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Abstract well. Hongeng and Wyatt (2008) parse visual input and at-

H . tempt to infer the goal before it is completed based on visual

uman beings, from the very young age of 18 months, have . -
been shown to be able to extrapolate intentions from actions. CU€s such as color and shape. However, when dealing with
That is, upon viewing another human executing a series of ac- intentions that have not been realized—i. e., when the act-
tions, the observer can guess the underlying intention, even be- ing agent failed at achieving its goal—the problem becomes
fore the goal has been achieved, and even when the performer . . . .
failed at achieving the goa|_ We |dent|fy an important pre"m_ mUCh more Cha”eng'ng SII’]CG the Observed end-State n thIS
inary stage in this process, that of determining whether or not case is not necessarily a goal, the observing agent must first

an action stream exhibits any intentionality at all. We propose  getermine whether or not there is anything worth imitating
a model for this ability and evaluate it in several experiment

environments. here, that is, if the actions were performed with an intantio
Keywords: Intention; Cognitive Modeling. in mind, and only then can it proceed to attempt to infer what
exactly that intention was.
Introduction Indeed, the open challenge we tackle in this work is that of

'i]dentifying whether or not an action stream has any underly-
ing intention at all. In Meltzoff’'s setup, the behavior okth
control groups point has shown that when action streams did
artificial intelligence. Understanding the mechanismsaund not have any u_ndfarlylng mten_tlon, the obse_:rv_lng Ch'.ldmh d
lying imitation and the time-line of their developmentisap Ot attempt to imitate the acting adult. This is crucial cein

of understandin@heory of Mindand other aspects of social before the observing .agent_ embarks on the |nt|m|dat|n.g task
cognition. The Al community tries to model and implement of guessing what the intention actually is, it would be wise t

this ability in software agents and robots, for the purpdse oflrSt deIC|de whether there 'S, any. ',”te”“?” to lO_Ok for. )
producing socially intelligent systems that can interaoten In this paper we model this ability of discerning intentibna
meaningfully and usefully with humans. action from unintentional action. The key idea underlying o

Many different types of imitation exist, from the lower lev- work is the principle of_rational a_ction, Whic_h statgs that a
els of gestural, facial and vocal mimicking to the higheelev 29€nt thathas a goal will take actions to achieve this gaal. |
of goal imitation. The latter—the ability to understand the SPired by this principle, we determine the intentionalify o
intention underlying a stream of action, and reproducerthe i ©PSeérved sequences of actions by looking at whether they
tended goal—is the type that we focus on here. How exactir€ fficient i.e., they monotonically move the agent further
this process takes place is yet an open question, and differe@Way—in problem state space—from its initial state.
researchers have addressed different aspects of . We evaluate the model in two very different environments.

One of the more intriguing studies done in this area is byFirst, we reproduce two of Meltzoff's experiments in a dis-
Meltzoff (1995), who has shown that 18-month old childrenCrété version, using STRIPS notation, and show that our
are able to imitate the goal of an acting adelten when all method results are compatible with his. Second, we report
they see is a series of failed attempttowever, children are  ©N experiments in which our method results were contrasted
not able to do this, when they observe arbitrary, intentionWith adult human judgment of surveillance videos. While
less, motions. These results, according to Meltzoff, agser W€ only have preliminary result in this environment, theg ar
presence of some form of Theory of Mind, already at thisVe"y Promising and show that our method tends to evaluate
young age. There is still a long way to go in order to reachMotions similarly to humans.
a performance level comparable to 18-month-old childrén, a
tasks such as those provided by Meltzoff in his experiments. Background and Related Work

Much of the work on modeling and artificially reproducing There is a vast amount of literature in all the relevant
this ability has focused on identifying the goal itself. Rao disciplines—psychology, neurophysiology, computatiod an
Shon, and Meltzoff (2007) lay forth a Bayesian model forengineering—on the general topic of imitation and in the
imitating goals that have been realized, and state that theyore specific field of goal imitation. We cannot hope to
intend to develop it in order to handle unrealized goals asover it all here. From the computational research, we re-

