
Tractable POMDP Planning Algorithms for Optimal Teaching in “SPAIS”

Georgios Theocharous, Richard Beckwith, Nicholas Butko, Matthai Philipose
Intel Research

Abstract

In this paper, we develop a system for teaching the
task of sorting a set of virtual coins. Teaching is
a challenging domain for AI systems because three
problems must be solved at once: a teacher must si-
multaneously infer both social variables (attention,
boredom, confusion, expertise, aptitude), as well
as physical ones (task progress, objects being used,
current activity), and finally she must combine this
knowledge to plan effective moment-to-moment in-
teraction strategies. We develop a framework called
SPAIS (Socially and Physically Aware Interaction
Systems), in which Social Variables define the tran-
sition probabilities of a POMDP whose states are
Physical Variables. Optimal Teaching with SPAIS
corresponds to solving an optimal policy in a very
large factored POMDP that combines both types
of variables, a difficult computational problem. To
make the POMDP approach more tractable we de-
vised a policy-switching methodology among sim-
pler POMDP solutions, each one representing the
best way to teach a different type of student (set of
Social Variables). Our algorithms switch between
prototypical states of pupils either based on Social
Variables likelihood, or simply using the reward
signal in algorithms for online learning with expert
advice. In our results we demonstrate a system for
teaching the task by prompting in an optimal way.
Second, we show that our policy switching algo-
rithms can produce POMDP policies with equiva-
lent teaching performance to the complete, single
model approach in a fraction of the time.

1 Introduction
Teaching is a challenging domain for AI systems because
three problems must be solved at once: a teacher must si-
multaneously infer both social variables (attention, boredom,
confusion, expertise, aptitude), as well as physical ones (task
progress, objects being used, current activity), and finally
she must combine this knowledge to plan effective moment-
to-moment interaction strategies. We develop a framework
called SPAIS (Socially and Physically Aware Interaction Sys-
tems), in which social variables define the transition proba-
bilities of a POMDP whose states are physical variables. Op-
timal Teaching with SPAIS corresponds to solving an optimal
policy in a very large factorial POMDP that combines both
types of variables, a difficult computational problem.

As a prototype demonstration we develop a system, which
involves the manipulation of virtual coins. Coins are a pop-
ular tool for teaching young elementary school students con-
cepts such as grouping, sorting, counting, fractions, addition,
subtraction, and multiplication. [Phillips and Phillips, 1996].
In our results, we demonstrate a system for teaching the task
of sorting by prompting in an optimal way.

In addition, we make general planning contributions in this
paper with two algorithms that take advantage of the structure
when SPAIS are modeled as POMDPs. In particular, we de-
vise a policy-switching methodology among simpler POMDP
solutions, each one representing the best way to teach a dif-
ferent type of student. We introduce two switching strategies.
The first, switches based on social variables likelihood and
proves to be an effective strategy that can be computed in a
fraction of the time than complete POMDP policies.

The second strategy uses algorithms from online learning
with expert advice and proves to perform as well as any of
the prototypical solutions in hindsight and can can even track
the best switching strategy. A major advantage of the online
learning policy switching approach is that it does not require
a model but rather uses pre-computed policies. This offers an
alternative to the hard problem of learning POMDP models
[Rabiner, 1989], and computing policies for them [Kaelbling
et al., 1998].

Overall, our policy switching methodology could easily
generalize beyond SPAIS and could be thought of as an alter-
native to the problem of non-stationarity in POMDPs, where
transition dynamics could change over time. Some previous
approaches have relied heavily on learning the models on-line
and can be slow and impractical [Jaulmes et al., 2007]. In
our approach handling non-stationarity in arbitrary POMDPs
could be done by simply replacing the social variables with
general “mode” variables whose values condition different
transition dynamics.

Finally, our approach to combining POMDP policies can
be viewed as a contribution within the area of hierarchical
POMDPs [Theocharous and Mahadevan, 2002]. The advan-
tages of our approach are its simplicity and the fact that there
is no need for modeling abstract level dynamics and comput-
ing policies offline.

