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Abstract

Activity recognition is a process by which the ongoing ob-
served behavior of an agent is tracked and mapped to a given
model, explaining the behavior and accounting for hidden
or unobservable state (e.g., goals or beliefs of the observed
agents). Various methods for activity recognition exist. A
popular family of such methods rely on Hidden Markov Mod-
els HMMs and variants for recognition. These models, how-
ever, do not account for changes intransition probabilities
based on the duration an agent has spent in a given state.
This paper investigates Markov models that go beyond ex-
isting models, to explicitly model the dependency of tran-
sition probabilities on state duration. In particular, we pro-
pose the use ofNon-stationary Hidden Semi Markov Models
(NHSMMs) in activity recognition. We present the NHSMM
model, and compare its performance in recognizing normal
and abnormal behavior, using synthetic data from an indus-
try simulator. We show that for relatively simple activity
recognition tasks, both HSMMs and NHSMMs easily and
significantly outperform HMMs. In more complex tasks, the
NHSMMs also outperform the HSMMs, and allow signifi-
cantly more accurately recognition.

Introduction
Activity recognition is a process by which the ongoing ob-
served behavior of an agent is tracked and mapped to a
given model, explaining the behavior and accounting for
hidden or unobservable state (e.g., goals or beliefs of the
observed agents). It is an important task in surveillance
(Bui, Venkatesh, & West 2002; Hongeng & Nevatia 2003;
Duonget al. 2005), assistive technology, and user-modeling.

Various methods for activity recognition exist. A popu-
lar family of such methods rely on Hidden Markov Models
HMMs and variants for recognition. Recently, as it became
clear that the recognition of many activities has a strong tem-
poral component, HMMs variations which take duration ex-
plicitly into account have become more popular, e.g., Hid-
den Semi-Markov Models (HSMMs) (Hongeng & Nevatia
2003) and Switching Hidden Semi-Markov Models (Duong
et al. 2005). These allow explicit modeling of the duration
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an observed agent is expected to be in a particular recog-
nized state. For instance, HSMMs allow modeling the fact
that an observed airline passenger may spend a long time
at the security check area, and much less time moving from
this area to the flight boarding gate.

These models, however, do not account for changes in
transition probabilities based on the duration an agent has
spent in a given state. For instance, an airline passenger
spending a short time at the check-in counter is more likely
to have gone through the check-in process without glitches,
and thus more likely to head towards the gate. On the other
hand, a passenger spending a long time at the check-in area
is more likely to have encountered problems, and thus the
likelihood of the passenger heading towards a supervisor is
greater. Existing models encounter difficulty modeling such
distinctions, and are therefore insufficient for the complex
set of recognition problems found in real-world applications.

This paper investigates Markov models that go beyond ex-
isting models, to explicitly model the dependency of tran-
sition probabilities on state duration. In particular, we
propose the use ofNon-stationary Hidden Semi Markov
Models (NHSMMs) in activity recognition. Variants of
NHSMMs have been previously applied in speech recogni-
tion and handwritten character recognition (Vaseghi 1995;
Sin & Kim 1995), but their use in activity recognition is
novel. Just as HSMMs expand HMMs to include state du-
ration (to more accurately model realistic observed behav-
iors), so do NHSMMs expand HSMMs to model the transi-
tion probabilities’ dependence on state duration.

We present the NHSMM model, and compare its perfor-
mance in recognizing normal and abnormal behavior, using
synthetic data from an industry simulator. We show that for
relatively simple activity recognition tasks, both HSMMs
and NHSMMs easily and significantly outperform HMMs.
In more complex tasks, the NHSMMs also outperform the
HSMMs, and allow significantly more accurately recogni-
tion.

Related Work
Hidden Markov Models (HMMs) and its many variants have
been successfully applied to a number of scientific and en-
gineering problems (Rabiner 1989). However, their use in
activity recognition is fairly recent (Oliver, Horvitz, & Garg
2002). Bui et al. used a variant AHMMs for vision-based ac-



tivity recognition (Bui, Venkatesh, & West 2002). Yin et al.
used them to track users moving in a wireless environment
(Yin, Chai, & Yang 2004). In conventional HMMs, the dura-
tion of states is not modeled explicitly. This has been shown
to be problematic in recognizing real-world activities.