The topic of imitation has been the focus of much research i
cognitive science and psychology (Meltzoff & Decety, 2003)
neurophysiology (Rizzolatti, Fogassi, & Gallese, 20014 a



fer here only to two of the more recent ones on intentiontarget action was pulling it apart. For a loop and prong de-
inference. Meltzoff himself took a first step in this direc- vice, the target action was to fit the loop onto the prong.
tion (Rao et al., 2007), by modeling the task in a BayesianThe children were divided into four groups- "Demonstration
framework. They trained their model on several example traTarget”, "Demonstration Intention”, "Control Baselineha
jectories leading to different goals, so that when givensa te "Control Manipulation”. The children in the "Demonstratio
scenario the model could determine the goal, before it wa3arget” were shown three repetitions of a successfully com-
reached. Hongeng and Wyatt (2008) analyze real-world videpleted act, such as pulling apart the dumbbell, or hangiag th
input, and use learning algorithms to determine highegtlev loop on the prong; their voluntary response was to reproduce
intention from low level movement. Both these works build the same act when the objects were handed to them. The
on past experience—multiple exposures to a limited set o€hildren in the "Demonstration Intention” group were shown
possible goals, and learning actions that are associatid withreefailed attemptdy the adult to produce the goal, where
them. They also both assume intentionality in the sequencthe adult (seemingly) failed at reaching it. These chiléren
of observed actions, and therefore go directly to the task ofe-enactment of the goal reached a level comparable tofthat o
inferring what the goal of the sequence is. Thus our work orthe children who saw the successful attempts. This shows tha
recognizing intentionality complements theirs. children can see through the actions to the underlying inten
Harui, Oka, and Yamada (2005) attempt to determindion, and extrapolate the goal from the actions. The childre
whether intentionality is present at all. However, thegules  in the "Control Manipulation” group saw the object manipu-
are based mainly on vocal cues, such as "oops”, to signal alated three times in ways that were not an attempt to reach the
accidental action as opposed to an intentional one. We égnorchosen target act. This was done in order to make sure that
such features, since in Meltzoff (1995)'s paradigm theyaver mere manipulation of the object is not enough for the chil-
neutralized. No one else, to the best of our knowledge, has adren to reproduce the goal. The last control group—"Control
tempted to computationally identify intentionality in Bt. Baseline’—had the children just see the object, without it be
There are several psychology theories regarding the standeg manipulated at all. Both control groups did not show sig-
taken when dealing with intentionality. Meltzoff (2002kés  nificant success at reproducing the target act.
the mentalistic stance, that infants’ ability to interpirgen- Meltzoff’'s experiment shows that when children discern
tionality makes use of an existing theory of mind- reasoningan underlying intention, as in the two Demonstration groups
about the intents, desires and beliefs of others. Gergealy arthey attempt to imitate it. When they do not detect such an
Csibra (2003), on the other hand, take a teleological stancéntention, as in the Control groups, they do nothing, or some
that infants apply a non-mentalistic, reality-based actie ~ times mimicked the arbitrary acts of the adult (in the Cantro
terpretation system to explain and predict goal-direcied a Manipulation group; obviously, children were imitatindpat
tions. As Gergely and Csibra say themselves, this teleologithey understood to bile intention of the adult).
cal evaluation should provide the same results as the applic  Thus when a model of goal imitation must first be able to
tion of the mentalistic stance as long as the actor’'s acio®as model the ability to discern whether there is an underlying
driven by true beliefs, as is our case. intention. Only then is it relevant to attempt to discern wha
The principle of rational action (Gergely & Csibra, 2003; that intention is. This would explain why children in both
Watson, 2005) plays a major role in intentional action. It”"Demonstration” groups were motivated to look for an un-
states that intentional action functions to bring aboutifeit ~ derlying intention, while children in the "Control Base#ih
goal states by the most rational actions available to theract group were not. This also explains why children in the "Con-
within the constraints of the situation. In other words, in-trol Manipulation” group sometimes reproduced the actions
tentional action is necessarily efficient and as such, madge of the adult, even when it was not exactly what the exper-

