
A Scene-based Imitation Framework for RoboCup Clients

Kevin Lam and Babak Esfandiari and David Tudino
Department of Systems and Computer Engineering

Carleton University
1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6

babak@sce.carleton.ca

Abstract

We describe an effort to train a RoboCup soccer-playing
agent playing in the Simulation League by capturing data
from existing players, and using it in a real-timescene recog-
nition system. When observing a simple rule-based, stateless
agent, the trained player appears to imitate the behaviour of
the original. Apart from some parameter selections, the pro-
cess requires little human intervention.

Introduction
An agent’s behaviour often consists of its reaction to a se-
quence of inputs over a period of time (Dousson 1996) given
a spatial configuration of surrounding entities (Murakamiet
al. 2003). Scenarioscan then be used to capture such be-
havior.

Our goal is to address the problem of training an agent in
the RoboCup domain, as we believe that it is a good envi-
ronment to experiment with agents that require spatial and
temporal knowledge representation and reasoning. This re-
search was built upon an initial project to develop a human
interface agent to train a RoboCup agent from the actions of
a human player through a GUI (Marlow 2004). The lack of
an efficient human interface and the sheer speed of software
agents are continuing challenges for such an approach.

Instead, our RoboCup agent would learn by observing
another agent and imitating its behaviour. Since there is a
known set of competent teams from the annual Robot World
Cup games, it should ideally be possible to learn from, and
subsequently emulate, existing teams, with as little human
intervention as possible during the training process. Our
goal isn’t to win the competition but to evaluate the feasi-
bility of quickly developing agents through this approach.

Contributions
We have developed an extensible framework for research
in RoboCup agent imitation, which includes the following
components:

• a conversion process for transforming raw RoboCup
player logs into a simple representation for spatial situ-
ations, (or in short ascene)

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

• a set of algorithms to support scene recognition and
matching using a customizablek-nearest-neighbor ap-
proach

• a RoboCup client agent based on this scene recognition
algorithm

We provide results which demonstrate an agent’s (limited)
ability to imitate the high-level behaviour of another agent,
with minimal tweaking or human intervention. These results
demonstrate that it is possible to imitate the behaviour of
simple spatial agents in RoboCup using a simple recognition
algorithm.

The current scene-imitation agent is stateless, which im-
poses limits on the extent of which the algorithm can imitate
other agent behaviours. This work outlines the challenges
that must be addressed first, before taking on the learning of
context and state-based behavior that would further improve
the effectiveness of this approach.

RoboCup
The RoboCup (Robot World Cup) Simulation League
(RoboCup 2006) is a unique testbed for the design of au-
tonomous software agents, where agents represent players
on a soccer team. RoboCup is an attempt to foster AI and
intelligent robotics research — typical RoboCup agents col-
laborate with teammates, use high-level strategies such as
goaltending, defense or offensive plays, and work toward a
team goal while also thwarting the opponents’.

RoboCup is a real-time, dynamic and non-deterministic
environment. There is a wide body of existing research to
draw from, which implies much available data for data min-
ing approaches.

Client agents in RoboCup must deal with temporal events
as well as with an environment consisting of a 2-D space (the
soccer field), with objects and other agents within that space.
During each time period in a game, the server provides
clients with world view and state information (subject to a
noise model), using one ofsee , hear , or sense body
messages. Objects described insee messages may be play-
ers, the ball, goals, or the numerous lines and flags located
on the field. Objects have attributes such as distance, direc-
tion, and identifying labels (e.g. a player’s team and uniform
number).



Clients then send a command to the server in response,
typically to perform an action such as adash , kick , or
turn .

Current Approaches
RoboCup team agents span a variety of platforms, lan-
guages, algorithms and capabilities. Agent behaviours may
be hard-coded such as Krislet (Langner 1999) or specified
in a script or state machine (Dorer 1999), using planning
(Stolzenburget al. 2000) or reinforcement learning and us-
ing more complex architectures such as “layered learning”
(Stone 1997) of skills and strategy.

Existing attempts at generating an agent’s behaviour from
direct observation such as Matsui’s ILP agent (Matsui, In-
uzuka, & Seki 2000) require prior processing including gen-
eration of predicates or other knowledge, and properly clas-
sified examples from which to train. Typically, agent obser-
vation is only used to match previously-generated profiles
(as also used for adversarial plan recognition in (Steffens
2002)).