Hidden Semi-Markov Models have been developed to al-
low explicit modeling of duration probabilities. In conven-
tional hidden semi-Markov models, the probability state du-
ration is established by a distribution function which may
be a continuous probability density function suggested by
Ferguson (Ferguson 1980) or a parametric distribution such
as Gaussian, Poisson or Gamma distributions (e.g, (Levin-
son 1986)). Yu and Kobayashi (Yu & Kobayashi 2003)
propose a model for missing data and multiple observation
sequences which is applied to mobility tracking in wire-
less networks. Hongeng and Nevatia (Hongeng & Neva-
tia 2003) apply HSMM for recognizing events in a video
stream. Duong et al. (Duonget al. 2005) introduce Switch-
ing HSMM for activity recognition and abnormality detec-
tion. All of these previous works concentrate on HSMMs
in which the duration distribution is not combined with the
state transition probabilities.

Non-stationary Hidden Semi-Markov Models
(NHSMMs) have been applied in speech technol-
ogy (Vaseghi 1995) and the related field of handwritten
character recognition (Sin & Kim 1995). However, the
models have not been used in activity recognition, our
domain of study. Moreover, their use in activity recognition
requires at least some modifications from the original
models.

Kaminka et al. (Kaminka, Pynadath, & Tambe 2002) have
investigated overhearing by plan recognition in coopera-
tive agent teams. They have utilized an ad-hoc recognition
model that is reminiscent of hierarchical non-hidden semi-
Markov models. The system used average duration of plan-
step as an input to a Gamma distribution, to estimate the
duration in which an agent executed, unobserved, any given
step. Kaminka et al. report that the use of this model pro-
duced very poor results—due to the unmodeled variance of
actual durations—and use this fact to motivate their work on
using multi-agent heuristics to improve recognition rates.

Recently, several statistical models based on Bayesian fil-
ters (e.g., (Foxet al. 2003; Pynadath & Wellman 2000;
Charniak & Goldman 1993)) have been applied for activity
recognition. These works do not use statistics on state du-
ration in their computations but highlight the necessity for
methods which optimize the probabilistic recognition mod-
els for goals and activities.

The Models
We begin with a short survey of familiar models (HMMs and
HSMMs), before providing a full discussion of the NHSMM
model and its use in activity recognition.

Background
An HMM is defined in (Rabiner 1989) as:

1. A set ofN statesS = {S1, S2, . . . , SN}. A state at time
t is denoted asqt.

2. The state transition probability distributionA = {aij},
where{aij} is the probability to transition from stateSi to
stateSj . aij = P [qt+1 = Sj |qt = Si] 1 ≤ i, j ≤ N .

3. The initial state probability distributionπ = {πi} where
πi = P [q1 = ai] 1 ≤ i ≤ N .

4. A set ofM observation symbolsV = {v1, v2, . . . , vM}.
5. The observation symbol probability distribution in statej,

B = {bj(k)}, where

bj(k) = P [sk at t|qt = aj ], 1 ≤ j ≤ N

1 ≤ k ≤ M.

The parameters of HMM are represented byλ =
(A, B, π). Given a sequence of observationsO =
O1O2 . . . OT and λ, the probability of the observing se-
quence can be evaluated as an especially simple form:

P (O|λ) =
N∑

i=1

αT (i) (1)

where, for anyt ∈ [1, T ], the forward probabilityα is
defined by:

αt(j) =
N∑

i=1

αt−1(i)aijbj(Ot) (2)

As noted in previous work (Levinson 1986), in the stan-
dard HMM, the transition probability distributionaij is con-
stant in time. At each time step, the model transfers to the
next state according to the transition probabilities and the
symbol observed. This self transition, which is a transi-
tion from a certain state into the same state, occurs when
the same symbol is observed. The self-transition probabil-
ity aii for that state may be relatively high. Therefore, the
standard model does not differentiate between a self transi-
tion and a transition to another state when calculating the
probability of an observation sequence causing exponential
probability when remaining in a certain state for a number
of consecutive observations (see Figure 1).

