the work described herein.

Our previous work in this domain is on the specification
and solution of a particular POMDP model [3], but ignores
the learning problem by using only prior knowledge of the
domain. This previous work showed how the domain can
be modeled using a POMDP, how approximate solutions to
the model can yield high quality policies of action, and how
these policies can be used in a clinical setting [3]. The fo-
cus of the current paper is to discuss the associated learning
problem.1

The learning method we present has the dual advantage
of not requiring extensive a priori knowledge and training,
and of being able to adapt to different users in different sit-
uations. The model is a partially observable Markov deci-
sion process (POMDP), with an observation function that
relates entire video sequences to behaviors using a dynamic
Bayesian network. The learning method clusters video se-
quences in training data in which only the task states are
labeled, thereby learning a set of behaviors, and the rela-
tionship of the learned behaviors to the task states. This
approach emphasises the notion that the behaviors are not
actually what we are interested in recognising. Rather, we
would like to predict the task state, because then we can
choose actions that optimize expected return from some
utility function defined over the task states. Eventually,
these models can be applied to different ADLs by only
changing the task states, which are more readily(i.e., objec-
tively) definable than behaviors by human designers [12].

The paper first describes a general POMDP model for the
patient–caregiver interaction during ADLs, including the
observation function and the methods for learning the pa-
rameters of the POMDP. A simplified version for the hand-
washing task is then presented, followed by results on 17
sequences of video of a patient being prompted by a human
caregiver. We finish the paper by describing related work
and discussing future directions for this research.

1In fact, we are only discussing the learning of model parameters.
Learning or eliciting the reward function is the subject of our current re-
search.

2 General Model

A discrete-time POMDP consists of: a finite set S of states;
a finite set A of actions; a stochastic transition model Pr :
S × A → ∆(S), with Pr(t|s, a) denoting the probability
of moving from state s to t when action a is taken; a fi-
nite observation set Z; a stochastic observation model with
Pr(z|s) denoting the probability of observation z in state s;
and a reward function assigning real-valued reward R(t, a)
with taking action a and transiting to state t. Figure 2(a)
shows the POMDP as a Bayesian network. Given a specific
POMDP, the goal is to find a policy that maximizes the ex-
pected discounted sum of rewards attained by the system.
The system state is not known with certainty, and therefore
a policy maps either belief states (i.e., distributions over s)
or action-observation histories into choices of actions. We
refer to [16] for an overview of POMDP concepts and al-
gorithms. Our research into finding policies of actions for
specific POMDPs of this type is described in [3, 11]. In
this paper, we address the associated problem of learning
the transition and observation functions.
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Figure 2: (a) Two time slices of general POMDP. The state,
S, is modified by action A, and produces observation O.
(b) Two slices of factored POMDP for ADL understanding.
The state, S, is factored into three sets of variables, task
(Sh), attitude (Sp) and behavior (Sb). Conditional inde-
pendencies have been introduced.

Figure 2(b) shows the same model, except that the state,
S, has been factored into three sets of variables: task
(Sh), attitude (Sp) and behavior (Sb). During handwash-
ing, the task variables may indicate whether the water
is flowing, or whether the hands are soapy. The cogni-
tive state of the user, including the level of dementia and
the current responsiveness, for example, is given by a set
of user attitude variables. The attitude variables essen-
tially describe internal properties of the user that gener-
alise across tasks. The task states and the user’s attitude
are changed by the user’s behavior, Sb. Task and behav-
ior variables generate observations, Oh and Ob, respec-
tively. The transition function here, P (St|St−1, At−1) =
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gives the expected task state given the current behavior and
the previous task state. Notice that the only conditional in-
dependencies introduced here are in this last distribution:
the task state is independent of the attitude, Sp, and the ac-
tion, A. The idea is that changes in the task states are caused
by the behaviors of the user, independently of the user’s atti-
tude or the system’s actions. The action, A, only affects the
behavior and attitude of the user, which in turn may cause
changes to the task.

The observations O = {Oh, Ob} are generated by
the task and behavior variables, Sh and Sb, respec-
tively, through some observation functions P (Oh|Sh) and
P (Ob|Sb). These distributions can be of many different
types, depending on what the observations are. In general,
however, the time scales at which observations occur will
be of much shorter duration than those at which task or at-
titude variables change values. Observations of behaviors
will typically be frames from some video camera (at 30Hz),
or some segments of an audio stream (at around 10kHz),
whereas the task states will only change every few seconds.
For example, during handwashing, a typical behavior may
be “putting soap on hands”, which may take a few seconds
to perform, and result in 30 or more video frame observa-
tions, but only cause a single change of the task state: the
hands become “soapy”.