Initial Experiments
Initial attempts by students in our lab to learn an agent strat-
egy (Krislet’s) using only “off-the-shelf” machine learning
tools demonstrated that learning methods such as decision
tree learning or neural networks are sometimes sufficient to
capture the high-level behaviour of a RoboCup agent, but
with limitations in effectiveness and complexity — much
intervention is still required to prune the learned tree and
provide positive training instances to help the learning pro-
cess.

Methodology
Our objective is to develop a soccer-playing RoboCup agent
with the ability to draw from observations of other RoboCup
agents and use this knowledge to guide its own decision-
making process, all with limited or no domain expert (i.e.
human) intervention. The process includes the following ob-
jectives:

1. Perform data capture from logs generated by existing
RoboCup clients.Logs describe games as seen fromeach
player’spoint of view.

2. Store the captured data in a spatial knowledge representa-
tion format, capturing “scenes” — snapshots of an agents
behaviour at discrete times.

3. Apply a distance calculation algorithm to compare real-
time situations with previously-stored ones.The new
RoboCup agent responds to each situation by using the
same actions that other RoboCup clients used in “similar”
situations.

The resulting agent should exhibit behaviour similarities
with the training agents, which can be measured both qual-
itatively (observed similarity) and by using quantitative sta-
tistical measures.

For now, actions are derived directly from immediate vi-
sual inputs — this implies that the proposed learning pro-
cess cannot account for underlying motivations not directly

tied to the state of the environment, decisions based on
prior memory (though future work will seek to address this),
or agents that rely heavily on inter-player communication.
Ideal candidates for observation are agents that are mostly
stateless and have simple goals tied to the positions of ob-
jects.

Agent Behaviour Modeling
A Scene Representation For RoboCup
A scenerepresents the point of view of a given player and
the associated actions taken by the agent at a given time.
Conveniently, RoboCupsee messages describe this visual
information. Agents send commands back to the server in
response.

Each scenes is an aggregation of the objects (represented
by their type, position, velocity and direction) described in
thesee message and the command sent by the agent during
each time period. An entire game is thus represented as a
collection of scenesS = {S0, S1, S2, · · · , Sn}. (Typically
n = 6000.)

Graphically, a scene depicts the objects surrounding a
RoboCup player, as in Figure 1.

Scenes can be as simple as a logical way of interpret-
ing the existing raw captured log data, or they can actually
be used as a higher-level knowledge representation. Scenes
provide a convenient atomic unit through which data poten-
tially be further manipulated.

Scene Discretization
A level of generalization can be introduced by partitioning
the space surrounding the player into a set of regions. The
field of vision may be divided inton segments, each pie-
shaped segment covering(field of vision/n) degrees of
view. An object can now be described as being located in
any one of thesen “slices”, effectively discretizing the angu-
lar position data — objects can now be described in relative
spatial terms (far left, left, center, right, far right). Distances
may also be discretized. The dashed lines of Figure 1 repre-
sents a possible discretization into(5, 3) regions.

Figure 1: A RoboCup scene (dashed lines represent region-
discretization).

Applying such a discretization of the scene representa-
tions can provide the following advantages:



• Matching of “similar” scenes by matching the regions that
the objects belong to;

• Redundancy of “similar” scenes reduces the number of
total scenes needed in the training set (and consequently,
more diverse scenes can be stored resulting in greater
scene coverage);

• Discretized distance is a distinction already made by the
RoboCup soccer server, and scene-matching algorithms
must take this into account anyway (e.g. a ball cannot be
kicked unless it is considered adjacent to the player);

• Logical predicates can be extracted from examining ob-
jects in regions; this could later be used in a spatial rea-
soning algorithm;

• Configurable trade-off between complexity and accuracy
by changing the number of regions.

Scenes may then be represented as tables, where the re-
gions become rows and columns; each cell would contain a
list of objects contained within it.

Limitations Potential problem areas to consider include:

• introduction of additional bias, through the decision on
the number and boundaries of the regions in a scene;

• edging and boundary issues caused by the artificial seg-
mentation of space, e.g. two close objects may not
be classified into the same region, artificially separating
them;

• conversely, overgeneralization – declaring two or more
scenes to be “similar” when they might in fact describe
dissimilar logical behaviours.

Boundary values should be defined at points that have
semantic meaning, for example server-defined distances
(ballkickable , etc.); these may also be determined ex-
perimentally (Marlow 2004).

