A Decision-Theoretic Model of Assistance

Alan Fern and Sriraam Natarajan and Kshitij Judah and Prasad Tadepalli
School of EECS, Oregon State University

Abstract

There has been a growing interest in intelligent assis-
tants for a variety of applications from organizing tasks
for knowledge workers to helping people with demen-
tia. In this paper, we present and evaluate a decision-
theoretic framework that captures the general notion of
intelligent assistance. The objective is to observe a goal-
directed agent and to select assistive actions in order to
minimize the overall cost. We formulate the problem
as an assistant POMDP where the hidden state corre-
sponds to the agent’s unobserved goals. This formu-
lation allows us to exploit (partial) domain models for
both estimating the agent’s goals and selecting assistive
action. In addition, the formulation naturally handles
uncertainty, varying action costs, and customization to
specific agents via learning. We argue that in many do-
mains myopic heuristics will be adequate for selecting
actions in the assistant POMDP and present two such
heuristics—one based on MDP planning, and another
based on policy rollout. We evaluate our approach in
two domains where human subjects perform tasks in
game-like computer environments. The results show
that the assistant substantially reduces user effort with
only a modest computational effort.

I ntroduction

The development of intelligent computer assistants has
tremendous impact potential across many application do-
mains. A variety of Al techniques have been used for this
purpose in domains such as assistive technologies for the
disabled (Boger et al. 2005) and desktop work management
(CALO 2003). However, most of this work has been fine-
tuned to the particular application domains of interest. In
this paper, we describe and evaluate a more comprehensive
framework for intelligent assistants that captures and gener-
alizes previous formulations.

We consider a model where the intelligent assistant ob-
serves a goal-oriented agent and must select assistive ac-
tions in order to best help the agent achieve its goals. To
perform well the assistant must be able to accurately and
quickly infer the goals of the agent and reason about the util-
ity of various assistive actions toward achieving the goals.
In real applications, this requires that the assistant be able
to handle uncertainty about the environment and agent, to
reason about varying action costs, to handle unforeseen sit-
uations, and to adapt to the agent over time. Here we con-
sider a decision-theoretic model, based on partially observ-
able Markov decision processes (POMDPs), which naturally

Copyright (© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

handles these features, providing a formal basis for design-
ing robust intelligent assistants.

The first contribution of this work is to formulate the prob-
lem of selecting assistive actions as an assistant POMDP,
which jointly models the application environment and the
agent’s hidden goals. A key feature of this model-based ap-
proach is that it explicitly reasons about models of the envi-
ronment and agent, which provides the potential flexibility
for assisting in ways unforeseen by the developer. However,
solving for such policies is typically intractable and we must
rely on approximate solutions.

A second contribution of this work is to suggest an ap-
proximate solution approach that we argue is well suited to
the assistant POMDP in many application domains. The
approach is based on explicit goal estimation and myopic
heuristics for online action selection. For goal estimation,
we propose a model-based bootstrapping mechanism that is
important for the usability of an assistant early in its lifetime.
For action selection, we propose two myopic heuristics, one
based on solving a set of derived assistant MDPs, and an-
other based on the simulation technique of policy rollout.

Our third contribution is to evaluate our framework in two
novel game-like computer environments, one a resource col-
lection domain where the assistant acts as a “door man”, and
the second a kitchen domain where the assistant can assist
in preparing meals. Our experiments on twelve human sub-
jects indicate that in both environments the proposed assis-
tant framework is able to significantly decrease user effort.

The remainder of this paper is organized as follows. In
the next section, we introduce our formal problem setup,
followed by a definition of the assistant POMDP. Next, we
present our approximate solution technique based on goal
estimation and online action selection. Finally we give an
empirical evaluation of the approach in two domains and
conclude with a discussion of related and future work.

Problem Setup

We refer to the entity that we are attempting to assist
as the agent. We model the agent’s environment as a
Markov decision process (MDP) described by the tuple
(W,A, A", T,C,I), where W is a finite set of world states,
A is a finite set of agent actions, A’ is a finite set of assis-
tant actions, and T'(w, a, w') is a transition distributions that
represents the probability of transitioning to state w’ given
that action a € A U A’ is taken in state w. We will some-
times use T'(w,a) to denote a random variable distributed
as T'(w,a,-). We assume that the assistant action set al-
ways contains the action noop which leaves the state un-
changed. The component C' is an action-cost function that

maps W x (AU A') to real-numbers, and I is an initial state
distribution over W.