monotonically away from the initial state. imenter had in mind. As long as the trace exhibited some
] ) o “rationality of action”, or efficiency, the children conclad
A Method of Intentionality Recognition that there was an intention worth imitating.

We first describe briefly Meltzoff’'s 1995 experiments. We Recognizing Intentionality
then present our technique for determining intentionality

L We denote the observation trace by s, ...,, i.e. a se-
M otivation

quence of states, brought about by the actions of the demon-

In order to understand the motivation for our model, as weell a strating agentsy is the initial state, andk is the ending state.

the setup used to evaluate it, we briefly describe some detaillhe task of the observing agent is to decide, given this frace

of Meltzoff’s experiment. The purpose of his experiment waswhether there was an underlying intention or whether the act

to test whether children of 18-months of age are able to uning agent behaved unintentionally.

derstand the underlying intention of an action, even what th  Inspired by the principle of rational action, we check for

intention was not realized (the acting agent failed to achie some form of efficiency in the trace. It is reasonable to ex-

the goal). pect that a trace with an underlying intention will exhibit a
For five different novel toy objects, a target action was cho-clear progression from the initial state towards the gaakst

sen. For example, for a two-piece dumbbell-shaped toy, thevhich is the most efficient way to bring about that goal, start



ing from the initial state. Note that we do not know at this determine a cutoff level above which we conclude intention-
stage whether or not there is an underlying goal to the tracality is present, and below which we conclude it is not.
and even if there is, if it is reached successfully. On theioth  For example, in the case of clear intentionality, we would
hand, unintentional traces would not be driven by such effiexpect a strictly monotonically increasing sequence of dis
ciency, and would fluctuate towards and away from the initiatances; the agent proceeds from the initial state, at eaph st
state, without any clear directionality. moving farther and farther away from it, and closer and alose
To do this, we define a distance measdist. This dis- to the intended goal. At the other end, if the observed agent
tance measure is dependent on the nature of the world bés not driven by an intention to reach any particular state, w
ing modeled. For example, when dealing with geographicalvould expect the sequence to fluctuate in a seemingly random
targets, the distance could simply be the Euclidean (and infashion, with the agent sometimes moving away from the ini-
deed it is, in one of our experiments). In a discrete statetial state and sometimes moving back towards it. Of course,
space, defined by STRIPS notation, we use Bonet and Geffndhis is merely a motivational argument. In the next sectien w
(1999)’s Heuristic Search Planner to generate optimalsplanshow that this simple intuitive method does indeed produce
from the initial state to every state in the trace, and the-numthe expected results.
ber of action steps in each generated plan is taken to be the |mp|ementation and Evaluation