Scene Recognition
Given a new situationN (expressed as a scene) and a set of
observed scenesS = {S0, S1, · · · , Sn}, if any sceneSi ≈
N , then the recorded action from that scene can be reused.

Scene Recognition Algorithm
We use ak-nearest-neighbor search to find thek best scene
matches and corresponding actions; these are then evaluated
using a separate action selection algorithm to decide which
action will ultimately be chosen. The scene recognition pro-
cess follows the general algorithm shown below:

load the stored scenes from disk
while(game on):

get new incoming ‘‘see’’ data from server
convert data to scene object N
for each stored scene x:

d = DistanceCalculation(N, x)
S = keep k best results

end loop
a = ActionSelection(S)
send action a to server

end loop

The algorithm relies on two important functions, namely
DistanceCalculation and ActionSelection .
They are described in the following sections.

Distance Calculation
The DistanceCalculation(N, x) function deter-
mines a value of “distance” between two scenes. Since
scenes are collections of multiple objects in space, the ob-
jects are paired (Section ), and their distances are summed.

Continuous distance calculations Objects on the field are
all described with a distancer and a directionθ relative to
the observing agent. This can be represented by a polar co-
ordinateP (r, θ), and distances between similar objects in
two distinct scenes can readily be calculated using the co-
sine law.

c

d

a

b

A B

Figure 2: Two closely-matching scenes.

Discretized distance calculations In the discrete-region
form, object positions are no longer represented by their po-
sitionP (r, θ) but by the(x, y) grid coordinates of the region
in which the object lies (also equivalent to the column and
row positions of the cell when represented as a table), and a
Cartesian coordinate distance may be calculated.

Object Correspondence by Type There are actually nu-
merous differenttypesof objects on the soccer field (ball,
goals, lines, flags, players). There are also subtypes; e.g.
different types of players (teammates and opponents). A dis-
tance between two scenes is thus the sum of the individual
distances between different object types. When there are
more than one object of the same type in a scene, we also
need to ”match” the objects correctly. Consider Figure 2,
which shows two scenesA andB each with two objects.
Assuming the objects in each scene are of the same type,a
matches withc, andb matches withd.

Object Matching The main complexity of the distance
calculation algorithm actually lies in mapping pairs of ob-
jects between scenes when there are more than one object
of the same type in a scene, as in Figure 2. The problem
is that of minimum-weight matching in a bipartite graph,
where the cost function to be minimized is the distance be-
tween each pair of objects. Objects “missing” from one
scene must also be taken into consideration. One approach is
to apply a “penalty” distance for objects in one set that have
no corresponding object in the other. This penalty should
be inversely proportional to the distance; intuitively, this is a
measure of the importance of a missing object.



A solution to this problem is Edmonds’ blossom-
shrinking algorithm (Cook & Rohe 1999) which runs in
polynomial time.

Another possibility is to sort the objects by their distance
to a common reference point (e.g. the player itself); objects
are then paired off and the distances are summed. This is a
simple, but non-optimal heuristic — its flaw is its inability
to distinguish con-cyclic points which are not actually close
to each other. On the other hand, its preference to match-
ing close objects first can help avoid fixating on matching
remote objects with minimal influence on the player’s be-
havior, while leaving closer objects unmatched.

We have implemented both the algorithms above, and a
comparison of their relative effectiveness is discussed in the
Results section.

Object Weighting Finally, different types of objects may
be weighted according to their perceived importance in a
scene. For example, to ignore a set of objects (i.e. lines
on the field may be irrelevant to a given player), weights can
be set to 0.

The distance calculation forn objects present in both
scenes may thus be expressed as:

d(S1, S2) =
∑

i

wi ∗

√∑
j

(xij − yij)2

 (1)

S1 = {x1, x2, · · · , xn},
S2 = {y1, y2, · · · , yn},

i ∈ {objecttypes}

Weights may be derived experimentally or from knowl-
edge of the domain. Weights could also be applied to the
distance of the objects to the player. We are currently exper-
imenting with automatic weight calibration using a genetic
algorithm approach.

Action Selection
The result of thek-nearest-neighbor search is a set ofk
scenes, each a potential match. Each has an associated ac-
tion, (e.g.dash, kick, turn ) and parameters (power,
direction, etc). Whenk > 1, the most common action (ma-
jority vote) is used here.