The rest of the paper is described as follows. In section
2, we describe the general approach for modeling SPAIS as
POMDPs and the details of the virtual coin POMDP model.
In Section 3, we describe our policy switching algorithms.
In Section 4, we describe our experiments and finish up with
conclusions in Section 5

2 SPAIS as POMDPs
Socially and Physically Aware Interaction Systems can be
modeled as POMDPs. In this system there are two types of
variables. Variables that represent physical external state and
variables that represent internal cognitive state. Internal vari-
ables could include attributes such as comprehension, exper-
tise, responsiveness, interest, attentiveness, awareness, pre-
ferred interaction, urgency and willingness. External vari-
ables describe, the progress of the task and the current stu-
dent behavior. Prompts indicate which behavior the student
should do next. They could come in various specificity either
as visual hints, sounds or text. The reward function has a cost
for every time a prompt is given and has a positive reward
when the task is completed. The sensor nodes use vision and
RFID tags to reveal information about the current activity and
progress made so far.

2.1 A POMDP System for Sorting Coins
In this paper we developed SPAIS system for manipulating
a set of virtual coins. The system was designed as a Java
applet. For this application a student can use a mouse to grab,
move and order the virtual coins as shown in Figure 1. Our
POMDP model was implemented in a factored format using
the SPUDD formalism [Poupart, 2005]. It was designed as
follows:

Figure 1: The figure shows the virtual coins platform. The
current hint has a surrounding green perimeter around the
largest correctly sorted stack, which hints to the student that
she could stack more in the empty space within the perime-
ter. An additional text explanation on the top of the applet
explains the hint. The hint is accompanied with an annoying
buzzing sound.

Internal Social Variables There are three internal
binary variables, expertise, comprehension-stack and
comprehension-unblock. Comprehension variables indicate
wether the student understands the meanings of the hints.
Expertise indicates whether the student knows how to do the
task without any guidance.

External Physical Variables There are three external vari-
ables: progress, blocked and behavior. The progress vari-
able takes on thirteen values, and indicates the largest cor-
rectly sorted stack. A correctly sorted stack means the coins
are stacked in a sorted fashion with the largest at the bottom.
There are thirteen coins, two quarters, two dimes, five nickels
and four pennies. The blocked variable is binary and indi-
cates wether the current largest stack is blocked. A stack is
blocked if no more progress can be made either at the bot-
tom or the top side. The behavior variable can take on one
of six values (null, stack, block, unblock, break, fix). Null
means the student did not increase or decrease the largest
stack. Stack means the student increased progress by stack-
ing a coin correctly. Block means the student has blocked the
largest stack. Unblock means the student has unblocked a pre-
viously blocked stack. Break means a student has broken into
two pieces a perfectly good and unblocked stack. Fix means
the student has managed to connect two stacks into a single
larger one with a single move.

Prompts There are six actions, reset, null, stack1, stack2,
unblock1, unblock2. The reset action places the coins ran-
domly on the canvas. It can either be done by the student
and the reset button on the bottom of the canvas, or by the
POMDP policy. The null action displays a text message say-
ing “CONTINUE: Grab a coin and put it in the right order”.
The stack1 action outputs a green bounding box around the
largest sorted coin stack indicating some empty space where
the user can move coins to. It is also accompanied with a
mild buzzing sound. The stack2 is similar to the stack1 hint
but with the addition of text saying “You can place a coin in
the empty space within the green box”. Smaller coins should
be on top”. This hint is accompanied with a stronger buzzing
sound than stack1. The unblock1 action draws a red box
around the largest sorted stack of coins which is blocked on
both ends. It is accompanied with a mild buzzing sound. The
unblock2 actions is the same as unblock1 but with the addi-
tion of text saying “Your larger order is highlighted by the red
box. It cannot be improved at either end”. It is accompanied
with a stronger buzzing sound than unblock1.

Sensors Sensors reveal information about the largest stack
and whether it is blocked or not. For the virtual platform it is
straightforward to collect such information which reveal com-
pletely the hidden external variables: progress and blocked.
In the next version of our system this might not be the case,
since we are planning to use actual physical coins and vision
to recognize their configuration. Thus, in Section 3 we ex-
periment with noisy observation models as well, where the
system cannot sense the exact progress.

Transition Model The factored transition dynamics be-
tween the variables can be seen in Figure 2. The conditionals
P (blkd́|blkd, prog, behv́) and P (proǵ|blkd, prog, behv́) are
mostly deterministic and define how the coin system works.
For example, if the behavior is to stack and the largest stack
is not yet thirteen and is unblocked, then progress increases
by one. The behaviors fix and break could produce non-
deterministic results on the progress and blocked variables.
This is due to the fact that our state space (for tractability)
does not encode a representation of all the possible arrange-
ments of the coins on the canvas. Nonetheless, a break could
not possibly produce progress larger than the current one.
And a fix could not create a stack more than twice the size
of the current one, since the current one is the maximum.