distance to the respective state. If the demonstratingtagef}, orqer to evaluate the success of our proposed measure of
acts efficiently—taking only optimal action steps that bringintentionality, we implemented it in two different environ
it closer to the goal—then the distance will keep increasingments The first uses a discrete abstraction of Meltzoff's ex
While if it acts randomly, executing various actions that doperiments, modeled in standard Al planning problem descrip
not necessarily lead anywhere, the distances will fluctuate (STRIPS), and the second uses surveillance videos.
There are a few requirements for the distance measure. iscrete Versions of Meltzoff's Experiments
do not require this distance to obey symmeittys{,s;) =  We model Meltzoff's experiment environment as an 8-by-8
d(s2,1)). However, this distance should always be positivegrid, with several objects and several possible actionshvhi
and equal 0 only from a state to itself. Using any such disthe agent can execute with its hands, such as grasping and
tance measure, we capture the notion of optimality, in thenoying. We implemented two of the five object-manipulation
sense of a shortest path from one state to another. experiments mentioned by Meltzoff: The dumbbell and the
Thus from the original state trace we induce a sequence Qbop-and-prong. For the dumbbell, there is one object in the
distance measuremerts = dist(s, ), ...,dk = dist(s, %),  world, which consists of two separable parts. The dumbbell
measuring theptimal (minimal) distanceetween each state can be grasped by one or both hands, and can be pulled apart.
in the sequence, and the initial state. Thus, for every state=or the loop-and-prong, there are two objects in the world,
we have an indication of how much the demonstrating agengne stationary (the prong), and one that can be moved around
would have had to invest (In time, number of elemental aC'(the |oop)_ The |00p can be grasped by the hand, and released
tions, or any other resource, depending on how the distance bn the prong or anywhere else on the grid. As previously de-
defined), had it been intending to reach that state. We arguscribed, we use Bonet and Geffner (1999)’s HSP to compute
that enough information is preserved in this sequence for ouhe distance measure.
observing agent to come to a satisfying decision. We manually created several traces for the dumbbell and
We want to calculate from this sequence a measure of infor the loop-and-prong scenarios, according to the descrip
tentionality, which we take to be the proportion of local in- tions found in Meltzoff's experiment, to fit the four differe
creases in the sequence—at how many of the states along tBgperimental groups. For example, a visual representafion
trace has the distance from the initial state increasedms co 3 the "Demonstration Target” trace is given for the dumbbell
pared to the previous state, out of the total number of states gpject in Figures 1(a)—1(i).
the trace. This will give us an idea of how efficient the action In addition, we created a random trace, which does not ex-

sequence is. More formally, hibit any regularity. We added this trace since the children
K in Meltzoff's Control Manipulation Group were sometimes
u=|{di >di_1}{4] 1) . . . . .

! -li=1 shown a sequence with underlying intention, albeit not the
Jarget one. For each trace we calculated the sequence of dis-
tances, using the above mentioned HSP algorithm, and then
computed the proportiop.
Results

is the number of states in the trace where the distance fro
the initial state increases, as compared to the distandeat t
previous state. Taking this number and dividing it by thaltot

number of states in the trace, Figure 2 show some plots of the sequence of distances asso-
u ciated with the Dumbbell experiments. The step number in
p= {d ¥ | @) the sequence is measured in the X axis. The Y axis shows
1=

the distance. Figure 2(a) shows an almost perfectly moroton
gives us a measure of intentionality for the action sequence ically increasing distance trace for the "Demonstraticie
The higher the resulting, the more intentionality is at- II” trace, where the right hand slips off the dumbbell, and so
tributed to the action. If a binary answer is preferred, we ca returns to the state it was at before it grasped it. Since bhly



which is why we have more than one row in the table for some
of the groups.

. For example, the prong-and-loop procedure failed in
Z e , two different ways in Meltzoff’s Demonstration Intention
" o e e experiment—either with the loop being placed too far to the
o B S right of the prong ("Demonstration Intention I” in Table 2y,
(@) Initial state. — (b) Stepone.  (c) Step three. too far to the left ("Demonstration Intention 11”). Both the

actions received an intentionality score of 1, since the end
state was reached in the most efficient possible way. In the
discussion section we elaborate on the meaning of this.

A}
ty
*y

‘ : : The dumbbell procedure as well failed in two different
in . ways—uwith the right hand "accidentally” slipping off the
e C e dumbbell while trying to pull it apart ("Demonstration Imte
(d) Step five. Right (e) Step seven. (f) Step nine. tion1”in Table 1), or with the left hand slipping off ("Demen
h‘?‘”d grasping. ‘ ‘ stration Intention I1”). When the right hand slipped off it

ended up slightly closer to the point where it was before the
action was initiated, as opposed to where the left hand ended
up when it slipped off. For this reason, the intentionalityan
sure for "Demonstration Intention 1” is slightly lower théor
"Demonstration Intention 11”.