Parameters must also be chosen for selected actions (e.g.
which direction to kick in and at what strength). The sim-
plest approach would be to just reuse the values originally
stored in the matching scene. Averages could also be taken:
if there aren different instances of akick , the average kick
power and direction could be taken over then results.

A logical approach could be for the agent to attempt to
interpret the stored scene — i.e. was the{kick, turn,
dash } aimed at a particular object? This could be deter-
mined by examining objects located in the scene within the
direction and range of the action. This may not always be
straightforward to detect, since the original agent may have
taken other aspects into account (such as intercepting a mov-
ing object). At least a few degrees of error should also be
allowed to account for noise in the RoboCup data.

Implementation
We developed an implementation of the scene format and a
RoboCup client based on the matching algorithms described
previously. Krislet (Langner 1999) was used as a starting
point. Krislet is coded in Java, is easy to extend, and all
its client-server communications and message parsing func-
tions are already implemented.

To capture logs from existing games, the LogServer proxy
utility (Marlow 2004) is inserted into the communications
path between existing RoboCup agents and the server. We
have verified experimentally that the use of LogServer does
not introduce a “probe effect” in the results.

The captured log files can then be used directly for “con-
tinuous” scene recognition, or be fed to a utility which con-
verts the observations and actions at each given time period
into discrete scenes.

We implemented both continuous-form and discretized-
form variations of the distance calculation algorithm. Each
supports weighting of different object classes. Additionally,
a “random” distance calculation was created which simply
picks any scene at random, and is used to establish a statis-
tical baseline for performance evaluation.

Experimental Results
For testing purposes, we developed a validator class which,
instead of connecting to a RoboCup server, runs the recogni-
tion algorithms against input from a second scene file. This
provides a method for unit testing (testing a scene file against
itself (i.e. the training data)) and cross validation (i.e. use of
a separate test data set). Intuitively, the use of the weights for
objects and the choice of the heuristic-based distance calcu-
lation algorithm could lower unit-testing success rates while
improving prediction accuracy. However, low unit-testing
rates combined with low prediction accuracy might be a sign
of an issue with the correctness of the algorithms.

Statistics kept include the algorithm’s average execution
time and the number of “correct” generated actions (where
chosen actions match with the stored actions).

For our experiments, we first selected three different
RoboCup agents of varying complexity:

• Krislet (Langner 1999), which uses simple decision-tree
logic to express its behaviour, namely that the agent will
always search for the ball, attempt to run towards it, and
then attempt to kick it toward the goal.

• NewKrislet (Huang & Swenton 2003), which uses a state
machine model to express goals; we consider a specific
team implementation called the AntiSimpleton, which
uses a simple attacker/defender strategy. The Attacker
waits near the midfield line until the defenders pass the
ball toward it, then attempts to score a goal (much like
Krislet) before returning to its home position to await
more passes from Defenders.

• CMUnited (Stone, Veloso, & Riley 1999), a RoboCup
Champion team which uses a number of strategies includ-
ing inter-agent communications, formation strategies, and
a layered learning architecture that provides the player
with skills such as passing and dribbling. This team is



chosen not because of any realistic hope of properly emu-
lating the team but to determine how far we are from such
a goal.

Teams consisted of five players each. Log files were col-
lected for one player per team. Log of several full games
were translated into stored-scene files, with a region dis-
cretization applied using a fixed size of(3, 5) rows and
columns.

Results
We measure the effects of varying the distance calcula-
tion algorithm, use of continuous versus discrete distance
information, varying object weights (w ∈ {0, 1} only at
this point), scene selection algorithm andk values (k ∈
{1, 5, 15} only).

The figures show both unit-test and predictive accuracy
success rates. The unit-tests help us evaluate the intrinsic
correctness of our algorithms, and to what extent our simpli-
fying assumptions are viable.

Object Weight Tests We tested the predictive power of
each class of objects on their own and in combination with
others (using the 1-nearest neighbor discrete distance calcu-
lation algorithm). Figure 3 shows the results from the unit
tests and predictive accuracy tests for each of the three scene
sets.

Success rates with object classes vary wildly (some no
better than random selection) suggesting a strong correlation
to the original agent’s decision-making. As more objects are
considered, data overfitting begins to occur.

The Krislet test shows a significant spike in predictive ac-
curacy when considering just the ball, and a smaller spike
when considering the ball and goal. This is consistent with
Krislet’s known behaviour. This relationship is clearly seen
from the statistical data. NKAS shows similar trends.