We consider an episodic setting where at the beginning of
each episode the agent begins in some state drawn from T
and selects a goal from a finite set of possible goals G. The
goal set, for example, might contain all possible dishes that
the agent might prepare. If left unassisted the agent will exe-
cute actions from A until it arrives at a goal state upon which
the episode ends. When the assistant is present it is able to
observe the changing state and the agent’s actions, but is un-
able to directly observe the agent’s goal. At any point along
the agent’s state trajectory the assistant is allowed to exe-
cute a sequence of one or more actions from A’ ending in
noop, after which the agent may again perform an action.
The episode ends when either an agent or assistant action
leads to a goal state. The cost of an episode is equal to the
sum of the costs of the individual actions executed by the
agent and assistant during the episode. Note that the avail-
able actions for the agent and assistant need not be the same
and may have varying costs. Our objective is to minimize
the expected total cost of an episode.

More formally, we will model the agent as an unknown
stochastic policy w(a|w, g) that gives the probability of se-
lecting action a € A given that the agent has goal g and is
in state w. The assistant is a history-dependent stochastic
policy 7'(a|w, t) that gives the probability of selecting ac-
tiona € A’ given world state w and the state-action trajec-
tory t observed starting from the beginning of the trajectory.
It is critical that the assistant policy depend on ¢, since the
prior states and actions serve as a source of evidence about
the agent’s goal, which is critical to selecting good assistive
actions. Given an initial state w, an agent policy «, and as-
sistant policy =’ we let C'(w, g, 7, w') denote the expected
cost of episodes that begin at state w with goal g and evolve
according to the following process: 1) execute assistant ac-
tions according to «’ until noop is selected, 2) execute an
agent action according to m, 3) if g is achieved then termi-
nate, otherwise go back to step 1.

In this work, we assume that we have at our disposal the
environment MDP and the set of possible goals G. Our ob-
jective is to select an assistant policy 7' that minimizes the
expected cost given by E[C(I,Gy,,n")], where Gy is an
unknown distribution over agent goals and 7 is the unknown
agent policy. For simplicity we have assumed a fully ob-
servable environment and episodic setting, however, these
choices are not fundamental to our framework.

The Assistant POMDP

POMDPs provide a decision-theoretic framework for de-
cision making in partially observable stochastic environ-
ments. A POMDP is defined by a tuple (S, A, T, C, I, O, p),
where S is a finite set of states, A is a finite set of actions,
T(s,a,s') is a transition distribution, C is an action cost
function, | is an initial state distribution, O is a finite set of
observations, and w(o|s) is a distribution over observations
o € O given the current state s. A POMDP policy assigns a
distribution over actions given the sequence of preceding ob-
servations. It is often useful to view a POMDP as an MDP
over an infinite set of belief states, where a belief state is

simply a distribution over S. In this case, a POMDP policy
can be viewed as a mapping from belief states to actions.
Actions can serve to both decrease the uncertainty about the
state via the observations they produce and/or make direct
progress toward goals.

We will use a POMDP model to address the two main
challenges in selecting assistive actions. The first challenge
is to infer the agent’s goals, which is critical to provide good
assistance. We will capture goal uncertainty by including the
agent’s goal as a hidden component of the POMDP state. In
effect, the belief state will correspond to a distribution over
possible agent goals. The second challenge is that even if
we know the agent’s goals, we must reason about the uncer-
tain environment, agent policy, and action costs in order to
select the best course of action. Our POMDP will capture
this information in the transition function and cost model,
providing a decision-theoretic basis for such reasoning.

Given an environment MDP (W, A, A", T, C, I), a goal
distribution G, and an agent policy = we now define the
corresponding assistant POMDP.

e The state space is W x G so that each state is a pair (w, g)
of a world state and agent goal.

e The initial state distribution I’ assigns the state (w,g)
probability I(w) - Go(g), which models the process of
selecting an initial state and goal for the agent at the be-
ginning of each episode.

e The action set is equal to the assistant actions A’, reflect-
ing that assistant POMDP will be used to select actions.

e The transition function 7" assigns zero probability to any
transition that changes the goal component of the state,
i.e., the assistant cannot change the agent’s goal. Other-
wise, for any action a except for noop, the state transi-
tions from (w, g) to (w', g) with probability T'(w, a, w").
For the noop action, T" simulates the effect of execut-
ing an agent action selected according to w. That is,
T'((w, g),noop, (w', g)) is equal to the probability that
T(w,m(w,g)) =w'".

