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Abstract. Formal models of international relations have a long history of ex-
ploiting representations and algorithms from artificial intelligence. As more news
sources move online, there is an increasing wealth of data that can inform the
creation of such models. The Global Database of Events, Language, and Tone
(GDELT) extracts events from news articles from around the world, where the
events represent actions taken by geopolitical actors, reflecting the actors’ rela-
tionships. We can apply existing machine-learning algorithms to automatically
construct a Bayesian network that represents the distribution over the actions be-
tween actors. Such a network model allows us to analyze the interdependencies
among events and generate the relative likelihoods of different events. By exam-
ining the accuracy of the learned network over different years and different actor
pairs, we are able to identify aspects of international relations from a data-driven
approach. We are also able to identify weaknesses in the model that suggest needs
for additional domain knowledge.
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1 Introduction

Formal models of international relations have a long history of exploiting representa-
tions and algorithms from artificial intelligence [1, 3, 9, 11]. For example, game-theoretic
models have supported prescriptive analyses of foreign-policy decisions (e.g., [10]).
Political scientists have also used rule-based systems to build descriptive models of the
behaviors of geopolitical actors [3]. These manually created models demonstrate the
value that AI methodologies can provide in the study of international relations.

As more and more news sources move online, there is increasing data that can in-
form the creation of such models. More importantly, these data are now in computer-
readable formats that can potentially support the automatic creation of models. For
example, the Global Database of Events, Language, and Tone (GDELT) and the iData
repository of Integrated Crisis Early Warning System (ICEWS) both represent hundreds
of millions of actions in over 300 categories (e.g., negotiation, accusations, military
deployment) taken by geopolitical actors (countries, international organizations, etc.),
often directed at other such actors.1

1 gdeltproject.org, lockheedmartin.com/us/products/W-ICEWS/iData.html
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A computational model of the likelihoods of different action types would be invalu-
able in describing the behavior of actors in international relations. For example, one
might expect two allied nations to be more likely to engage in trade agreements and
other cooperative actions, as opposed to nations with a more hostile relationship. The
dependency may operate in the opposite direction, too, where the relationship between
two nations is likely to suffer if one nation makes an accusatory statement about the
other. Representing this complex interdependence among the types of actions and the
actors’ relationship is critical to building an accurate model.

In this work, we apply existing algorithms to learn a Bayesian network [4–6] that
represents the distribution over the actions between geopolitical actors. Such a network
allows us to analyze the interdependencies among events and generate relative likeli-
hoods of different event types between two actors. We focus on our use of GDELT as a
source of events that we translate into a categorical distribution of the actions two actors
take toward each other2. Besides the events extracted by GDELT, our network model
also represents the Ideal Point distances, a measure of country affinity that researchers
in international relations derive from UN voting records.

By examining the accuracy of the learned network over different years and dif-
ferent pairs of actors, we are able to identify aspects of international relations that are
quantifiable from a purely data-driven approach. By leveraging the declarative nature of
our Bayesian network model, we are able to inspect its dependency structure and draw
conclusions that provide insight into the types of events that are most strongly tied to
geopolitical relationships. Furthermore, we can exploit existing Bayesian network in-
ference algorithms to compute any conditional probability of interest, allowing us to
analyze the joint distribution of events to gain insight into various event dependencies.
We are also able to identify weaknesses in the model that suggest needs for additional
domain knowledge. This work thus represents an important first step toward making
use of advances in AI methods in the modeling of international relations.

2 International Relations Data

The “Global Database on Events, Location, and Tone” (GDELT) contains international
events automatically extracted on a daily basis from different news sources around the
world, dating back to 1979. We restrict our investigation to pairwise international rela-
tions, so we use only events that list two countries as the actors. Each event’s type is in
the form of a numeric code, categorizing the action according to the Conflict and Medi-
ation Event Observations (CAMEO) framework3. The CAMEO event codes constitute
a hierarchy, ranging from top-level categories like “Appeal” (02) and “Fight” (19), to
intermediate categories like “Appeal for material cooperation” (021) and “Occupy ter-
ritory” (192). The CAMEO framework contains 310 such categories.