The conditional P (behv́|blkd, prog, exprt́, cmpś, cmpú, act)
depends on all the variables. If the student is an expert then
there is a high chance she will do the correct behavior when
not prompted. If the student comprehends the instructions,
then there is a high chance she will do the behavior she
is prompted for. Otherwise, if comprehension is low she
does a behavior according to her expertise. The dependence
of the behavior on the progress and blocked variables at
the previous time step is used to define what is the correct
behavior.

The conditionals P (cmpś|cmps, act),
P (cmpú|cmpu, act) and P (exprt́|exprt, act) define
how comprehension for stacking and unblocking as well
as task expertise evolve over time when a prompt for a
behavior is given. Expertise and comprehension remain the
same for the reset and null action. Expertise evolves for
the rest of the actions. Comprehension evolves only when
the corresponding action is given. For our experiments, we
defined two different evolution functions, a slow and a fast
one. In the fast evolution, comprehension increases with
probability 0.4 and expertise with probability 0.3. In the slow
evolution mode, comprehension increases with probability
0.2 and expertise with probability 0.1. When detailed hints
are given the respective comprehension variables increase
with probability 0.7 for the slow evolution function and with
probability 0.9 with the fast evolution function.

Reward Function The reward function rewards with +100
when a reset action is done at progress value thirteen. It pun-
ishes with −10 when a reset is performed at a progress state
other than thriteen. It punishes with −10 when a prompt is
given when the student is an expert. It punishes with −10
when the student is not an expert and has comprehension and
the action is to give a detailed hint. To promote comprehen-
sion it punishes with −10 when the student is not an expert
and has no comprehension and the action is null. To get the
student to complete the task fast, every time step is punished
with −1.

3 Tractable Approaches
Our factored POMDP can grow exponentially with the num-
ber of variables and as a result make a single-model, or as we
have defined it a monolithic approach, intractable. A similar
model for prompting elders with dementia in a hand-washing

exprt

act

blkd
Obs

prog
Obs

cmps

behv

prog

blkd

exprt

blkd
Obs

prog
Obs

cmps

behv

prog

blkd

cmpu cmpu

Figure 2: The figure shows the structure of the transition
model for the coin POMDP.

task took 48 hours to solve [Hoey et al., 2007]. To handle this
problem we propose a mixture approach where we first com-
pute smaller POMDP solutions for different instantiations of
the internal cognitive variables. We then combine these solu-
tions during execution. We combine them, either using model
likelihood or simply the reward signal with algorithms for on-
line learning with expert advice.

Creating Experts We term the smaller POMDP solution as
experts. We create them from the single monolithic model,
by first modifying the evolution function among the inter-
nal variables such that they are not allowed to change over
time. Second, we change the initial probability distribution,
to have support only for the particular expert. In our exper-
iments we created three experts. For the first expert we had
the initial distribution set to P (expertise = yes) = 1 and
P (comprehension = yes) = 0.5 for both comprehension
variables. The resulting policy always issued the null action
and only the reset action when the stack was complete.

For the second expert, we had the initial distribution set to
P (expertise = yes) = 0 and P (comprehension = yes) =
1.0 for both comprehension variables. The resulting policy
would give step-by step instruction on how to build the stack.
For example, it would prompt to stack when progress could be
made, it would prompt to unblock when the stack was blocked
and would reset when the stack was complete.

For the third expert, we had the initial distribution set to
P (expertise = yes) = 0 and P (comprehension = yes) =
0. The resulting policy would simply be the detailed hint for
stacking, stack2.

3.1 Likelihood Policy Switching
With the likelihood switching approach we can use the mono-
lithic model to infer the marginals of the expertise and com-
prehension variables every time step. We then sample those

variables and decide which expert’s action to take. Expert one
was chosen when expertise was found to be yes. Expert two
was chosen when expertise was found to be no and compre-
hension to be yes and expert three was chosen when expertise
and comprehension were found to be no.

During execution, each expert uses the α vector POMDP
solution that was pre-computed [Kaelbling et al., 1998].
It computes the best action every time step as act =
arg maxα.b, where b is an internal belief state that each ex-
pert maintains separately. These belief states are updated af-
ter every global action is chosen and an observation received.