e The cost model C” reflects the costs of agent and assistant
actions in the MDP. For all actions a except for noop we
have that C'((w, g),a) = C(w,a). Otherwise we have
that C'((w, g), noop) = E[C(w, a)], where a is a random
variable distributed according to «(-|w, g). That is, the
cost of a noop action is the expected cost of the ensuing
agent action.

e The observation distribution p' is deterministic and re-
flects the fact that the assistant is only able to directly
observe the world state and actions of the agent. For the
noop action in state (w, g) leading to state (w', g), the ob-
servation is (w’, a) where a is the action executed by the
agent immediately after the noop. For all other actions
the observation is equal to the W component of the state,
ie. p'(w'|(w',g)) = 1. For simplicity of notation, it is
assumed that the W component of the state encodes the
preceding agent or assistant action and thus the observa-
tions reflect both world states and actions.

Here we again assume an episodic objective where each
episode begins by drawing an initial POMDP state and ends

when arriving in a state (w, g) such that w satisfies goal g.
A policy #' for the assistant POMDP maps state-action se-
quences to assistant actions. For the assistant POMDP the
expected cost of a trajectory under 7’ is equal to our objec-
tive function E[C(I, Gy, m,n')] from the previous section.
Thus, solving for the optimal assistant POMDP policy yields
an optimal assistant. However, in our problem setup the as-
sistant POMDP is not directly at our disposal as we are not
given w or Go. Rather we are only given the environment
MDP and the set of possible goals. As described in the next
section our approach will approximate the assistant POMDP
by estimating 7 and Gy based on observations and select as-
sistive actions based on this model.

Selecting Assistive Actions

In this section, we first describe our approach to approxi-
mating the assistant POMDP. Next, we present our assistive
action selection mechanisms.

Approximating the Assistant POM DP. One approach to
approximating the assistant POMDP is to observe the agent
acting in the environment, possibly while being assisted, and
to learn the goal distribution Go and policy 7. This can be
done by storing the goal achieved at the end of each episode
along with the set of world state-action pairs observed for
the agent during the episode. The estimate of G can then
be based on observed frequency of each goal (perhaps with
Laplace correction). Likewise, the estimate of w(a|w, g) is
simply the frequency for which action a was taken by the
agent when in state w and having goal g. While in the limit
these estimates will converge and yield the true assistant
POMDRP, in practice convergence can be slow, particular for
. This slow convergence can lead to poor performance in
the early stages of the assistant’s lifetime. To alleviate this
problem we propose a model-based approach to bootstrap
the learning of «.

In particular, we assume that the agent is reasonably close
to being optimal. This is not an unrealistic assumption in
many application domains that might benefit from intelli-
gent assistants. There are many tasks, for example, that are
conceptually simple for humans, yet they require substan-
tial effort to complete. Given this assumption, we will ini-
tialize the estimate of the agent’s policy to a prior that is
biased toward more optimal agent actions. To do this we
will consider the environment MDP with the assistant ac-
tions removed and solve for the Q-function Q(a, w, g). The
Q-function gives the expected cost of executing agent action
a in world state w and then acting optimally to achieve goal
g using only agent actions. We then define the prior over
agent actions via the Boltzmann distribution. In our experi-
ments, we found that this prior provides a good initial proxy
for the actual agent policy, allowing for the assistant to be
immediately useful.We update this prior based on observa-
tions to better reflect the peculiarities of a given agent.

Computationally the main obstacle to this approach is
computing the Q-function, which need only be done once
for a given application domain. A number of algorithms
exist to accomplish this including the use of factored MDP
algorithms (Boutilier, Dean, & Hanks 1999), approximate

solution methods (Boutilier, Dean, & Hanks 1999; Guestrin
et al. 2003), or developing domain specific solutions.

Action Selection Overview. Let O; = oy, ...,0; be the
sequence of observations gathered from the beginning of the
current trajectory until timestep ¢. Each observation pro-
vides the current world state and the previously selected ac-
tion (by either the assistant or agent). Given O and an (ap-
proximate) assistant POMDP our goal is to select the best
assistive action according a policy 7' (O;).