For each year of GDELT events, we aggregate the events for each pair of actors (ig-
noring their order in this investigation). For each such pair of actors, we compute a his-
togram of the number of occurrences of each event type and then normalize these event
counts to be a percentage. This normalization loses the potential information contained

2 We also used ICEWS, but omit those results for space considerations.
3 http://eventdata.parusanalytics.com/data.dir/cameo.html
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in the volume of events between actors (e.g., a qualitative difference in the relationship
between the USA and the UK vs. between the USA and Turkmenistan based on only
the number of actions). On the other hand, the normalization allows us to potentially
generalize across relationships that are similar in character, if not in volume.

We also include Ideal Point distances, a measure of affinity that political scientists
derive from applying a distance metric to voting in the General Assembly of the United
Nations.4 Our goal is a country-independent model of relative event likelihoods in com-
bination with these Ideal Point distances. We collect data across pairwise relationships
between countries from the years 2006–2012, which have comparable quantities of an-
nual GDELT data, while also having available Ideal Point data. Although there are 310
different categories in the CAMEO event code list, many categories are not represented
in our target data sets. To ensure consistency of representation across these years, we
selected the CAMEO event codes that have appeared at least once in all of the years
from 2006–2012, leaving an intersection of 133 event types. After including the Ideal
Point distance, we arrive at 134 variables for each pair of countries.

To avoid distortions due to country pairs for which GDELT has very few (i.e., non-
representative) events, we use a minimum threshold for actions between countries, con-
sidering both the total count of the events (to avoid small samples) and the percentage
of non-zero events (to avoid highly skewed histograms) for each pair of countries. After
examining the size of the data sets resulting from alternate threshold settings, we arrived
at 50 for the minimum total count of events, and 5% as the minimum percentage of the
event categories present in a country relationship for every year. The resulting numbers
of country relationships for 2006–2012 are respectively: 773, 886, 1014, 1316, 1198,
1300, 1310. Table 1 shows a subset of the data for 2006.

Country Pairs 02: Appeal 021: Appeal for . . . Ideal Point Distance
material cooperation

Afghanistan China 0.017 0.027 . . . 0.167
Argentina Australia 0.033 0.010 . . . 0.788
. . . . . . . . . . . . . . . . . .
Yemen Qatar 0.018 0.000 . . . 0.279

Table 1. Sample data entries from 2006.

3 Learning a Bayesian Network Model

To study the causality and dependency structure within the event categories and Ideal
Point distances, we seek a model in the form of a Bayesian Network [4–6]. A Bayesian
network provides a compact graphical representation of a joint probability distribution
over a set of random variables. By representing such a distribution over our interna-
tional relations variables, we can use standard algorithms to answer queries about the
conditional probability of event categories or UN voting patterns of interest given the
occurrence of other event categories. For example, we may use such a network to ex-
amine the potential likelihood of cooperation vs. conflict, contingent on the frequency
of appeals, public statements, and other actions in the recent history between two coun-
tries. Unlike a classifier approach to the problem, the Bayesian network representation
allows us to interchangeably treat any variable as the input or output to our queries.

4 https://dataverse.harvard.edu/dataverse/Voeten
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In addition to performing such probabilistic inference, the Bayesian network’s graph-
ical structure can itself provide insight into the underlying process. In particular, the
directed edges in the Bayesian network reflect properties of conditional independence
among the variables. By studying the link structure of the network, we can get a better
understanding of the causal process that generates the distribution being modeled [7].
Therefore, if we can construct an accurate Bayesian network model of the distribution
over event categories and Ideal Point distances, then the resulting graph structure may
reveal interesting properties underlying the behavior selection of geopolitical actors.