i j
aij

aii

Figure 1: HMM with exponential state duration

Since it means that there is no accounting for the amount
of time spent in a certain state, for many applications, this
exponential state remaining probability is inappropriate. For
this reason, the HSMM was devised to broaden the HMM by
eliminating self transitions (see Figure 2). Formally,A is the
state transition probability distribution.A = {aij}, where
{aij} is the probability to transition from stateSi to state
Sj . 1 ≤ i, j ≤ N , i 6= j andaii is therefore replaced with
duration probability density functiondj(τ) which denotes



the probability of staying at least of length durationτ in state
Sj , 1 ≤ τ ≤ Dj . The rest of the HMM definitions apply for
the HSMM.
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aij
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j

Figure 2: HSMM with explicit state duration

For anyt ∈ [1, T ] andτ ≤ t, the forward probabilityα is
defined by:

αt(j) =
Dj∑
τ=1

N∑
j=1
j 6=i

αt−τ (i)aijdj(τ)
τ∏

θ=1

bj(Ot−τ+θ) (3)

The backward probabilityβ is extended in a similar man-
ner (see (Sin & Kim 1995)). The probability of observing a
sequence, in HSMM, can be evaluated by equation1.

The Non-stationary Hidden Semi-Markov Model

In our work we consider an additional expansion of the
model which includes not only the modifications of HSMM
to HMM but a refinement to the state transition probability to
include time dependency (see Figure 3). Formally, we define
the state transition probability distribution of an NHSMM
as follows.A = {aij(δ)}, where{aij(δ)} is the transition
probability from stateSi to stateSj after having remained
in stateSi exactlyδ − 1 length duration. This definition of
the transition probability reflects the non-stationary property
we wish to capture. By assigning the transition probability
to be the exact probability of spending a specific length du-
ration before the transition to a certain state, we take into ac-
count the concept that different durations in a state affect the
choice of where to transition to. As explained by the airline
passenger example in the introduction, the NHSMM takes
into account not only the explicit duration of a state but also
the choice of where to transition to according to that exact
duration. In doing so, the NHSMM improves the accuracy
of the recognition abilities of the model.

Taking in consideration the time-dependent transition
probability, we define the forward probabilityα of NHSMM
as:

αt(j) =
Dj∑
τ=1

N∑
j=1
j 6=i

Di∑

δ=1

αt−τ−δ+1(i)aij(δ)dj(τ)
τ∏

θ=1

bj(Ot−τ+θ)

(4)

i j
a (  )

ij

{

δ

δ

δ
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ij δ

Figure 3: NHSMM with state transition probability distribu-
tion

where
N∑

j=1

Di∑

δ=1

aij(δ) = 1, i = 1 . . . N

and we initiate the computation for each state by the prob-
abilities to begin at that state and remain there untilDi. We
denote this initiation asατ

t (j):

ατ
t (j) = πjdj(τ − 1)

τ∏

θ=1

bj(Ot−τ+1) (5)

j = 1 . . . N , t = 1 . . . Dj .

whereDj denotes the maximum length duration of being
in stateSj .

Thus, given equation 4 above, for anyt ∈ [1, T ] the like-
lihood functionP (O|λ) of NHSMM can be evaluated by
equation 1.

Examining the computation involved in the calculation
of the likelihood functionP (O|λ) of NHSMM shows that
αt(j) requires the order ofO(ND2 +T ) calculations where
D = argmaxDi and therefore the computation ofP (O|λ)
requiresO(N2TD2). The space involved is in the order
of ND2 + TN calculations. (TN is space needed for the
α values table). In the following section, we compare the
performance of each model in recognizing normal and ab-
normal behavior. We also compare CPU times for calcu-
lating the likelihood function over time by each model. We
show through experimental results that even though the com-
putation time of HMM is significantly better than the both
HSMM and NHSMM, these two models easily and signif-
icantly outperform HMM. In addition, the CPU time for
calculating the likelihood function of NHSMM is slightly
higher than HSMM but NHSMM outperforms HSMM and
produces significantly more accurately recognition.