Unfortunately, exactly solving the assistant POMDP will
be intractable for all but the simplest of domains. This has
led us to take a heuristic action selection approach. To mo-
tivate the approach, it is useful to consider some special
characteristics of the assistant POMDP. Most importantly,
the belief state corresponds to a distribution over the agent’s
goal. Since the agent is assumed to be goal directed, the ob-
served agent actions provide substantial evidence about what
the goal might and might not be. In fact, even if the assistant
does nothing the agent’s goals will often be rapidly revealed.
This suggests that the state/goal estimation problem for the
assistant POMDP may be solved quite effectively by just
observing how the agent’s actions relate to the various pos-
sible goals. This also suggests that in many domains there
will be little value in selecting assistive actions for the pur-
pose of gathering information about the agent’s goal. This
suggests the effectiveness of myopic action selection strate-
gies that avoid explicit reasoning about information gather-
ing, which is one of the key POMDP complexities compared
to MDPs. We note that in some cases, the assistant will have
pure information-gathering actions at its disposal, e.g. ask-
ing the agent a question. While we do not consider such
actions in our experiments, as mentioned below, we believe
that such actions can be handled via shallow search in belief
space in conjunction with myopic heuristics. With the above
motivation, our action selection approach alternates between
two operations.

Goal Estimation. Given an assistant POMDP with agent
policy 7 and initial goal distribution G, our objective is
to maintain the posterior goal distribution P(g|O;), which
gives the probability of the agent having goal g conditioned
on observation sequence O;. Note that since the assistant
cannot affect the agent’s goal, only observations related to
the agent’s actions are relevant to the posterior. Given the
agent policy m, it is straightforward to incrementally update
the posterior P(g|O;) upon each of the agent’s actions. At
the beginning of each episode we initialize the goal distribu-
tion P(g|Oo) to Go. On timestep ¢ of the episode, if o, does
not involve an agent action, then we leave the distribution
unchanged. Otherwise, if o; indicates that the agent selected
action a in state w, then we update the distribution according
to P(g|0:) = (1/Z) - P(g|0¢—1) - n(a|w, g), where Z is a
normalizing constant. That is, the distribution is adjusted to
place more weight on goals that are more likely to cause the
agent to execute action a in w.

The accuracy of goal estimation relies on how well the
the policy = provided by the assistant POMDP reflects the
true behavior of the agent. As described above, we use a
model-based approach for bootstrapping our estimate of =
and update this estimate at the end of each episode. Provided

that the agent is close to optimal, as in our experimental do-
mains, this approach can lead to rapid goal estimation, even
early in the lifetime of the assistant.

We have assumed for simplicity that the actions of the
agent are directly observable. In some domains, it is more
natural to assume that only the state of the world is observ-
able, rather than the actual action identities. In these cases,
after observing the agent transitioning from w to w’ we can
use the MDP transition function 7' to marginalize over pos-
sible agent actions yielding the update,

P(g|0s) = (1/2) - P(g|0s-1) - Y m(alw, 9)T (w, a,w').
a€A

Action Selection. Given the assistant POMDP M and the
current distribution over goals P(g|O;), we now address the
problem of selecting an assistive action. For this purpose,
we introduce the idea of an assistant MDPrelative to a goal
g and M, which we will denote by M (g). Each episode in
M (g) evolves by drawing an initial world state and then se-
lecting assistant actions until a noop, upon which the agent
executes an action drawn from its policy for achieving goal
g. An optimal policy for M (g) represents the best course of
assistive action assuming that the agent is acting to achieve
goal g. We will denote the Q-function of M(g) by Q,(w, a),
which is the expected cost of a executing action a and then
following the optimal policy.

Our first myopic heuristic is simply the expected Q-value
of an action over assistant MDPs. In particular, the heuristic
value for assistant action a in state w given previous obser-
vations Oy is given by,

Hl(’l.l],a, Ot) = ZQg(waa)) P(g|0t)
9

and we select actions greedily according to H;. Intuitively
H,(w, a,0;) measures the utility of taking an action under
the assumption that all goal ambiguity is resolved in one
step. Thus, this heuristic will not select actions for purposes
of information gathering. This heuristic will lead the assis-
tant to select actions that make progress toward goals with
high probability, while avoiding moving away from goals
with high probability. When the goal posterior is highly am-
biguous this will often lead the assistant to select noop.

