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Bully’s Thought Process
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Teacher’s Mental Model Space
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What Does the Bully Consider?

@ Continuous space of mental models is too big!

@ Must choose a discrete number of mental models to partition the

space
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What Does the Bully Believe?

@ Choosing 1 mental model is too coarse o Lax
10%
@ Use a distribution instead!

& Can’t have a distribution over continuous
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Example — Initial Beliefs

& Bully has some initial
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Example — Actions and Observations

@ Bully takes and observes actions in the world
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Example: Updating Distribution

& Based on his punishment,
bully updates his probability

distribution over teacher’s

mental models
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Posterior Probabilities

P(SrictTeacher | PunishBully)
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Calculating Posterior Probabilities

V.
P(SrictTeacher | PunisnBully) =

@rictTeacher P(PunishBully | StrictTeacher ) D

> P(meniglModel; ) x P(Punisﬁ?u?] [mentalMode!, )
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Calculating Conditional Probability

@ Conditional probability data not directly available

@ However, bully can calculate teacher’s expected values

Table of Expected Values

Action Lax | Fair | Strict
Punish Bully 5 .75 .75
Punish Class “ .6 .5
Punish Observer | .3 4 .6

Do Nothing 8 .25 3

for a given action under different mental models
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Expected Value to Conditional Probability

y

Bully observes P(PU”lShBUI |y ‘ S.TlCtTeaCher)

teacher
punishing him

Table of Expected Values 7

Action Strict

Punish Bully

Punish Class 4 .6 .5

Punish Observer | .3 4 .6

Do Nothing 8 .25 .3 | lsp
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Basic Assumption

@ Actions with a higher expected value should accordingly
have a higher probability of being performed

if
E( punishBully, SrictTeacher) > E(doNothing, SrictTeacher)
then

P(punishBully | SrictTeacher) > P(doNothing | SrictTeacher)
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Method 1: Expected Value Ratio

y

& Relative expected value is good overall indicator of probability

E(PunisnBully, SrictTeacher)
> E(action, StrictTeacher)

15

P, (PunishBully | StrictTeacher) =

Table of Expected Values

Action Lax | Fair |Strict =.349
Punish Bully 5 .75 7? ) / 75 + 5 + 6 + 3

Punish Class “ .6 5

Punish Observer | .3 4 .6

Do Nothing 8 .25 3 lsp
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Ranking-Based Methods

y

& Relative ranking or order is good overall indicator of probability

& Convert Expected Value to Ranking

Table of Expected Values Table of Rankings
Action Lax | Fair | Strict Action Lax | Fair | Strict
Punish Bully 5 .75 |.75 Punish Bully 3 4 4
Punish Class “ .6 .5 — Punish Class 2 3 2
Punish Observer | .3 4 .6 Punish Observer | 1 2 3
Do Nothing 8 25 | .3 Do Nothing 4 1 1

USC ( ISIV

Information Sciences Institute




Linear and Exponential Ranking Methods

y

Rank(PunishBully, SrictTeacher)
> Rank(action,, StrictTeacher)

P« (PunishBully | StrictTeacher) =

Rank ( PunishBully,StrictTeacher )

e
(Punl ShBUI ly | SrlctTeaCher) Z eRank(actioni ,rictTeacher)

exprank
Table of Rankings

Action Lax | Fair | Strict
| gna——

Punish Bully 3 4 4

Punish Class 2 3 2

Punish Observer | 1 2 3

Do Nothing 4 1 1
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Fair Teacher
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Lax Teacher
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No Convergence in Ratio Method

& No additional preference is given for optimal actions

Expected Value Table
Action Lax | Strict | Fair
_ ——— ‘—
Observed action == | Do Nothing | .9 |.7 3
Punish Class 2 .6
Punish Bull 6 .8 75
nlooker 4 4 4

(Nothing | Lax) = 33 (Nothing | Strict) = 33
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Strict Teacher
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What’'s Wrong with Ranking Methods?

& No notion of closeness

Expected Value Table Ranking Table
Action Lax | Strict | Fair Action Lax | Strict | Fair
Do Nothing 9 .86 3 Do Nothing 4 1 1
Punish Class .8 .89 9 Punish Class 3 4 4
Punish Bully .6 .88 7 Punish Bully 2 3 3
Punish Onlooker | .4 .87 .65 Punish Onlooker | 1 2 2
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Discussion of Results

@ Ratio method
@ Relative EV of action is accurate predictor of probability

@ Can converge slowly if EVs of actions are similar within model — no
extra weight given to optimal actions

@ Ranking methods
@ Relative ordering of actions is accurate predictor of probability
@ Much quicker convergence

@ Loses the notion of ‘closeness’

Q Possible solution: Normalization across models!

ASI-

Information Sciences Institute

USC



@ Importance of mental models in constraining space

@ Maintaining posterior probabilities over mental models
@ Methods of calculating conditional probabilities:
* Expected Value Ratio

* Linear and Exponential Ranking methods
@ Preliminary experiments

@ Identified boundary cases and issues with current

ASI-

Information Sciences Institute

methods of conditional probability calculation

USC



Future Directions

@ Better methods of calculating conditional probability

that deal with issues of ‘closeness’ and of preference of
optimal actions

@ More formal characterization of conditional probability
calculation methods

@ Imperfect memory of observations
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