Another advantage of Bayesian networks is the development of algorithms that can
automatically learn the best structure to represent a data set [2, 5]. In this work, we
use the algorithms contained in the bnlearn R package (www.bnlearn.com). All of our
variables are continuous, so we approximate the distributions over them as Gaussians.
In terms of the specific bnlearn algorithms, we treat all of the variables as having linear
conditional Gaussian distributions, where the mean of each child is a linear function of
its parents’ values. While this assumption is likely to be overly strong, it provides a good
first approximation. For each year’s training data, after learning the network structure
model, we fit the model to the data to obtain the standard deviations, intercepts, and
the coefficients of each node’s parents to evaluate the means. We can then measure the
probability of a different year’s test data given the learned network.

4 Accuracy of Bayesian Network Models

While a Bayesian network representation is capable of capturing the interdependence
among the relative frequencies of different action categories, that capability will not be
useful if we do not have data that supports the learning of such dependencies. To quan-
tify the ability of the learning algorithm to capture this interdependence, we compare
the performance of a Bayesian network model against a model that assumes indepen-
dence among the variables. We can view the latter as learning a Bayesian network with
no links among the variables. We hope that the Bayesian network with a learned link
structure will provide a better explanation of our test data than one without any links.

log(mean(Pr(test|train))
Year Independence BN (Same) BN (Different)
2006 -62.09 -59.26 -61.80
2007 -64.82 -62.21 -60.85
2008 -66.00 -62.87 -60.42
2009 -63.34 -59.94 -60.20
2010 -63.55 -60.73 -60.56
2011 -62.40 -59.64 -60.26
2012 -63.09 -60.68 -60.70

Table 2. Accuracy of learned models.

To quantify how well a given
model explains our test data, we
compute a joint probability of the
data set. For continuous-valued vari-
ables, we integrate the appropriate
Probability Density Function (PDF)
over the 1%-wide interval in which
the observed value falls. Table 2
presents the log of the mean proba-
bility of a given year’s test data with
respect to the models (independence
in Column 2, Bayesian network in
Column 3) learned from the other years’ training data. The Bayesian network model
consistently outperforms the independence model by multiple orders of magnitude, pro-
viding strong evidence that the dependency structure provides critical information.
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5 Analysis of Bayesian Network Models

While our Bayesian networks offer predictive value, there is still room for improvement
in their accuracy. However, the very significant improvement gained by the networks’
dependency structure provides evidence that we can extract insight by inspecting the
networks themselves. Furthermore, such examination can also inform us as to where
our network models are doing well and where they are doing poorly.

5.1 Variations in Models over Time

Ideally, we would arrive at a time-invariant model, so that we can reuse the same model
year after year, simply by providing it with the given year’s event data. Given this goal,
one question that arises is the degree to which the Bayesian network models are gener-
alizable over time. To answer this question, we first took each of the seven network and
independence models from Table 2 and measured their accuracy against the test data
from other years as well. For each year of test data, the Bayesian networks outperform
the best independence model by multiple orders of magnitude. In fact, the accuracy
rank of each year’s model, both for the Bayesian network and independence models, is
consistent across test sets, an interesting phenomenon to study in future work.

First Event Second Event
Host a visit → Make a visit
Use conventional military force → Express intent to meet or negotiate
Use conventional military force → Fight with small arms and light

weapons
Abduct hijack or take hostage ↔ Return release not specified below
Accuse ↔ Make a visit
Allow international involvement ↔ Provide military protection
Allow international involvement ↔ Provide military aid
Arrest/detain/charge w/legal action ↔ Consult
Arrest/detain/charge w/legal action ↔ Engage in negotiation
Arrest/detain/charge w/legal action ↔ Express intent to meet or negotiate
Arrest/detain/charge w/legal action ↔ Make a visit
Consult ↔ Criticize or denounce
Consult ↔ Engage in negotiation
Consult ↔ Return release
Consult ↔ Use conventional military force
Consult not specified below ↔ Use conventional military force
Cooperate economically ↔ Express intent to engage in material co-

operation
Express intent to cooperate ↔ Sign formal agreement
Engage in negotiation ↔ Make a visit
Make a visit ↔ Use conventional military force

Table 3. Common links in models over years 2006-2012.