The primary computational complexity in computing H
is to solve the assistant MDPs for each goal. Technically,
since the transition functions of the assistant MDPs de-
pend on the approximate agent policy 7, we must re-solve
each MDP after updating the 7 estimate at the end of each
episode. However, using incremental dynamic program-
ming methods such as prioritized sweeping (Moore & Atke-
son 1993) can alleviate much of the computational cost. In
particular, before deploying the assistant we can solve each
MDP offline based on the default agent policy given by the
Boltzmann bootstrapping distribution described earlier. Af-
ter deployment, prioritized sweeping can be used to incre-
mentally update the Q-value functions based on the learned
refinements we make to .

When it is not practical to solve the assistant MDPs, we
may resort to various approximations. One such approxima-
tion, which we will evaluate in our experiments, uses the

simulation technique of policy rollout (Bertsekas & Tsit-
siklis 1996) to approximate Q4(w, a) in the expression for
Hy. This is done by first simulating the effect of tak-
ing action a in state w and then using 7 to estimate the
expected cost for the agent to achieve g from the result-
ing state. That is, we approximate Q,(w,a) by assum-
ing that the assistant will only select a single initial ac-
tion followed by only agent actions. More formally, let
Cn(m,w, g) be a function that simulates n trajectories of 7
achieving the goal from state w and then averaging the tra-
jectory costs. Our second heuristic Ha(w, a, Oy) is identical
to Hq(w,a, O;) except that we replace Q,(w, a) with the
expectation >, T'(w, a,w’) - C(m,w’, g).

Finally, we note that in cases where it is beneficial to
explicitly reason about information gathering actions, it is
straightforward to combine these myopic heuristics with
shallow search in belief space of the assistant MDP. One
approach along these lines is to use sparse sampling trees
(Kearns, Mansour, & Ng 1999) where myopic heuristics are
used to evaluate the leaf nodes.

Experimental Results

In this section, we describe the results of user studies in two
domains. Studies were conducted on 12 human subjects,
where they were asked to achieve a given goal, which is hid-
den from the assistant. This particular protocol was chosen
rather than letting the users choose their own goals to pre-
vent them from changing their goals in mid-course, a be-
havior which was observed in earlier informal studies. The
subject’s and the assistant’s actions were recorded. The ra-
tio of the cost of achieving the goal with the assistant’s help
to the optimal cost without the assistant was calculated and
averaged over the multiple trials for each user.

Grid World Domain

In the grid domain, there is an agent and a set of possible
goals such as collect wood, food and gold. Some of the grid
cells are blocked. Each cell has four doors and the agent has
to open the door to move to the next cell (see Figure 1). The
door closes after one time-step so that at any time only one
door is open. The goal of the assistant is to help the user
reach his goal faster by opening the correct doors.

Figure 1: Grid Domain. The agent’s goal is to fetch a re-
source. The grid cells are separated by doors that must be
opened before passing through.

A state is a tuple (s, d), where sstands for the the agent’s
cell and d is the door that is open. The actions of the agent
are to open door and to move in each of the 4 directions or
to pickup whatever is in the cell, for a total of 9 actions. The
assistant can open the doors or perform a noop (5 actions).
Since the assistant is not allowed to push the agent through
the door, the agent’s and the assistant’s actions strictly alter-
nate in this domain. There is a cost of —1 if the user has
to open the door and no cost to the assistant’s action. The
trial ends when the agent picks up the desired object. Ex-
periments were conducted on 12 human subjects who are
all graduate students in computer science. In each trial, the
system chooses a goal and one of the two action-selection
heuristics H; or H» at random. The user is shown the goal
and he tries to achieve it, always starting from the center
square. After every user’s action, the assistant opens a door
or does nothing. The agent may pass through the door or
open a different door. After the user achieves the goal, the
trial ends, and a new one begins. The assistant then uses the
user’s trajectory to update the agent’s policy.