Experimental Analysis
To test and compare the discussed models for the task of
recognizing agents’ activities, we utilized a simulator which
simulates up to dozens of passengers moving about a large
area according to pre-defined paths (with noise in the move-
ment). This simulator is part of an industry effort in surveil-
lance. A screen-shot is reproduced in Figure 4.

In our experiments, the agents can move within a rectan-
gular shaped200 × 200 grid. Each grid cell represents a



Figure 4: The dialog window of the simulator. The two ar-
rows are pointing at two objects moving in the quadrangular
area which is mapped to aXY -grid.

unique single position defined by two coordinates ,X and
Y , both ranging from0 to 199. An agent’s movements,
which is represented by an(x, y) position in the grid fol-
lowed by the specific time a movement is observed, are
recorded into a file. A series of detected movements with
their appropriate occurrence times represent a single path.
Thus, each file includes a path which the agent has taken.
We denote the time marking each movement in the recorded
files as time steps. In these experiments a single second is
divided into five time steps.

We generated output files to build training sets for our
models and then we tested the models’ ability to detect paths
which are consistent with the training sets. The training
set for our models is a group of paths which the model re-
ceives. Using the training set, the system learned all paths in
the training set, and calculated the probabilities associated
with the model, e.g., transition probabilities from one state
to another, state-duration probabilities, etc. Since the goal
of the experiments is to compare between the models’ per-
formance, we ignore the observation probability of a state
which is identical in all the models (i.e., the observation
probability of each state is1).

Evaluating the models
For the first experiment, we aimed to evaluate and compare
the models’ performance in the case of a simple learned
path, without stopping along the course and with no vari-
ance within the group. For this task, some alterations in the
modeling of theXY -grid were necessary. The modeling
of the XY -grid mentioned above was not appropriate for
this experiment, even with the agent moving as fast as the
simulator allows, suggests5 to 10 observations relating to
a single state in the model, resulting in a large duration for
each state entered. We solved this problem by modeling the
200 × 200 XY -grid to 400 non overlapping blocks, where
the size of each block is10 × 10. By reducing the size of
the block, the number of observed positions within a single
block is lessened and therefore resulting in short durations
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(a) A sketch of the simple
snake-like path comprising
the training set. The grid
in this experiment was di-
vided in to 10 × 10 size
blocks.
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(b) A graph showing the resulting proba-
bility values for each model, as time pro-
gresses. Results are averaged over 30-
some different trials.

Figure 5: First experiment: Settings and Results.

for states entered in the models.
Figure 5(a) shows the path we chose for this first train-

ing set, a snake-like path, measuring over120 time steps.
The objects following this path were to make no stops, i.e.
move continuously through the designated coordinates on
the XY -grid, and we set the deviation from the path to be
very small. We obtained the training set from the simula-
tor and then used it to train each of the three models. Each
model calculated the probabilities associated with it accord-
ing to the given training set.

We tested the models on paths matching the training set
and compared their results. Figure 5(b) shows the com-
parison between the three models when given observation
sequences which are consistent with the simple training
set over time. First, these results clearly show that the
probability over time in the case of the HMM decreases
exponentially—even when the data is consistent with the
learned model. This is due to the exponential nature of



HMM probabilities, as discussed in preceding sections. Sec-
ond, these results show that in a group carrying out a sim-
ple stationary path with no variation, HSMM and NHSMM
perform equally well and give very high results. This can
be easily explained by the explicit state duration property in
both models and also by the fact that the data tested in this
experiment is very simple.

In the next experiment, we compare the three models for
their ability to manage data that is still stationary but is more
complex than that of an entire group following the same sin-
gle path. For this and the rest of the experiments, we used a
64-cell tessellation of theXY -grid with 25× 25 size blocks
for the simulated data.

In the second experiment, the training set was composed
of two types of behavior groups. At first, the two groups
start at the same point and move at the same rate to the next
designated coordinate on theXY -grid. At some point, the
two groups separate and each group turns to a different di-
rection. After a period of time where each group is moving
in a different direction, both groups change directions and
eventually meet at the same position on theXY -grid. Fig-
ure 6(a) provides a sketch of the two paths.