Intuitively, the likelihood switching approach should con-
verge to the monolithic approach, if the internal variables
don’t change over time and assuming that the most likely tem-
poral dynamics of the whole process (defined by the values
of the internal variables) produce the maximum long-term re-
ward. The difference is that the monolithic approach might
take actions to localize the beliefs about the internal vari-
ables, where the likelihood approach, will infer the instan-
tiated values of the internal variables based on in inference
over time. Empirically though, even when the internal vari-
ables are allowed to change, the likelihood approach outper-
forms the monolithic as shown in Section 4.

3.2 Online Learning for Policy Switching
In this section, we show how to learn the switching strat-
egy using online learning with expert advice [Littlestone and
Warmuth, 1994]. Our learning problem is a repeating game
against the environment, whose dynamics is described by a
POMDP. The objective is to build the policy θ from the set of
experts π1, . . . , πN that minimizes the regret:

max
n=1,...,N

T∑
t=1

rt(πn(t))−
T∑

t=1

E [rt(θt)] (1)

with respect to the best expert.
The nature of our problem is reactive. More precisely, ac-

tions of our agent affect the future state of the environment.
As a result, a direct minimization of the regret in Equation 1
yields suboptimal policies θ [de Farias and Megiddo, 2004].
Our problem is also episodic. In particular, our agent plays
a sequence of finite-horizon games against the environment.
When the games are finished, the environment is restarted to
some initial state. Due to this property, we can transform our
reactive learning problem into a non-reactive one.

One way of transforming the problem is to treat individual
games against the environment as basic building blocks, and
permit expert switches at the beginning of each game only.
When a game is over, the agent updates its preferences for
following the experts π1, . . . , πN based on the results of the
last game. This learning setup is known as online learning
with variable stage durations [Mannor and Shimkin, 2006].
In general, the reward in hindsight is not attainable when the
length of the games is controlled by an adverse opponent.

In this paper, we assume that every game played by any ex-
pert πn terminates at some maximum length l = L or earlier
l < L. Under this assumption, the optimization of the average
reward over time (Equation 1) is equivalent to maximizing the
average of average rewards from individual games:

Inputs:
a learning rate η
an exploration probability γ
expert policies π1, . . . , πN

expert weights wt−1(1), . . . , wt−1(N)

Algorithm:
randomly choose an expert et according to the distribution:

P (et) = (1− γ)
wt−1(et)PN

n=1 wt−1(n)
+

γ

N

play one game against the environment with the policy πet

wt(et) = wt−1(et) exp
h
η

r̂t(πet)

P (et)

i
Outputs:

updated expert weights wt(1), . . . , wt(N)
an expert et followed at the time step t

Figure 3: The Exp3 algorithm.

As a result, we can reformulate our optimization
problem as a standard online learning problem, where the im-
mediate reward:

r̂t(πn) =
∑l

k=1 rk(πn(k))
l

(2)

corresponds to the average one-step reward of a single game
against the environment , and the agent decides which of the
experts π1, . . . , πN plays the game.

An online learning algorithm that can solve such problems,
where experts are played sequentially is the Exp3 algorithm
shown in Figure 3 [Auer et al., 2002] . The Exp3 algorithm
combines exploration steps, which are taken with some fixed
probability γ, and exploitation, which guarantees that better
experts are followed more often. It can be shown that this
method minimizes the regret with respect to the best expert in
hindsight [Auer et al., 2002].

Beyond the Best Expert Up to this point, we discussed
how to learn a POMDP policy θ from a set of expert poli-
cies π1, . . . , πN that minimizes the regret with respect to the
best expert in hindsight. This approach is suitable for learn-
ing the best solution for a specific POMDP. However, when
the environment changes over time, we may want to adapt and
learn policies that minimize the regret with respect to tracking
the best expert. This goal can be achieved by modifying our
solution (Figure 3) in the spirit of the fixed share algorithm
[Herbster and Warmuth, 1998]. In particular, we additionally
update the weights wt as:

wt(n) = (1− α)wt(n) +
α

N
pool(t), (3)

where the expert pool at the time step t is computed as:

pool(t) =
N∑

n=1

wt(n) (4)

and 0 ≤ α ≤ 1 is a share parameter. This update guarantees
that the smallest weight is never more than N/α smaller than
the largest weight. As a result, the fixed share algorithm can
discover patterns of changing best experts.

In the experimental section we explore the combination of
the Exp3 and share algorithms. In comparison to Exp3, the
expert weights wt are additionally updated as shown in Equa-
tions 3 and 4. The new algorithm allows for tracking the best
expert.