User Roll Out of User policies Solving Assistant MDP
Total User Average (Ny, / Total User | Average (N, /
Actions | Actions Nra) Actions | Actions | Ny,)
1 59 30 0.5142 £0.114 67 32 0.47 £0.17
2 79 34 0.433+0.1211 34 16 0.45 +0.23
3 44 16 0.368 +0.077 79 40 0.512+0.18
4 56 31 0.5435 +0.189 54 32 0.608 +0.13
5 60 30 0.5+ 0.177 60 32 0.534 £0.14
6 69 28 0.398 £0.115 83 38 0.4525 £0.176
7 48 20 0.4219 +0.151 85 44 0.5197 +0.209
8 65 26 0.3912 + 0.1156 111 50 0.447 £0.16
9 57 27 0.4944 +0.23 62 31 0.4916 +0.14
10 71 32 0.46 +0.117 88 45 0.5083 +0.158
11 64 31 0.49+0.19 78 36 0.46+0.15
12 78 34 0.455 +0.168 81 39 0.484 +0.169
Total 750 339 0.452 + 0.055 882 435 0.493 + 0.046

Figure 2: Results of user studies in the Grid World Domain.

The results of the user studies for the grid world are pre-
sented in Figure 2. The table presents the total optimal costs
(number of actions) for all trials without the assistant, and
the costs with the assistant, and the average of percentage
cost savings over all trials. As can be seen, both the meth-
ods reduce the cost to less than 50%. An omniscient assis-
tant who knows the user’s goal reduces the cost to 22%. This
is not 0 because the first door is always opened by the user.
In our experiments, if we do not count the user’s first action,
the cost reduces to 35%. This suggests that the assistant was
very effective in reducing the cost for the user.?.

Another interesting observation from the user study is that
there are individual differences among the users. Some users
always prefer a fixed path to the goal regardless of the assis-
tant’s actions. Some users are more flexible. This is the

*Human subject data is costly and we were unable to collect
both “unassisted” and “assisted” data. We collected “assisted” hu-
man data and compared to the optimal “unassisted” policy, which
gives a worst-case measure of assistant usefulness

reason why the ratios in the table are not the same for all the
users. From the survey we conducted at the end of the ex-
periment, we learned that one of the features that the users
liked was that the system was tolerant to their choice of sub-
optimal paths. Indeed, the data reveals that the system was
able to reduce the costs by approximately 50% even when
the users chose suboptimal trajectories.

Kitchen Domain

In the kitchen domain, the goal of the agent is to cook a
dish. There are two shelves with 3 ingredients each. Each
dish has a recipe, represented as a partially ordered plan.
E.g., the ingredients can be fetched in any order, but should
be mixed before they are heated. The applet on the left of
Figure 3 shows the interface and the applet on the right gives
the recipe. The bottom frame shows the latest set of actions
that the assistant has taken. The shelves have doors that need
to be open to fetch ingredients. In the figure, door 1 is open
which is indicated by the darkened rectangle. At any instant,
only one door can be open. Upon fetching an ingredient,
the agent has to pour the ingredient into the bowl and then
follow the recipe.

o

| o
. i el
. [l [[N | e I HIR I 008 I 000K l‘ o

Figure 3: The kitchen domain. The user is to prepare the
dishes described in the recipes on the right. The assistant’s
actions are shown in the bottom frame.

There are 7 different recipes to prepare. The state in this
domain consists of the contents in the bowl, the door that
is open, the mixing state and the temperature state of the
bowl (heat/bake). The user’s actions are: open the doors,
fetch the ingredients, pour them into the bowl, mix, heat
and bake the contents of the bowl. In addition, the user can
replace an ingredient back to the shelf from which it was
taken when the assistant fetches a wrong ingredient. The
assistant can perform all the actions of the user except to
pour the ingredients into the bowl or replace an ingredient
back to the shelf. There is a cost of —1 for every non-pour
user action.

Experiments were conducted on 12 human subjects. Un-
like in the grid domain, here it is not necessary for the as-
sistant to wait at every alternative time step. The assistant
continues to act until the noop becomes the best action ac-
cording to the action selection heuristic, and then the user
takes an action. After the trial ends successfully, the assis-
tant would use the trajectory to update the user’s policy.

User Roll Out of User policies Approx Assistant MDP solver
Total User Average (Ny, / Total User | Average (Ny,/
Actions | Actions Nra) Actions | Actions | Ny,)
1 109 59 0.543 £0.02 100 60 0.6 +0.056
2 90 54 0.6 £0.058 107 60 0.561 +0.05
3 111 60 0.54 £0.033 73 43 0.588 + 0.058
4 99 58 0.588 +0.03 104 57 0.55 +0.04
5 74 41 0.55 + 0.055 102 61 0.6 +0.064
6 125 71 0.576 +0.086 165 97 0.588 +0.06
7 99 62 0.633£0.10 38 26 0.70 £0.09
8 66 43 0.65 +0.0525 102 61 0.597 +0.05
9 99 55 0.56 +0.06 103 61 0.59 +0.063
10 93 59 0.635 +0.065 101 58 0.574 +0.062
11 114 64 0.564 +0.074 94 54 0.574 £0.0421
12 104 62 0.616 +£0.116 85 53 0.62 +0.04
Total | 1183 688 0.588 +0.038 1174 691 0.595 +0.038

Figure 4: Results of user studies in the Cooking Domain.
The cost for the user is the number of the non-pour actions
in the plan.