(9) Step eleven(h) Step twelve. Re<i) Step thirteen. Re- Trace Measure of Intentionality
Pulling apart. lease one hand. lease other hand. Demonstration Target 1
Figure 1: Dumbbell Demonstration Target (left to right, top Demonstration Intention | 0.8333
to bottom). Demonstration Intention Il 0.9166
Control Baseline 0
Control Manipulation 0.8333
Random 0.5384

Table 1: Calculated measure of intentionality for STRIPS im
plementation of the dumbbell experiment.

(a) Demons. Intention I. (b) Random. Trace Measure of |ntent|0na||ty

Figure 2: Distance as a function of state in sequence in the Demonstration Target 1

Dumbbell experiments. Demonstration Intention| 1
Demonstration Intention Il 1

out of 12 of the states showed an increase in the distance from Control Baseline 0

the initial state, relative to the previous state, theretbe in- Control Manipulation | 0.7777

tentionality score is 10/12. Figure 2(b) shows the distance Control Manipulation Il 0.7777

sequence for the "TRandom” trace. Here the graph fluctuates, Control Manipulation Il 1

demonstrating the unintentionality of the trace. Random 0.5555

Table 2 shows the calculated measure of intentionality, for
each of the traces in the prong-and-loop experiment, and Talable 2: Calculated measure of intentionality for STRIPS im
ble 1 shows the same for the dumbbell experiment. In bottplémentation of the prong-and-loop experiment.
tables, each row corresponds to a different type of state se- In both experimental setups, the "Demonstration Target”
quence. The right column shows the measure of intentignalittrace received a clear score of 1, the highest possible-inten
as computed by the method described above. tionality. This happened because every step in the trace was

In Meltzoff’s experiments, every child was shown three necessary for bringing about the goal in the most efficient
traces, and only then was handed the objects. There is caray- each and every state progressed away from the initial
tainly information in this seeming redundancy; see (Mdftzo state and towards the goal state. The "Control Baselineétra
Gopnok, & Repacholi, 1999) who show that when only onereceived a 0, since nothing at all happened in that trace—the
trace was shown to the "Demonstration Intention” group, theworld remained static, at the initial state, without anyraje
children were unable to reproduce the goal. However, we dthroughout the trace. The "Random” trace received a low
not treat this at this stage in our model. So, while everycchil score, just a bit above 0.5, since the number of states pro-
was shown three possibly different traces, we calculated ougressing away from the initial state was roughly equal to the
measure of intentionality separately for each of theseezac number of states returning towards it. The "Demonstration
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Intention” traces exhibited a significant measure of irtemt
ality, as did the "Control Manipulation”. The latter can be ” /
explained by observing, as mentioned above, that even wher
the adults manipulated the objects in a way that was not the| ~ * —— \
original intention of the experimenter, nevertheless ttee m N
nipulationdid exhibit an intentionality to reackome state,

as opposed to just wandering about aimlessly in the space o
possible states. For the dumbbell object, the arbitraryast (a) Path of movement.  (b) Distances of each state from
pushing the ends inwards (this same act was demonstrated _ initial state. _

three times). For the prong-and-loop object, the arbitrary Figure 3: Examples from the bwwgt video.