An example of a task observation function is the relation-
ship between the task variable water on and the signal from
a switch or impeller during the handwashing task [3]. The
following section describes a behavior observation model,
P (Ob|Sb), which is designed for the task of handwashing,
but is fairly general in its applicability.

2.1 Behavior Observation model

The observation function, P (Ob|Sb), encodes the relation-
ship between the unobservable behaviors, Sb, and the ob-
servations Ob, which in this case are derived features from
sequences of video frames. The parameterisation of this
function follows the generative model developed in [10] for
constructing temporally and spatially abstract descriptions
of video sequences. Figure 3 shows the model as a Bayesian
network being used to assess two frames from a sequence
in which a patient is putting soap on his hands.

Our raw measurements consist of the video frames, I ,
and the optical flow fields between consecutive images,
v.2 The observation function must first spatially summarise

2Optical flow is computed using the method of Simoncelli [25].

I t

S
b

rN rN
rN...Z

t−1 t−1

t−1I t−1 v

......
t−1 t−1

Wtt−1W

Xt−1

Zww1 1 ZZx x

t t

1w ZZ w

Figure 3: Dynamic Bayesian network for modeling obser-
vations of images and flows over regions as a function of
Sb, the patient behavior. Along the bottom are the frames
and the flow field computed using Simoncelli’s multi-scale
method [25]. Zw and Zx are the feature vector projections
over statically defined regions. The reconstructed images
and flow fields given Zw and Zx are shown below them
(Nz = 12). W and X are discrete variables describing the
instantaneous configuration and dynamics through Gaus-
sian distributions over Zw and Zx.

both of these quantities, then temporally compress the en-
tire sequence to a distribution over high level descriptors,
Sb. The vertical chains in Figure 3 induce distributions over
the multivariate random variables, W and X , from the pro-
jections Zw and Zx, respectively. W and X correspond to
classes of instantaneous (per frame) configuration and dy-
namics of the region(s) of interest in the training data. For
example, the configuration classes may correspond to char-
acteristic hand poses, such as “reaching for the soap” during
handwashing. The dynamics classes are motion classes, and
may correspond to, for example, motion during the patient
reaching for the soap. The mapping from frames and flow
fields to W and X occurs as follows.

First, we assume a static set of Nr image regions (Nr =
4 in Figure 3). The grayscale image, I , and the opti-
cal flow field, v, within each region are projected to a
pre-determined set of Nz 2D basis functions, yielding Nz

dimensional feature vectors, Zw,r and Zx,r, respectively,
for each region, r ∈ 1 . . . Nr. The concatenation of the
2 × Nr feature vectors at each time step then form the
observations, O = {Zw

1 , Zx
1 , . . . , Zw

T , Zx
T }, where Zw =
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{Zw,1 . . . Zw,Nr}, and Zx = {Zx,1 . . . Zx,Nr}. Using a
pre-determined basis set defers any commitment to partic-
ular types of motion to higher levels of processing, with-
out affecting computational efficiency. We use the basis
of Zernike polynomials, which have useful properties for
modeling flow fields [10] and images [27]. This basis set
is a complete and orthogonal set of polynomials over an
elliptical region, such that Zw and Zx can be used to re-
construct images and flow fields to an arbitrary degree of
accuracy, given sufficient basis projections. The basis func-
tions are ordered by their spatial frequencies, such that low
orders represent gross structure in images and flow fields,
and higher orders represent more complex structures. The
second row of images in Figure 3 shows the reconstructed
images and flow fields over the defined regions given the
projections Zw and Zx, with Nz = 12.