We can also investigate the generalizability of the network structures by learning
a Bayesian network for a given year’s data (e.g., 2006), and then using the resulting
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structure to constrain the learning of a network for a different year (e.g., 2007). The
learning of the second network can thus modify the parameters on the links, but not the
link structure itself. We then evaluate this second Bayesian network on a third year’s
data (e.g., 2008). Table 2’s fourth column presents the average probabilities over the
test sets for each structure- and parameter-learning pair. Even when imposing a differ-
ent year’s learned structure, the resulting networks still outperform the independence
model. In fact, the networks learned when using different years for the structure- and
parameter-learning show much less variance than and sometimes outperform the origi-
nal networks. This result show more encouraging evidence of time-invariant properties
of the link structure, although further investigation is necessary.

We can also directly examine the links to see which dependencies are consistently
present across the set of networks. Table 3 lists the 20 (out of a possible 8911) links that
exist in each of the 7 networks, of which only the first 3 occur with the same direction.
The Bayesian network structure thus provides us with potential insight into event types
and interdependencies that are exhibited most frequently in the GDELT data set. It
is important to note that BN links are a subset of dependencies, so non-BN methods
cannot arrive at the same results. In particular, the absence of links does not represent
independence, but rather conditional independence. So the BN algorithm in a way finds
the most direct influences, or causal influences.

5.2 Variations in Models over Different Countries

Relationship Rank Count
USA-CAN 1 8,119
USA-UKG 2 21,176
IRN-AFG 3 2,704
USA-RUS 4 20,336
RUS-BLR 5 3,482

. . . . . . . . .
CAN-FIN 763 57
CAN-CHL 764 60
ISR-FSM 765 75
BEL-SEN 766 80
CAN-CUB 767 55

Table 4. Ranking of relationships by
accuracy in 2006.

We seek a model that is not just time-invariant,
but also actor-independent. In this section, we
investigate whether there are certain actor re-
lationships for which our models perform bet-
ter than others. Table 4 shows a partial ranking
of the relationships whose event histograms are
given the highest and lowest probabilities by our
learned networks for 2006. Table 4’s event counts
suggests that the highest-ranked pairs performed
many more actions than the lowest-ranked pairs,
even though our input data contains no informa-
tion about the volume of actions between actors
due to normalization. More precisely, the correla-
tion between the number of actions between two
actors and the pair’s rank in our model’s accu-
racy ranges over [−0.26,−0.11] over the different
years of data. In other words, our model more ac-
curately predicts the action breakdown between actors for which we have more events
in GDELT. This correlation is encouraging in that it suggests that a significant part of
the inaccuracy of our model derives from actor relationships from which we have lim-
ited observations. In other words, we might expect our model to perform better if we
were able to get a more accurate categorization of their actions by GDELT, since the
algorithms used in GDELT determine the accuracy of the event categorization.
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5.3 Ideal-Point-Distance Dependencies

The Bayesian network structure also allows us to look at the dependencies of specific
nodes of interest. For example, we can inspect the Markov blanket of the Ideal Point
distance node, i.e., its parents, children, and immediate parents of those children. Across
the 2006–2012 models, there are a total of 129 events that have appeared in the Markov
blanket of the Ideal Point distance variable. Table 5 contains the events that have ap-
peared in the Markov blanket of the Ideal Point distance node at least five times. The
size of the Markov blanket ranges from 10–128 nodes over all of the years, but if we
ignore the 2008 network, the range narrows to 10–37, representing a much smaller sub-
set than the 133 overall event types. There is one variable, corresponding to the event
category “Make optimistic comment”, that appears in the Markov blanket in all of the
learned networks. There is obviously some consistency across these networks in terms
of which nodes are connected to the Ideal point distance node. This consistency sug-
gests that there is some more general dependency between actions of these identified
categories and the UN voting patterns measured by the Ideal Point methodology. This
dependency suggests an interesting line of investigation that can be informed by politi-
cal science theories underlying that methodology.