With CMUnited, no one object grouping or set of objects
seems most important. The highest success rate seems to
come from considering the positions of players or flags —
this may be consistent with the team’s known reliance on
formations and passing.

Some objects, such as the ball and goal, have obvious im-
portance to all three of the observed teams, both because
they are distinct (there can only be one ball, and one goal
per team) and because of their known importance in soccer.

Distance Calculation Algorithm Tests Figure 4 shows
the results from each calculation algorithm for each of the
three agents observed. Our heuristic-based distance calcu-
lation algorithm (matching objects in sorted order of their
distance to the player), in both continuous and discrete ver-
sions, is pitted against Edmonds’ “Blossom” bipartite graph
matching algorithm. The “RandomDistance” calculation is
used to establish a floor by which to compare the other algo-
rithms.

Since the main difference between the distance calcula-
tion algorithms is in their object matching heuristic, in this
evaluation phase it is important to give equal weight to all
the objects, especially to flags, lines and players, since they
are those types of more than one object. This will hurt the

predictive accuracy rates: we discussed in the previous sub-
section the much higher importance of the ball and the goal
to most players. So here, in the possible absence of good
predictive accuracy rates, we are mostly interested in com-
paring the unit-testing results.

Perhaps surprisingly, the bipartite matching algorithm and
the heuristic alternative described earlier in the paper display
fairly similar success rates. It is then worth considering that
with the better speed of the heuristic, more scenes could be
examined within a cycle and the performance could there-
fore be better. This could be even more the case with the dis-
crete version. However we think that the bulk of further im-
provement in performance will have to be found elsewhere,
in particular by considering state and context information.

Finally, we consider thek value and the selection algo-
rithms used to choose actions. Predictably, the accuracy on
the training data is reduced ask increases, since this has the
effect of matching scenes that have less and less similarity.

Combined Results The best overall combinations of pa-
rameters are listed for each team in table 1.

These combinations allow the trained agent to imitate the
Krislet client and many aspects of the NewKrislet agent
with reasonable success. The Krislet imitation successfully
chases after the ball and kicks it to the goal. This empha-
sizes the importance of proper object weightings. During
one demonstration, the Krislet client was placed in com-
petition with its imitation; from a spectator’s perspective,
the two agents were almost indistinguishable (Krislet was
slightly faster).

In the case of the NewKrislet agent (and the particular
implementation of the AntiSimpleton), much of the client’s
behaviour was observed correctly. Where the algorithms fail
is in determining when certain behaviours (e.g. run home
and wait) should be taken, which was a function not only of
the object positions but also of the agent’s internal state.

Using the CMUnited data files, there was little resem-
blance to the overall behaviour with any algorithm, though
the agent would occasionally exhibit some simple be-
haviours such as running toward the ball or occasionally
kicking it, seemingly at random. This was expected, since
CMUnited contains logic which considers far more than
simply the positions of objects on the field.

Discretized scene matching seems to lower the predictive
power and tended to cause more instances of agents “getting
stuck” – possibly corresponding to cell boundaries, such as
a player trying to kick the ball when it is not quite close
enough to successfully do so.

Limitations and Future Work
The current scene recognition framework is subject to the
following limitations:

• Does not consider some visual information such as object
velocity and direction;

• Does not take into account the importance of objects
based on their distance to the player;

• Only uses boolean weight allocation: it’s currently an



Figure 3: Varying object weights on Krislet, NKAS-Attacker and CMUnited.

Figure 4: Varying Distance Calculation Method on Krislet, NKAS and CMUnited.

”all-or-nothing” approach when considering the impor-
tance of various objects;

• Does not consider non-visual information such as body
state, game state, or memory of previous conditions.

• Human optimization required to select appropriate object
parameters (weights, etc.)
Future work will address a number of the above limita-

tions, including the following:
• Detection of “stateful behaviour” by examining the ob-

served data and looking for scenes with the same inputs
yet different outputs, i.e.∃x1, x2|S(x1) = S(x2) but
a(x1) 6= a(x2). Large numbers of such scenes would
suggest different states influencing the outputs.

• State-based behaviour could be modeled through the ap-
plication of Hidden Markov Models or a similar state-
machine learning approach.

• Automating some or all of the parameter adjustment pro-
cess, reducing the current dependence on human observa-
tion and evaluation of the imitative agent.