The distributions of each of the feature vectors (for con-
figuration, Zw, and dynamics, Zx) are modeled by a mix-
ture of Gaussian distributions, where the mixture compo-
nents are labeled as states of W and X . The mixture
models at this stage also include feature weights as priors
on the cluster means. These feature weights obviate the
choice of which basis functions are most useful for classi-
fication. The dynamics and configuration variables, X and
W , each form Markovian chains, which are coupled. This
coupling makes these chains coupled hidden Markov mod-
els, or CHMMs [4]. Temporal abstraction is achieved using
a mixture model at the high level, where the mixture com-
ponents (states of Sb) are coupled hidden Markov models.
Thus, each state of the high level display descriptor, Sb,
generates a coupled hidden Markov model. The CHMM, in
turn, generates a sequence of configuration and dynamics
feature vectors, Zx and Zx, respectively, which can be used
to reconstruct the associated images and flow fields.

This mixture model computes the likelihood, P (O =
o|Sb = sb), of a sequence, o = {zx

1 . . . zx
T , zw

1 . . . zw
T },

given the behavior, sb, using P (o|sb) =
∑

kl αTkl, where
αkl

T = P (XT = k,WT = l, zx
1 . . . zx

T , zw
1 . . . zw

T |sb) is the
forward variable, defined recursively

αkl
t = φ

x,k
t φ

w,l
t

∑

ij

θ
x,ijk
t θ

w,jkl
t αt−1,ij (1)

αkl
1 = φ

x,k
1 φ

w,l
1 πx,klπw,l (2)

where where the parameters of the model are the transition
probabilities in the coupled chains,

θx,ijk = Pr(Xt = k|Wt−1 = j,Xt−1 = i, sb) (3)

θw,jkl = Pr(Wt = l|Xt−1 = k,Wt−1 = j, sb) (4)

the initial state probabilities in the coupled chains,

πx,kl = Pr(X1 = k|W1 = l, sb) (5)

πw,l = Pr(W1 = l|sb) (6)

and the observation probabilities of the projections of flow
field and image regions given dynamics and configuration
states, respectively.

φ
x,k
t = P (zx

t |Xt = k) (7)

φ
w,l
t = P (zw

t |Wt = l) (8)

Finally, we can compute the belief state at time t from
the belief state at time t − 1, Pr(st−1), the caregiver action
at and the video sequence ot, using:3

P (st|at,ot) ∝
∑

st−1

P (st|at, st−1)P (ot|s
b
t)P (st−1) (9)

where P (st|at, st−1) is the POMDP transition function de-
fined in Section 2, and P (ot|s

b
t) is the observation likeli-

hood described above.
Since the video sequences are sometimes fairly long

(over 1000 frames), the probability mass usually collapses
nearly entirely to a single behavior model, assigning exactly
zero to the others. This causes problems for the state distri-
bution monitoring since it sees these behaviors as “impos-
sible” given the data. We resolve this issue by dividing the
logarithms of the likelihoods by the sequence lengths. This
is similar to the heuristics described in [1] for resolving the
imbalance between transition and observation probabilities.

2.2 Learning

The parameters of the model are learned from partially la-
beled training data. Our focus is to discover models of be-
haviors, and so we will assume that all variables other than
the behavior are given an assignment in the annotations. Al-
though the task variables are typically simple to annotate,
the attitude variables require expert knowledge or must be
learned from data along with the behaviors. In this work,
we assume attitude variables are assessed by an expert.

To learn the parameters of the transition function
P (St+1|St, A) and the observation function P (O|S), we
apply the expectation-maximization (EM) algorithm [2] as
outlined below. It is important to stress that the learn-
ing takes place over the entire model simultaneously: both
the output distributions, including the mixtures of coupled
HMMs, and the high-level POMDP transition functions are
all learned from data during the process. The learning clas-
sifies the input video sequences into a spatially and tem-
porally abstract finite set of behaviors, and learns the re-
lationship between these high-level behavior descriptors,
the state of the patient’s attitude and of the task, and the
prompt. The POMDP parameters are learned by finding the

3Note the abuse of notation by the subscript t used for the temporal
index at both levels in the hierarchy. The meaning is clear from the context,
however.
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model that maximizes the posterior density of all observa-
tions and the model. Denote the set of No training video
sequences ω = {o1 . . .oNo

}, the associated sequences of
caregiver prompts a = {a1 . . . aNo

}, and the annotation
sequences of attitude and task states sp = {sp1 . . . s

p
No

}

and sh = {sh1 . . . shNo
}, respectively. Then, the learning

problem is to find the set of parameters θ∗ that maximizes
P (o, sp, sh, a, θ), subject to constraints on the parameters,
which involves integrating over all possible patient behav-
iors sb.