Event Type Count Impact
Make optimistic comment 7 .0710
Meet at a third location 6 -.0237
Sign formal agreement 6 -.0592
Criticize or denounce 5 .0626
Fight with artillery and tanks 5 .0353
Provide aid 5 .0353
Make statement 5 .0327
Impose embargo, boycott, or sanctions 5 .0280
Use conventional military force 5 .0248
Demand 5 .0216
Employ aerial weapons 5 .0175
Reduce or break diplomatic relations 5 .0160

Table 5. Markov blanket of ideal points.

The Markov blanket also
provides a sufficient subnetwork
for the Ideal Point distance
node, which is conditionally in-
dependent of all other nodes in
the network given the variables
in its Markov blanket [8]. To
see how effective this subnet-
work is in predicting the exist-
ing Ideal point distances from
GDELT events, we learned a
Bayesian network over the ag-
gregation of the data from 2006
to 2011. We then computed the
conditional probability for the

Ideal Point distance for each actor pair in 2012 given the distribution of action cate-
gories and determined the probability of various intervals around the true value. We
considered different size intervals (5%, 10%, and 20%), and observed that our learned
model computes conditional probabilities (6.9%, 13.7%, and 26.2%) that exceed the
baseline predictions from a uniform distribution. The prediction here is obviously very
noisy, but again, it is a very encouraging sign that a purely data-driven modeling al-
gorithm can identify an informative dependency between only a small subset of event
types (e.g., those in the Markov blanket) and UN voting patterns.

6 Analysis of Probabilistic Dependencies

Even if there is no direct link between two nodes in the Bayesian network, there can
still be an indirect probabilistic dependency. In this section, we analyze networks over
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just GDELT events, without Ideal Point distances, allowing us to use an additional two
years of data for which Ideal Point data is not available. Thus, we still use the same 133
event types, but now over the data of 9 years, 2006–2014 from GDELT.

For each pair of events, A and B, we query the learned Bayesian network to com-
pute two conditional probabilities, Pr(B > median(B)|A > median(A)) and Pr(B <
median(B)|A < median(A)). The former (latter) represents the likelihood that events
of type B occur with high (low) frequency when events of type A occur with high (low)
frequency. We can thus roughly characterize the impact of A on B by the difference
between these two conditional probabilities. In other words, the greater the difference
in the probability, the greater impact the occurrence of A events has on the likelihood of
B events. We examined the learned Bayesian networks over the 9 years and identified
626 event pairs (out of 8778 possible) that had the same direction of impact across all
of them. Table 6 shows the event pairs in that set with the highest impact.

Mean First Event Second Event
0.8425 Host a visit Make a visit
0.1943 Allow international involvement Provide military aid
0.1379 Allow international involvement Provide military protection
0.1365 Mobilize armed forces Provide military aid
0.1323 Mobilize armed forces Allow international involvement
0.1291 Provide military aid Express intent to accept mediation

Table 6. Highest impact event pairs For GDELT.

7 Identifying Anomalous Events

Table 6 shows that the impact for “Make a visit↔ Host a visit” is more than quadruple
the next highest value. While this result is rather intuitive (i.e., when I make a visit to
you, you host a visit for me), we wished to confirm the accuracy of our intuition. To do
so, we manually reviewed 58 of the news links contained in the GDELT event records
to informally verify the event. As it turned out, 51 of the 58 links that were categorized
as “Make a visit” were also categorized as “Host a visit”. Again, this would seem as
expected, but further reading of the text revealed that only 14 of the links were actually
categorized correctly, while the rest were not related to either making or hosting a visit.

Similarly, the 30 strongest negative impacts all included “Mass expulsion” as one
of the events, despite the relative infrequency of mass expulsions over the last decade.
Examining 51 of the source news articles categorized as “Mass Expulsion”, we noticed
that only 13 were relevant. While this partial investigation is not necessarily conclusive,
it suggests an error in the parsing of these particular event types. Fortunately, manual
inspection of the news source articles showed that such systematic errors are the ex-
ception in GDELT’s extraction. However, the two examples found here demonstrate an
ability of our methodology to unearth such anomalies in GDELT’s extraction process.