acts were moving the loop along an imaginary line above theionality of the viewed character. They were given the aptio
prong, from right to left ("Control Manipulation I"), fromelft  of segmenting the video if they thought the character change
to right ("Control Manipulation I1”), and placing it just be its intention along the trace. Here we faced some difficuty i
low the prong ("Control Manipulation 11I”). This last act¥e the experiment design. In pilot experiments, it becamerclea
ceived the ultimate intentionality score, since the erdest that asking the subjects to directly rank the “strength ef in
was reached in by the most direct path. tentionality” of a video segment leads to meaningless tesul
Video Experiment . . For instance, some subjects in pilot experiments chose¢o gi
A second set of experiments was carried out in order to Comhigh intentionality marks to a video segment showing a per-

pare our model’s.results tolthose of human observers. ,Igon seemingly walking around aimlessly. When we asked for
particular, we are interested in how human observers 8assi o, explanation, the answer was that the person in the video
real-life human movement, and whether their judgment of in'clearly intended to pass the time.

tentionality correlates with those of our model. To tessthi  \yg thys needed to measure intentionality indirectly. To do
we used the CAVIAR video repository of surveillance V'deos'this, subjects were requested to write down a sentence de-

We selected a dozen movies from the repository. With reSpe%tcribing the intent of the person in the video, typically be-
to intentionality, these range from movies that show very deginning with the words “The person intends to ... ". The

liberate movements (a person crossing a lobby towards ajdes hehind this is that in segments where there is clear in-
exit), to some that are less clear (a person walking to a papgLntionality, a clear answer would emerge (for instancég‘T

sta_nd and browsing, then moving Ieisu_rely to a different IO'person intends to exist the room”); in other video segments,
cation, etc.). We compared human subjects’ judgment of thge nclear intentionality would result in more highly \eati

intentionality of motions in these videos, to the predieti®f  , <\vers (e.g., some would write “intends to pass the time”,

our model. - , ~_ while others would write “intends to walk”, etc.). This di-

Let us begin by describing how we measure intentionalityergence can be measured by various means: we chose the
using our model. The ground truth position data of the sejnormation entropy function as it is used in statistics team
lected videos is a part of the repository,

. : part and we use it as @yre dispersion of categorical data.
basis for our intentionality measurements. The planardioor Req)its

nates of the filmed character in every frame in the video wer&\e unfortunately did not complete the final analysis of the re
taken as a state in the trace, and the distance measure we usedts. However, preliminary results seem to indicate that o
was the Euclidean distance. As above, for every state we camodel’s classification of the movement as intentional corre
culated the distance from the initial state, and then chitckelates with the results obtained from the human subjects. In
for how many of those states the distance increased, relativparticular, in videos showing clear goals the human subject
to the previous state. tend to agree on the way the intention is described. In videos
Figure 3(a) shows a graph of the path of movement ofhat are less clear, there is indeed divergence of the asswer
the observed character, in planar coordinates, in one of theloreover, the divergence is also temporal: In movies where
videos from the repository (video bwwgt). Because we are the goal is unclear, subjects disagreed not only on the de-
plotting planar coordinates, the amount of time spent &t eacscription, but also on the internal segmentation of the wide
point is not represented here. Figure 3(b) show a plot of thelip into segments of changing intentions: Some subjedts cu
distances of each state in the path, form the initial stake T the movie into several segments, while others did not; they
X axis measures the video frame number. The Y axis meaalso did not agree on the timing of the segments. Such dis-
sures the distance from the initial location of the person inagreement was not noticed in the clearer movie clips.
question. For example, the measure of intentionality fo th Discussion
movement path wap = 0.48133. Using a cutoff value of In this work we claim to be able to determine a measure of
0.5, this movement was classified as non-intentional. The inintentionality from a very basic feature of the stream of ac-
terested reader is invited to watch the video and compawe it ttion. We ignore other aspects of the dynamics of the move-
the graphs presented here. ment that certainly contain information regarding intenti
Those same videos were shown to human subjects whality. We find justification for this in the psychologicaldit
were asked to write down their opinion regarding the inten-ature. Blakemore and Decety (2001) quote several works on

(
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how static images convey dynamics. Meltzoff (2007) himselfGergely, G., & Csibra, G. (2003). Teleological reasoning in
uses such a discretization in yet another variant of his-orig infancy: the naive theory of rational actiomfRENDS in
nal experiment. In this version, instead of showing the-chil cognitive sciencer(7).