4 Experimental Results
In this section we describe two types of experiments. In the
first experiment, we tested the validity of the solution by try-
ing it out, on an actual test person in real time. In the second
set of experiments we investigated the speedups in term of the
time to compute a policy versus performance of the various
algorithms. Performance evaluation in the speedup experi-
ments were done in simulation, simply because it would take
unrealistic time to evaluate them with real people.

Validation of the Coin POMDP In the first experiment we
had the test subject interact with the system in real time as-
suming two different personalities. In personality one mode,
the subject knew exactly what the task was and would do the
right moves from the beginning. In personality two mode the
person would act randomly in the first few prompts (approx-
imately 10). It would then begin doing the right moves. Per-
formance was measure in terms of the total prompting cost
for every game. The prompting cost was 1 for null prompts,
2 for stack prompts and 3 for unblock prompts. A game com-
pletes and resets when the person completes a full stack. We
let the test subject play 3 consecutive games.

We compared our best POMDP solution with a heuristic
baseline that cannot reason about expertise and comprehen-
sion but rather provides the correct prompt every other step
(stack when progress can be made and unblock when stack
is blocked). Figure 4 shows the results, where the POMDP
solution prompts only when the test subject is not an expert
and stops when not, Such a prompting strategy, is naturally
expected to be more successful in teaching coin tasks, simply
because people learn faster with minimum teacher guidance.

1 2 3

10

20

30

40

50

Number of games

P
ro

m
pt

in
g

C
os

t

Heur. Pers. 2
Heur. Pers. 1
POMDP Pers. 2
POMDP Pers. 1

Figure 4: The POMDP solution correctly delivers prompts
only when needed.

Tractability Results In the second set of experiments we
investigated the time it takes to compute the policies for the

different algorithms versus performance in simulation. Re-
wards and observation were sampled from the underlying
monolithic model. For every algorithm we measured the av-
erage discounted reward over 20 runs of 200 steps each.

In Figure 5 we show results where the environment model
transitions according to the fast evolution function. Due to
the fast evolution the Exp3Share is not much better than the
best expert. The likelihood approach though works surprising
well, with a speedup of 5.

5 10 15 20 25 50 75 100 150 200 250 300 350 400
−2000

−1500

−1000

−500

0

500

1000

1500

Time to compute policy (secs)

A
ve

ra
ge

 d
is

co
un

te
d

re
w

ar
d

e3
e2
e1
EXP3
ShareEXP3
likelihood
monolithic

Figure 5: The likelihood approach though works surprising
well, with a speedup of 5. The experiment was done with the
fast evolution function.

In Figure 6 we show results where the environment model
transitions according to the slow evolution function. As a re-
sult the Exp3Share is much better than the best expert. The
Exp3Share algorithm does not reach the performance of the
monolithic due to two reasons. First, is due to the delay in
learning and switching at an episodic level. Second, is due to
the fact that is optimal with respect to average reward, while
the results here are reported with respect to discounted re-
ward.

5 10 15 20 25 50 75 100 150 200 250 300 350 400
−2000

−1500

−1000

−500

0

500

1000

1500

Time to compute policy (secs)

A
ve

ra
ge

 d
is

co
un

te
d

re
w

ar
d

e3
e2
e1
EXP3
ShareEXP3
likelihood
monolithic

Figure 6: The Exp3Share is much better than the best expert
as compared to the results in 5. The reason is the the model
of the environment uses the slower evolution function.

In Figure 7 we show results of an experiments where we
added noise to the observation model. This resulted in even
larger speedup of 10 than our previous experiments in Figures
5 and 6. This is evidence that as the model of the world gets
more complicate our policy switching algorithms will exhibit
larger speedups.

Finally in Figure 8, we show a sample run of the
EXp3Share algorithm, where it can track the best expert.

5 10 15 20 25 50 75 100 150 200 250 300 350 400
−2000

−1500

−1000

−500

0

500

1000

1500

Time to compute policy (secs)

A
ve

ra
ge

 d
is

co
un

te
d

re
w

ar
d

e3
e2
e1
EXP3
ShareEXP3
likelihood
monolithic

Figure 7: Speedup of the likelihood approach are even greater
as the underlying model of the world becomes more compli-
cated.

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Decision Epochs

E
xp

er
t W

ei
gh

t

expert 1
expert 2
expert 3

Figure 8: This is a sample run of the Exp3Share algorithm.
Initially the student gains comprehension with either expert 2
or expert 3, The student then is guided through task comple-
tion with expert 2. Finally, only the policy of expert 1 who
never prompts is needed. The x axes indicates the number
of times the Exp3Share algorithm updated the weights of the
experts. The total time of the experiment was 200 steps.