The EM algorithm eases this maximization by writing it

arg max
θ

[ No
∑

i=1

∑

Sb=sb

P (sb|ois
p

i s
h
i θ

′) log P (oisi|θ)+log P (Θ)

]

The “E” step of the EM algorithm is to compute the expec-
tation over the hidden behaviors, P (sb|ois

p

i s
h
i θ′), given θ′,

a current guess of the parameter values. The “M” step is
then to perform the maximization which, in this case, can
be computed analytically by taking derivatives with respect
to each parameter, setting them to zero and solving for the
parameters [9, 2].

The updates to the output CHMM distributions are very
similar to those for a normal HMM with Gaussian outputs,
except that evidence is propagated backwards and forwards
through both X and W chains. The output distribution up-
dates include learning the feature weights on the dimensions
of the feature vectors Zx and Zw. These updates are in-
cluded by putting priors and hyperpriors on the means and
covariances of the output distributions, and then updating
the priors based on the usefulness of each feature dimension
at separating the classes in X and W . This feature weight
learning is based on the method of [6], and is described in
more detail in [9].

3 Handwashing Model

We will demonstrate how to apply the model in Section 2
to a particular activity of daily living (ADL), handwashing.
In this ADL, the patient needs to get his hands clean by
progressing through stages that include using soap, turning
the water on and off, rinsing and drying his hands. A care-
giver monitors the progress of the patient, issuing reminders
or prompts at appropriate times. In this simplified model,
shown in Figure 4(a), we only use the task variables, disre-
garding the patient’s attitude and timing.4 The states of the
handwashing task are defined by the variables hands clean,
which can be {dirty, soapy, clean}, hands wet, which can
be {wet, dry}, and water flow, which can be {on, off}. We
assume the hands start dirty and dry, and the goal is to get
them clean and dry, which can only happen if they become

4Other aspects of our work investigate these variables [3], but do not
do any learning.
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Figure 4: (a) Two time slices of factored POMDP for ADL
monitoring. (b) Regions for the handwashing task.

soapy and wet at some intermediate time. The water starts
off and must be off for task completion. The PROMPTs
are the possible reminders that can be given to the patient
in the form of audible cues, and one null action where the
caregiver waits. The cues correspond to the canonical steps
of handwashing: turn on water, wet hands, use soap, dry
hands and turn off water.

The mixture of CHMMs function outlined in Section 2
is used with four static regions of the image, as shown in
Figure 4(b). These regions were manually specified, and
correspond roughly to four major regions of interest in the
sink area: the taps, the sink, the soap and the towel.

The training data is a subset of that used in [17]. It con-
sists of 23 trials with the same caregiver and the same pa-
tient performing the handwashing task on 23 different days.
We selected 18 of these sequences in which the patient was
sleeveless. The addition of sleeves would mean the number
of configuration states would likely have to double. One fur-
ther sequence was dropped due to excessive caregiver pres-
ence in the video at the beginning. The patterned bracelet
worn by the patient was used for the pattern recognition al-
gorithm of [17], and is not necessary for our system, as the
representation disregards it.

The 17 sequences were annotated by one of the authors.
The water flow and the state of the hands was monitored and
recorded along with the caregiver’s actions. Temporal seg-
mentation is achieved by simply cutting the sequence where
the annotations recorded a change of task state. This tempo-
ral segmentation remains static throughout. Uninformative
prior transition and observation models were used.

We performed a cross-validation experiment in which
one sequence (the test sequence) is removed from the train-
ing set, and the labels on this test sequence are hidden. The
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Figure 5: Histograms of marginal belief in actual (anno-
tated) values of the variables hands wet , hands clean and
water flow. (a) with video observations (b) with uninforma-
tive video observations (P (Sb|O) is uniform).

model is trained on the 17 remaining sequences, and then
used to estimate the task state on the test sequence (using
Equation 9). The estimates can then be compared with the
(hidden) annotations.5 This process is repeated for each
possible test sequence. The learned behaviors typically fell
into five categories corresponding to the five major things
that the patients did during handwashing: nothing (staying
still), turning the water on or off (these appear the same),
rinsing the hands, drying the hands and using the soap.