The results are shown in Figure 4. Similar to the other
domain, the total cost of user’s optimal policy, the total cost
when the assistant is present, and the average ratio of the two
are presented. There are no significant differences between
the two methods of action selection.? The assistant reduces
the number of user’s actions to 60% in this domain. The
performance was lower here than in the first domain because
most of the recipes shared the same ingredients. Moreover,
since there is a cost for fetching the wrong ingredient (since
the human has to put it back) the assistant prefers to execute
a noop rather than fetching a most likely ingredient.

Related Work

Our work is inspired by the growing interest in intelligent
assistants. Some of this effort is focused on building desk-
top assistants that help with tasks such as email filtering and
travel planning. Each of these tasks utilize different spe-
cialized technologies and lack an overarching framework.
For example, email filtering is typically posed as a super-
vised learning problem (Cohen, Carvalho, & Mitchell 2004),
while travel planning combines information gathering with
search and constraint propagation (Ambite et al. 2002).
Our work is also related to on-line plan recognition. Cur-
rently popular approaches in this area are based on hierarchi-
cal versions of HMMs (Bui, Venkatesh, & West 2002) and
PCFGs (Pynadath & Wellman 2000). Our framework can
be naturally extended to include hierarchies. Blaylock and
Allen describe a statistical approach to goal recognition that
uses maximum likelihood estimates of goal schemas and pa-
rameters (Blaylock & Allen 2004). All these approaches,
however, do not have the notion of cost or reward. By in-
corporating plan recognition in the decision-theoretic con-
text, our formulation leads to a natural notion of assistance

2\We did not solve the assistant MDP in this domain after every
action. Instead, we approximated the assistant Q-values with the
Q-values of the underlying MDP that ignored the assistant.

namely maximizing the expected utility.

There have also been personal assistant systems that are
explicitly based on decision theoretic principles. For exam-
ple, the COACH system is designed to help people suffer-
ing from Dementia by giving them appropriate prompts as
needed in their daily activities (Boger et al. 2005). This
problem is formulated as a POMDP and is solved offline.
The system’s actions are restricted to be communication ac-
tions. The goal of the human agent is fixed and the state is
uncertain. We make the opposite assumptions that the goal
of the agent is unknown, but the state is fully observed.

Researchers have leveraged the special properties of per-
sonal assistant systems to build efficient approximations for
POMDPs that are solved offline. For example, since these
systems monitor users in short regular intervals, radical
changes in the belief states are usually not possible and are
pruned from the search space (Varakantham, Maheswaran,
& Tambe 2005). Neither exact nor approximate POMDP
solvers are feasible in our online setting, where the POMDP
is changing as we learn about the user, and must be repeat-
edly solved. They are either too costly to run (Boger et al.
2005), or too complex to implement as a baseline, e.g., Elec-
tric Elves (Varakantham, Maheswaran, & Tambe 2005). Our
experiments demonstrate simple methods such as one-step
look-ahead followed by roll-outs would work well in many
domains where the POMDPs are solved online.

In (Doshi 2004), the authors introduce the setting of inter-
active POMDPs, where each agent models the other agent’s
belief state. Clearly, this is more general and more com-
plex than ordinary POMDPs. Our model is simpler and as-
sumes that the agent is oblivious to the presence and beliefs
of the assistant, while the assistant models the agent’s goal
and the policy as explicit distributions. However since the
agent’s policy potentially changes in every step, the assistant
POMDP should be solved in each step. This makes it diffi-
cult if not impossible to use off-the-shelf POMDP solvers
because they take too long to compute the optimal policy.
This is the reason we choose to focus on myopic solution
techniques that nevertheless seem to make good if not opti-
mal decisions most of the time.