We trained the three models using the two-behavioral
training set over160 time steps. Figure 6(b) shows the
resulting probability values of the models tested on paths
matching the two types of groups within the training set.
The comparison graph indisputably shows the weakness of
HMM versus the other two models, HSMM and NHSMM.
Again, the HMM decreases exponentially over time (with
a drop in the probabilities, which will be discussed in the
following paragraph) while both HSMM and NHSMM re-
main very high up to a certain point, then the probabilities
of all three models drop, and remain constant around the
same value till the end of the testing.

The abrupt drop in likelihood (Figure 6(b)) has differ-
ent explanations, for the different models. For the graph of
HMM, the falling point is at time step38, where the two
type of paths are still moving together in the grid. This drop
is due to a long remaining period in a certain state. In this
graph, the exact behavior of the HMM graph after this drop
is not visible due to the Y-axis scaling range (driven by the
probability values in the graphs of the HSMM and NHSMM,
which are significantly higher). However, closely observing
the results of HMM alone shows additional falling points
in the graph. These drops also occur due to long duration
within states and due to a decrease in transition probabilities
caused by the splitting of the two paths.

The abrupt drop in the graphs of both HSMM and
NHSMM is at time step86, which, according to the two type
paths composing the training set, is the point where the two
paths split to different directions. This split results in a drop
in the probability values for paths matching the training set
from a probability of almost1 to almost0.5 at the time the
splitting occurs. From this point on, the two graphs remain
constant around0.5. Since this was a case of stationary data,
there was no effect of time on the transition to the next state.
This explains why the two models performed equally well.

In the third test we conducted, we tested an additional type
of simulated data that is of a non-stationary nature. The goal
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(a) A sketch of the two
paths comprising the train-
ing set group in the sec-
ond experiment. The cir-
cles represent the states
in which the agents lin-
gered (both paths lingered
about the same time, i.e.,
state durations were simi-
lar). Movement is right-to-
left.
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(b) A graph showing the resulting proba-
bility values for each models from testing
both types of paths of agents moving on
the grid according to the paths described
over a period. Results are averaged over
30-some different trials.

Figure 6: Second experiment: Settings and Results.
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(a) A sketch of the four
paths comprising the train-
ing set for this experiment.
Movement is left-to-right.
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(b) A graph showing the resulting proba-
bility values for each model from testing
the four types of paths of agents moving on
the grid according to the paths described
over a period. Results are averaged over
30-some different trials.

Figure 7: Third experiment: Settings and Results.

of this experiment was to test the behaviors of HSMM and
NHSMM in this type of data and compare their ability to es-
timate sequences of observation which are compatible with
the non-stationary group of paths provided to the models as
a training set. In this experiment, the non-stationary train-
ing set was devised of four types of behaviors on the grid.
Each type differs from the other by its motion rate and by
the designated positions along its path.

Figure 7(a) shows a sketch of the types of the four paths.
All four paths start at the same position, denoteda, and move
together on the grid. When they all reach a certain point
(coordinate(60, 60) on theXY -grid, markedb), where the
four paths separate into two different directions, based on
the amount of time spent in the state encompassingb. The
two slower paths keep moving straight towards pointf af-
ter having stayed a longer period of time in the area ofb,
and the two faster paths turn to the right, towardsc. Further
along, another split occurs between each of the two pairs of
paths. Inc, the trajectory turning right (towardsd) remained

a shorter period of time than the trajectory turning left (to-
wardse). Similarly, in f, the trajectory turning right towards
h remained inf less time than the other trajectory (heading
towardsg).

Figure 7(b) shows the results of comparing the ability of
the three models to estimate the probability of observation
sequences that are compatible with all four types of behav-
iors comprising the non-stationary data introduced above.
Again, we see an exponential decline in the graph of the
HMM. For the HSMM and NHSMM, the graph first shows
very high probabilities for both models. These are the high
probabilities received in the first phase of the training set,
where all four paths are moving together on the grid. At
time step42 there is a clear drop in both graphs and fur-
ther along the graphs appear to gradually decline with a few
more noticed drops. These drops in the probabilities of the
tested observation sequences are explained as before, by the
splitting of the paths causing a descent in the probability of
transitioning to each state along each path.