5 Conclusions
In this paper we have shown a general POMDP framework
for Socially and Physically Aware Interaction Systems. We
showed an instance of such a system in the education domain
where the system has to teach grouping concepts through ma-
nipulation of coins. Our eventual system is behaving as ex-
pected and prompts people only when necessary. In addition,
we show that we can take advantage of the structure of SPAIS
to produce faster planning algorithms in the form of policy
switching. Our likelihood switching approach outperforms
the monolithic approach.

Finally, we introduced an online policy approach for
POMDPs that performs as well as any of the experts in hind-
sight and even tracks the best expert. Results improve as the
internal variables evolve more slowly. The results are not as
good as the likelihood and monolithic approach due to the
delays in switching at an episodic level, and the fact tha we
are measuring discounted reward. It is obvious though, that
they are learning to track the best expert and should perform
the same for longer horizon and average reward performance
comparison. Nonetheless, even for the current experiments,
they perform better than individual solutions and best of all
they are model free,

In the future, we plan to build a more advanced coin system
with physical coins and a vision system. We are currently
getting feedback on the current system from teachers and plan

on producing a completely realistic system that would help
them.

In terms of the planning algorithms we plan on combin-
ing the online learning for policy switching with some prior
knowledge to speedup switching, for example, knowing that
people start as non-experts and then become experts. In the
end we may like to move completely away from POMDP
models because learning them and computing polices for
them is generally difficult. We will be testing wether it might
be easier to start with a set of intuitive polices and learn how
to switch among them.

References
[Auer et al., 2002] Peter Auer, Nicoló Cesa-Bianchi, Yoav Freund,

and Robert E. Schapire. The non-stochastic multi armed bandit
problem. SIAM Journal on Computing, 32(1):48–77, 2002.

[de Farias and Megiddo, 2004] Daniela Pucci de Farias and Nim-
rod Megiddo. Exploration-exploitation tradeoffs for expert algo-
rithms in reactive environmnets. In In Advances in Neural Infor-
mation Processing Systems 17, pages 409–416, 2004.

[Herbster and Warmuth, 1998] Mark Herbster and Manfred War-
muth. Tracking the best expert. Machine Learning, 32(2):151–
178, 1998.

[Hoey et al., 2007] Jesse Hoey, Axel von Bertoldi, Pascal Poupart,
and Alex Mihailidis. Assisting persons with dementia during
handwashing using a partially observable Markov decision pro-
cess. In In Proceedings of the International Conference on Vision
Systems (ICVS), 2007.

[Jaulmes et al., 2007] Robin Jaulmes, Joelle Pineau, and Doina
Precup. A formal framework for robot learning and control un-
der model uncertianty. In IEEE International Conference on
Robotics and Automation (ICRA), 2007.

[Kaelbling et al., 1998] Leslie Pack Kaelbling, Michael L. Littman,
and Anthony R. Cassandra. Planning and acting in partially ob-
servable stochastic domains. Artificial Intelligence, 101:99–134,
1998.

[Littlestone and Warmuth, 1994] Nick Littlestone and Manfred K.
Warmuth. The weighted majority algorithm. Inf. Comput.,
108(2):212–261, 1994.

[Mannor and Shimkin, 2006] Shie Mannor and Nahum Shimkin.
Online learning with variable stage duration. In Conference on
Learning Theory (COLT), 2006.

[Phillips and Phillips, 1996] Darrell G. Phillips and Dale R.
Phillips. Structures of Thinking: Concrete Operations.
Kendall/Hunt Publishing Company, 1996.

[Poupart, 2005] Pascal Poupart. Exploiting Structure to Efficiently
Solve Large Scale Partially Observable Markov Decision Pro-
cesses. PhD thesis, University of Toronto, Toronto, 2005.

[Rabiner, 1989] Laurence R. Rabiner. A tutorial on hiden markov
models and selected applications in speech recognition. Proceed-
ings of the IEEE, 77(2):257–286, 1989.

[Theocharous and Mahadevan, 2002] Georgios Theocharous and
Sridhar Mahadevan. Approximate planning with hierarchical
partially observable Markov decision processes models for robot
navigation. In IEEE Interantional Confrence on Robotics and
Automation (ICRA), 2002.