• Support for a memory of previous states or objects previ-
ously seen but now out of sight, or projections of future
states given object position and velocities.

• Higher-level scene representation using spatial logic
primitives: this should allow a more compact and expres-
sive representation, easier verification and validation, and
a building-block for capturing tactical behavior.

• Looking beyond individual scenes, toward finding pat-
terns or trends over sequences of scenes —the agent

should also be able to trigger high-level actions that oc-
cur over a sequence of time.

Conclusions
The scene recognition framework and algorithms described
here represent some initial steps toward an automated pro-
cess for observation and imitation of other agents.

Our results suggest that it is possible to learn the be-
haviour of a RoboCup client if its behaviour can be captured
in a simple logical construct such as a decision tree.

The current stateless, single-layered imitative agent is
able to almost perfectly copy the behaviour of a stateless,
single-layered agent (Krislet) and is fairly representative of
at least some of the behaviours of more complex clients.
These results are generally encouraging and suggest that
with further development (including a layer of base logic
and basic skills, the ability to internally represent different
agent states, etc.) it may be possible to further increase the
accuracy of the imitative agent.

References
Cook, W., and Rohe, A. 1999. Computing minimum-
weight perfect matchings.INFORMS Journal on Comput-
ing 11:138–148.

Dorer, K. 1999. Extended behavior networks for the mag-
mafreiburg soccer team. In Coradeschi, S.; Balch, T.;
Kraetzschmar, G.; and Stone, P., eds.,RoboCup-99 Team
Descriptions for the Simulation League. Stockholm, Swe-
den: Linkoping University Press. 79–83.



Table 1: Best Statistical Results for Agent Imitation

Distance Calculation Object Weights k Nearest Neighbors
Krislet Discrete (93%) ball and goal k = 1
NewKrislet CellBallGoal (70%) ball and goal k = 1 or k = 5
CMUnited Continuous or Discrete (44%) ball, or flags, lines, players k = 5

Dousson, C. 1996. Alarm driven supervision for telecom-
munication networks : II- On-line chronicle recognition.
Annals of Telecommunications51(9-10):501–508. CNET,
France Telecom.
Huang, T., and Swenton, F. 2003. Teaching undergrad-
uate software design in a liberal arts environment using
robocup. InITiCSE ’03: Proceedings of the 8th annual
conference on Innovation and technology in computer sci-
ence education, 114–118. New York, NY, USA: ACM
Press.
Langner, K. 1999. The Krislet Java Client. last ac-
cessed April 2006,http://www.ida.liu.se/ ˜ frehe/
RoboCup/Libs/libsv5xx.html#Krislet .
Marlow, P. 2004. A process and tool-set for the develop-
ment of an interface agent for use in the robocup environ-
ment. Master’s thesis, Carleton University.
Matsui, T.; Inuzuka, N.; and Seki, H. 2000. A pro-
posal for inductive learning agent using first-order logic. In
Cussens, J., and Frisch, A., eds.,Proceedings of the Work-
in-Progress Track at the 10th International Conference on
Inductive Logic Programming, 180–193.
Murakami, Y.; Ishida, T.; Kawasoe, T.; and Hishiyama, R.
2003. Scenario description for multi-agent simulation. In
Proceedings of the second international joint conference
on Autonomous agents and multiagent systems, 369–376.
ACM Press.
RoboCup. 2006. Robocup official site.http://www.
robocup.org .
Steffens, T. 2002. Feature-based declarative opponent-
modelling in multi-agent systems. Master’s thesis, Institute
of Cognitive Science Osnabruck.
Stolzenburg, F.; Obst, O.; Murray, J.; and Bremer, B. 2000.
Spatial agents implemented in a logical expressible lan-
guage. In Veloso, M.; Pagello, E.; and Kitano, H., eds.,
RoboCup-99: Robot Soccer WorldCup III, volume 1856.
Springer.
Stone, P.; Veloso, M.; and Riley, P. 1999. The CMUnited-
98 champion simulator team. In Asada, M., and Kitano,
H., eds.,RoboCup-98: Robot Soccer World Cup II. Berlin:
Springer Verlag.
Stone, P. 1997. Layered learning in multiagent systems. In
AAAI/IAAI, 819.
Xie, M.; Muhammad, A.; and Zhang, Z.-E. 2004.Final
Project Report: Zed Robocup Soccer Client. SYSC 5103
Software Agents course project report, Carleton University.