However, from time step42 where the first split occurs,
the graphs of HSMM and NHSMM no longer converge. The
NHSMM graph surpasses that of the HSMM throughout the
time and significantly outperforms it (paired t-test, p-value
is 2.0909 · 10−21 i.e., lesser than0.001). This can be ex-
plained by the difference in the transition probability func-
tions of the two models. While the HSMM has a constant
transition probability, the NHSMM holds an explicit transi-
tion probability distribution from state to state allowing the
NHSMM to model the non-stationary behavior of the data.
These results show the ability of the NHSMM to capture
the non-stationary nature of the given data and its superior-
ity over HSMM in cases where the time spent in a certain
state has implications on where to proceed to in the tested
environment

In order to better highlight the difference between HSMM
and NHSMMs, we compared their ability to detect non-
stationary abnormal behavior. Our goal was to examine, in
this forth experiment, how well do the models detect an ob-
servation sequence which is not compatible with the train-
ing set in terms of duration, but is compatible in terms of the
states in the models that it visits.

The training set for this experiment was comprised of two
types of behaviors over a period of140 time steps. The two
paths are very similar to those of the second experiment.
Both types of behaviors start at the same point in theXY -
grid and continue to the next state, where they spend a dif-
ferent amount of time and each turns to opposite directions.
In other words, the path spending a short period of time at
the splitting state turns right and the path which lingers at
the splitting state, turns left. Thus, non-stationary abnormal
behavior in this experiment is an observation sequence that
remains a short number of time steps at the splitting state but
turns left (instead of right).

Figure 8(a) shows the likelihood probability graphs of
the non-stationary abnormal behavior for each of the three
models. When comparing the resulting graphs of HMM and
HSMM in this experiment (see figure 8(a)) with the cor-
responding resulting graphs in the second experiment (see
figure 6(b)), it becomes very clear that these two models do
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(a) A graph showing the resulting probabil-
ity values for each model for their ability to
detect non-stationary abnormal behavior.
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(b) A closer look at the low values of the
HMM and NHSMM graphs in the abnor-
mal behavior detection experiment.

Figure 8: Fourth experiment: Settings and Results. Results
are averaged over 30-some different trials.

not detect the non-stationarity of the abnormal behavior and
refer to this observation sequence as matching the training
set. This is not the case in NHSMM. The NHSMM graph in
figure 8(b) clearly shows an abrupt fall at time step84. This
is due to the unexpected turn to the wrong direction. While
the transition probability in NHSMM predicted a turn to the
right after spending a short time in the splitting state, the
path followed a turn to the left, which resulted in very low
transition probability in the explicit state transition probabil-
ity function.

Figure 8(b) shows, in greater detail, the graphs of HMM
and NHSMM from time step84 till 140. The low probability
of the HMM graph is due to its exponential probabilities, and
this graph is similar to the HMM graph of probability like-
lihood for an observation matching the training set, whereas
the low probabilities of the NHSMM graph are the result
of the model’s ability to detect abnormal behavior in which
the transition from one state to another does not match the

duration probability in the prior state.
A comparison between CPU times for calculating the

likelihood function over time by each model is presented
in the graph in Figure 9. As shown in the graph, there is
a substantial increase in computation time when compar-
ing HMM with both HSMM and NHSMM. However, be-
tween HSMM and NHSMM, the additional computation in
NHSMM appears minor.
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Figure 9: A graph showing the runtime of each model (in
seconds) over time

Conclusions
The use of the family of Markov models in activity recogni-
tion is fast gaining acceptance. Markov models provide rel-
atively efficient and familiar methods for recognition. How-
ever, up until now, the use of such models in activity recog-
nition has been hindered by lack of treatment of the effect of
state durations on transition probabilities.

This paper investigates the novel use of Non-stationary
Hidden Semi-Markov Model in activity recognition. We dis-
cuss the model and its associated algorithms, and evaluate it
in comparison with standard HMMs and with Hidden Semi-
Markov Models in recognition of normal and abnormal ac-
tivities. The evaluation reveals the model’s strengths in more
realistic recognition tasks.
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