In order to gauge how well the correct state is being
monitored, we can look at the marginal belief the model
has in each of the annotated values of the task variables,
hands wet, hands clean and water flow. Figure 5(a) shows
histograms of these marginal beliefs over all 18 left-out test
sequences. For comparison, Figure 5(b) shows the beliefs if
the video observations were uninformative (so the distribu-
tion P (Sb|O) is uniform). We see that, on average, the ob-
servation function is learning behaviors that allow for more
accurate belief monitoring.

We also compared the most likely state of the probabil-
ity distribution to the (hidden) annotation at each time step.
There are 192 sequences in total, each of the handwashing
trials having about a dozen changes of state. The fraction
of correct maximum likelihood guesses is estimated to be
0.91 for hands wet, 0.87 for hands clean and 0.88 for the
water flow (for Nz = 6). Note that, even if the POMDP
model does not correctly guess the most likely task state, it
may still be able to choose optimal actions.

Figures 6–9 show examples of belief propagation on a
test sequence. In this sequence, the patient manages to get
as far as turning on the water (Figure 6) and wetting their
hands before the caregiver has to step in and guide him for
the rest of the task.

5However, note that one of the strengths of these kinds of models is
their ability to maintain a belief distribution, and this comparison of the
belief distribution with the annotations is not a direct measurement of the
model’s ability to monitor belief and ultimately choose correct actions.

hands_statehands_wet 
belief state frame 359

actual state

hands_wet hands_state
dry

actual state

belief state frame 510

wetwet dry
0.99 0.99

dirty soapy clean

0.66
0.99
dirty soapy clean

362 419 510

Figure 6: Belief propagation over a sequence where the pa-
tient wets their hands. No prompt was given to initiate this
behavior. The state distribution is shown along the top. The
patients hands are initially believed to be dry and dirty at
frame 359, but the observed behavior shifts the belief over
hands wet towards wet. The actual task state is indicated by
a star.

hands_wet hands_state
dirty soapy clean

belief state frame 1745
hands_statehands_wet 

dirty soapy clean

belief state frame 1403

0.16 0.11

0.81 0.860.97 0.98
wet drywet dry

1403 1546 1745

Figure 7: Belief propagation over a sequence where the pa-
tient uses soap. The caregiver prompted “I want you to use
some soap now” at frames 1340-1390.

We start at frame 362 in Figure 6, in what is essentially
the initial state distribution, which is that the patient’s hands
are dry and dirty. The patient then rubs his hands under the
water until about frame 510 when the caregiver prompts him
to turn on some cold water. We compute the probability of
this sequence given each possible behavior model, and use
these estimates to update the state distribution at frame 510,
in which the hands are believed to be wet (with probability
0.66), and still dirty. Notice how the caregiver’s hand enters
the picture towards the end of this sequence. The model is
able to deal with this confusing factor.

The caregiver prompts just prior to frame 1400, which
leads the patient to put some soap on his hands, which
he does until about frame 1745, shown in Figure 7. The
state distribution changes accordingly, giving high weight
to hands clean=soapy.

Figure 8 gives a further example during the same test
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Figure 8: Belief propagation over a sequence where the pa-
tient dries their hands. The caregiver prompted “dry your
hands now” at frames 2360-2390.

trial, in which the patient is prompted to dry their hands
(Figure 8). This behavior shifts the state distribution away
from hands wet=wet and hands clean=clean, but the re-
sulting distribution is even across states. This happens due
to lack of training data to support this kind of event6, and
could be resolved by using more informative priors. This is
not necessarily a problem for the POMDP, since this distri-
bution could still be used to appropriately select actions.

Figure 9 shows an example of a sequence in which the
state distribution is not updated in correspondence with the
annotations. The behavior appears as a rinsing behavior,
and so the belief is updated so that the hands are most prob-
ably clean, not soapy. However, the hands are not under the
water, and the hands do not actually get rinsed. This type
of error could be corrected with some 3D information in the
data, such as from a stereo camera.

hands_statehands_wet 
wet dry dirty soapy clean

hands_wet hands_state
wet dry dirty soapy clean

belief state frame 1433 belief state frame 1750

0.97

0.38
0.04

0.91
0.60

0.93

1433 17501528

Figure 9: Belief propagation over a sequence where soap is
used. The belief shifts from hands being soapy to clean.

6There is only 1 training sequence in which the patient dries his hands
before turning off the water, and in that case, he was not prompted to do so
as he was in this test sequence.