dren the full dynamics of the action, he showed them threddarui, K., Oka, N., & Yamada, Y. (2005). Distinguishing in-
successive static states. This technique assumes thatisuch tentional actions from accidental actions Aroceedings of
representation contains enough of the information reggrdi  the 4th ieee international conference on development and
the intent of the actor. In the same paper, Meltzoff also de- learning.

scribes the failed attempt to separate the dumbbell as "holtiongeng, S., & Wyatt, J. (2008). Learning causality and in-
the dumbbell and then remove one hand quickly”, which is tentional actions. In E. Rome, J. Hertzberg, & G. Dorffner
again a very physical description, similar to the way we mod- (Eds.),Towards affordance-based robot contr8pringer.
eled the experiment. Although it does not convey the notiorMeltzoff, A. N. (1995). Understanding the intentions of -oth
of "effort”, this description is yet enough to give the chigth ers: re-enactment of intended acts by 18-month-old chil-
a sense of intentionality. dren. Developmental psychologg1(5).

Another point worth addressing is the high intentionality Meltzoff, A. N. (2002). Imitation as a mechanism of social
scores that some of the demonstrations received—at times thecognition: origins of empathy, theory of mind, and repre-
highest possiblef= 1), equal to that of the "Demonstration  sentation of action. In U. Goswami (EdBlackwells hand-
Target” group. We stress again that we are dealing here with book of childhood cognitive developmeBtackwell.

a preliminary stage in the process of goal imitation, that ofMeltzoff, A. N. (2007). The "like-me” framework for recog-
intentionality detection. It would be wrong to concludettha nizing and becoming an intentional ageAtta psycholog-
maximal score of intentionality indicatssiccesat achieving ica.

the goals. Rather, we only conclude intentionality of the ac Meltzoff, A. N., & Decety, J. (2003). What imitation tells us
tion and leave the question of whether the reached end-stateabout social cognition: a rapprochement between develop-
was indeed the intended goal for a later stage. mental psychology and cognitive neurosciereilosoph-

Our model also does not deal with the fact that the demon- icla transactions of the royal society of London
strations were repeated three times for every child. Thisin Meltzoff, A. N., Gopnok, A., & Repacholi, B. M. (1999).
mation can also be used in determining intentionality (kee, Toddlers’ understanding of intentions, desires and emo-
example, Watson (2005) who mentions persistence as a signtions: exploration of the dark ages. In P. D. Zelazo, J. W.

of intentionality), as well as for the later stage of deterimg Astington, & D. R. Olson (Eds.)Developing theories on

whether the reached end-state is the intended goal. intention: social understanding and self contrbwrence
Future Work Erlbaum Associates.

Having only just touched the tip of the iceberg regarding theRao, R. P. N., Shon, A. P., & Meltzoff, A. N. (2007). A

intriguing phenomena of intentionality detection and goel bayesian model of imitation in infants and robots. In C. L.

itation, there is yet much work to be done. In addition to Nehaniv & K. Dautenhahn (Eds.)mitation and social
more rigorously testing and evaluating our current model, w learning in robots, humans, and animals: behavioural, so-
intend to broaden it to deal with the notions of persistence cial and communicative dimensior@ambridge University
and equifinality—information carried by the repetition ofev ~ Press.

ery demonstration three times. It would also be interestindRizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophy

to add the possibility of handling varying environmentah€o ological mechanisms underlying the understanding and im-
straints, such as obstacles, which effect the calculatidineo itation of action.Nature reviews in neuroscience

distance measure, as well as treating false beliefs regardi Watson, J. S. (2005). The elementary nature of purposive
those environmental constraints, and seeing how theytaffec behavior: evolving minimal neural structures that display
the conclusion reached regarding intentionality. intrinsic intentionality.Evolutionary psychology
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