Prior work on learning apprentice systems focused on
learning from the users by observation (Mahadevan et al.
1993; Mitchell et al. 1994). This may be necessary, for ex-
ample, when the the POMDP is not efficiently solvable even
when the goal is fully known. Learning from observation
can be easily incorporated into the our model by treating the
user’s actions as providing exploratory guidance to the sys-
tem.

Summary and Future Work

In this work, we gave a general formulation of the prob-
lem of decision-theoretic assistance asa POMDP. Our model
captures the uncertainty about the agent’s goals and the pol-
icy, and the costs of the actions. Our algorithm consists of
iteratively estimating the agent’s goal and selecting appro-
priate assistive actions using myopic heuristics. We evalu-
ated our framework on two domains using human subjects.
The results demonstrate that the assistant was able to signif-
icantly reduce the agent’s cost of problem solving.

One future direction is to consider more complex domains
where the assistant is able to do a series of activities in par-
allel with the agent. In these domains, the action selection
might have to employ more sophisticated methods such as
sparse sampling (Kearns, Mansour, & Ng 1999). Another
possible direction is to assume hierarchical goal structure for
the user and do goal estimation in that context. Our frame-
work can be naturally extended to the case where the en-
vironment is partially observable to either the agent or the
assistant or both. This requires recognizing actions taken to
gather information, e.g., opening the fridge to decide what
to make based on what is available.

Another important direction is to extend this work to do-
mains where the agent MDP is hard to solve. Here we can
leverage the earlier work on learning apprentice systems and
learning by observation (Mitchell et al. 1994). Learning
from observation can be easily incorporated into our model
by treating the user’s actions as providing exploratory guid-
ance to the system. The system could update the values
of these states using online reinforcement learning or incre-
mentally learn a model and solve it offline.

References

Ambite, J. L.; Barish, G.; Knoblock, C. A.; Muslea, M.;
Oh, J.; and Minton, S. 2002. Getting from here to there:
Interactive planning and agent execution for optimizing
travel. In 1AAI, 862-869.

Bertsekas, D. P., and Tsitsiklis, J. N. 1996. Neuro-Dynamic
Programming. Athena Scientific.

Blaylock, N., and Allen, J. F. 2004. Statistical goal param-
eter recognition. In ICAPS 297-305.

Boger, J.; Poupart, P.; Hoey, J.; Bodtilier, C.; Fernie, G.;
and Mihailidis, A. 2005. A decision-theoretic approach to
task assistance for persons with dementia. In 1JCAI, 1293—
1299.

Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-
theoretic planning: Structural assumptions and computa-
tional leverage. JAIR11:1-94.

Bui, H.; Venkatesh, S.; and West, G. 2002. Policy recogni-
tion in the abstract hidden markov models. JAIR 17:451—
499,

CALO. 2003. Cognitive agent that learns and organizes,
http://calo.sri.com.

Cohen, W. W.; Carvalho, V. R.; and Mitchell, T. M. 2004.
Learning to classify email into speech acts. In Proceedings
of Empirical Methodsin Natural Language Processing.

Doshi, P. 2004. A particle filtering algorithm for interactive
pomdps.

Guestrin, C.; Koller, D.; Parr, R.; and Venkataraman, S.
2003. Efficient solution algorithms for factored MDPs.
JAIR 399-468.

Kearns, M. J.; Mansour, Y.; and Ng, A. Y. 1999. A
sparse sampling algorithm for near-optimal planning in
large markov decision processes. In [JCAI, 1324-1231.

Mahadevan, S.; Mitchell, T. M.; Mostow, J.; Steinberg,

L. I.; and Tadepalli, P. 1993. An apprentice-based approach
to knowledge acquisition. Artif. Intell. 64(1):1-52.
Mitchell, T. M.; Caruana, R.; Freitag, D.; McDermott, J.;
and Zabowski, D. 1994. Experience with a learning per-
sonal assistant. Communications of the ACM 37(7):80-91.
Moore, A. W., and Atkeson, C. G. 1993. Prioritized sweep-
ing: Reinforcement learning with less data and less time.
Machine Learning 13:103-130.

Pynadath, D. V., and Wellman, M. P. 2000. Probabilistic
state-dependent grammars for plan recognition. In UAI,
507-514.

Varakantham, P.; Maheswaran, R. T.; and Tambe, M. 2005.
Exploiting belief bounds: practical pomdps for personal
assistant agents. In AAMAS 978-985.