4 Related Work

Assistive technologies have primarily been investigated out-
side the artificial intelligence community, and are reviewed
in LoPresti et al.[15]. Most relevant to our work, a system
for monitoring handwashing using a ceiling-mounted cam-
era demonstrated a significant reduction in caregiver bur-
den [17]. The patient was required to wear a patterned
bracelet, the location of which was determined by a pat-
tern recognition algorithm. The resulting location was then
input to a neural network for the recognition of predefined
behaviors. This system was invasive and was not learned
from data.

Several intelligent systems that use AI and ubiquitous
computing techniques are currently being developed for the
older adult. These include the Aware Home Project [18],
the Assisted Cognition Project [13] and the Nursebot
Project [21]. These new projects are similar to the work de-
scribed in this paper in the sense that they attempt to incor-
porate AI and a decision-theoretic approach to overcome the
shortcomings of current approaches. In particular, the Au-
tominder System [22], one aspect of the Nursebot Project,
applies a POMDP in the development of the planning and
scheduling aspect of the system [21]. These systems do not
incorporate advanced prompting techniques and algorithms,
but rather are being developed as scheduling and memory
aids. POMDPs have also been used for modeling interac-
tions between humans in an office environment, e.g. during
meetings and cooperative tasks [28].

These computerised assistive technologies, however, do
not investigate the learning problem in detail. However, in
related work, there has been significant progress in learning
patterns of activity from a person’s positional data. For ex-
ample, data mining techniques have been used to discover
sequences of activities from discrete data [7], and hierar-
chical hidden Markov models (HHMMs) have been used to
explain GPS data of outdoor transportation patterns [14].
We are learning a model similar to the HHMM, but explic-
itly add system actions and model video sequences directly
instead of only positional data. Other researchers use super-
vised techniques to build models of meeting dynamics [24],
office activity [19], and other in-home activities [8].

Our previous work showed how to learn the parameters
of a partially observable Markov decision process, while
discovering models of facial displays and hand gestures in
game-playing domains[10]. This work differed from previ-
ous work in human motion analysis in that it does not only
attempt to recognize either purported characteristic behav-
iors, or the pre-defined atomic units which make up such
behaviors [26, 5]. Instead, we make no prior assumptions
about the number of type of behaviors that are present,
learning this directly from data. However, the resulting
model was used as a Markov decision process (MDP) by
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taking the most likely inferred behavior as the true state.
This paper generalises that work by relaxing this observable
constraint in the test data, and begins to look at the problem
of learning and using the partially observable model. This
paper also applies the POMDP model to the domain of ADL
monitoring for the elderly.

5 Conclusion and Future Work

We have shown how to learn the parameters of a two-level
model of patient–caregiver interactions during an activity
of daily living. We described a simple observation function
that recognises patient behaviors, and showed how it can be
used to monitor the high-level state of the task. The primary
advantage of the kinds of models we describe is that they do
not require training data labeled with patient behaviors.

Our future work in this domain will progress along three
fronts. First, from a model learning perspective, we want
to investigate more complex POMDP models, with the ad-
dition of the patient’s mental state, timing, and models
for other ADLs. Eliciting rewards and cost functions for
the POMDP is a critical part of this task, as is the abil-
ity for the system to learn in situ, for which we are look-
ing into Bayesian reinforcement learning techniques. Sec-
ond, from a computer vision perspective, we want to in-
clude more sophisticated models for spatial segmentation
and tracking. Third, from a decision theoretic perspective,
we want to investigate the solution of the POMDP mod-
els to yield policies of action. The POMDP models we are
learning are intractable, but recent advances in approximate
solution techniques promise to yield efficient and accurate
policies [11, 23, 20]. These solution methods will enable
value-directed learning of behavior categories, allowing us
to learn models with only those behaviors that are useful to
the task.

The type of learning we have presented in this paper will
automatically define behaviors based on what goals the sys-
tem has, and the attitude of the user. For example, a partic-
ular handwashing user may only need help remembering to
turn the water off. For this person, only the composite be-
havior of “washing hands” (including soaping, rinsing and
drying), and the primitive behavior of “turning the water
off” need to be recognised. An interesting subject of fu-
ture research is this tradeoff is between the complexity of
the observation function P (O|S) and the complexity of the
task state, Sh. The more complex we make P (O|S), the
less complex the task state needs to be, but the less con-
trol the system will be able to exercise. Investigation of this
tradeoff is an interesting avenue for future research.
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