8 Dynamics of Event Interdependency

Having already examined the consistency of the learned networks and their structure,
we can also examine the consistency of event interdependency within our networks
by analyzing changes in the impact that event types have on each other. By treating
each Bayesian network as a summarization of the data from its given year, we can
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extract a time series of dependency impact values. A linear regression of the impacts
over time for pairs of event types reveals interesting trends in terms of how the impacts
are changing over time. For example, Figure 1a shows the change (or lack thereof) in
the dependency between “Sign formal agreement” and “Express intent to cooperate”.
Thus, not only is the occurrence of these two event types interdependent across actor
relationships, but the magnitude of that interdependency has shown to be stable over the
9 years of data. In contrast, Figure 1b shows that the dependency between “Diminish
military engagement” and “Provide military aid” has been weakening over time.

Fig. 1. (a) Impact between “Sign formal agreement” and “Express intent to cooperate”. (b) Impact
between “Diminish military engagement” and “Provide military aid”.

9 Conclusion

In this work, we apply Bayesian network learning algorithms to available data on behav-
ior at the geopolitical level. The link structure generated between different categories of
actions provided a clear benefit in the explanation power of the models. Furthermore,
the learned structures reveal qualitative properties of the relationships among action
categories that can spur further investigation by political scientists.

It is important to note that, while we have limited our exploration to pairwise re-
lationships in this paper, the Bayesian network’s representation of the underlying joint
distribution allows us to measure the impact of arbitrary subsets of events on other arbi-
trary subsets. By leveraging this representation, we can thus greatly expand the space of
possible queries that can be answered. The generality of this underlying AI model and
its algorithms should empower political scientists to conduct analyses that are difficult
through purely statistical methods.

The analysis of our models’ actor-specific performance showed that more data led
to better accuracy. Exploiting additional data sources improves our models’ accuracy.
Use of Bayesian network learning and inference algorithms makes it straightforward to

Mean First Event Second Event
0.2530 Conduct strike or boycott Protest violently, riot
0.2444 Conduct strike or boycott Coerce
0.1634 Physically assault Employ aerial weapons
0.1625 Conduct strike or boycott Meet at a third location

Table 7. Highest impact event pairs for ICEWS.

incorporate such additional data.
In fact, we applied our method
to the iData repository of In-
tegrated Crisis Early Warning
System (ICEWS), which also
uses CAMEO codes. The inter-
esting observation was that the
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list of the highest impact pairs were totally different for ICEWS data, even though the
methods used were the same as the ones for GDELT data, see Table 7. This observation
means that we could benefit from aggregation of two data sets, in order to have a more
robust prediction of the highest impact pairs. Because each data set has its own types
of inaccuracies, the two data sets could potentially complement each other’s shortcom-
ings. Thus, complementary sources like ICEWS promise to increase the accuracy of our
models without any change in methodology.

There are potential limits to how accurate our purely data-driven models can be. It
can be impossible to distinguish some international relationships based on just event
counts extracted from the news. For example, Iran’s relationship with both Argentina
and Israel exhibit similar percentages of “Disapprove”, “Accuse”, and “Reject” events,
yet the two relationships would be considered very different from a political point of
view. It is likely that we may need to introduce domain knowledge from the political
science literature. Such domain knowledge may come in the form of hidden variables
or prior structures for our Bayesian networks from which our algorithms can bootstrap.

While there remains much more work to be done, our methodology here represents
an important first step toward automatically learning computational models of interna-
tional relations. The ever-increasing volume of online data offers a detailed source of
geopolitical behavior that can move formal modeling beyond the high-level abstractions
that have been necessary in the past. With the accompanying advances in AI algorithms
for constructing such models from data, there is now a valuable opportunity for a new
dialog between AI researchers and political scientists.
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