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Introduction

In complex, dynamic and uncertain environments
extending from disaster rescue missions, to future
battlefields, to monitoring and surveillance tasks, to virtual
training environments, to future robotic space missions,
intelligent agents will play a key role in information
gathering and filtering, as well as in task planning and
execution.  Although physically distributed on a variety of
platforms, these agents will interact with information
sources, network facilities, and other agents via
cyberspace, in the form of the Internet, Intranet, the secure
defense communication network, or other forms of
cyberspace. Indeed, it now appears well accepted that
cyberspace will be (if it is not already) populated by a vast
number of such distributed, individual agents.

Thus, a new distributed model of agent development has
begun to emerge. In particular, when faced with a new
task, this model prescribes working with a distributed set
of agents rather than building a centralized, large-scale,
monolithic individual agent. A centralized approach suffers
from problems in robustness (due to a single point of
failure), exhibits a lack of modularity (as a single
monolithic system), suffers from difficulty in scalability
(by not utilizing existing agents as components), and is
often a mismatch with the distributed ground reality. The
distributed approach addresses these weaknesses of the
centralized approach. Our hypothesis is that the key to the
success of such a distributed approach is teamwork in
cyberspace. That is, multiple distributed agents must
collaborate in teams in cyberspace so as to scale up to the
complexities of the complex and dynamic environments
mentioned earlier. For instance, consider an application
such as monitoring traffic violators in a city. Ideally, we
wish to be able to construct a suitable agent-team quickly,
from existing agents that can control UAVs (Unmanned
Air Vehicles), an existing 3D route-planning agent, and an
agent capable of recognizing traffic violations based on a
video input. Furthermore, by suitable substitution, we wish
to be able to quickly reconfigure the team to monitor
enemy activity on a battlefield or ill egal poaching in

forests. Such rapid agent-team assembly obviates the need
to construct a monoli thic agent for each new application
from scratch, preserves modularity, and appears better
suited for scalabili ty.

Of course, such agent teamwork in cyberspace raises a
variety of important challenges. In particular, agents must
engage in robust and flexible teamwork to overcome the
uncertainties in their environment. They must also adapt by
learning from past failures. Unfortunately, currently,
constructing robust, flexible and adaptive agent teams is
extremely difficult. Current approaches to teamwork suffer
from a lack of general-purpose teamwork models, which
would enable agents to autonomously reason about
teamwork or communication and coordination in teamwork
and to improve the team performance by learning at the
team level. The absence of such teamwork models gives
rise to four types of problems. First, team construction
becomes highly labor-intensive. In particular, since agents
cannot autonomously reason about coordination, human
developers have to provide them with large numbers of
domain-specific coordination and communication plans.
These domain-specific plans are not reusable, and must be
developed anew for each new domain. Second, teams
suffer from inflexibili ty. In real-world domains, teams face
a variety of uncertainties, such as a team member’s
unanticipated failure in fulfilling responsibiliti es, team
members’ divergent beliefs about their environment
[CL91], and unexpectedly noisy or faulty communication.
Without a teamwork model, it is difficult to anticipate and
preplan for the vast number of coordination failures
possible due to such uncertainties, leading to inflexibil ity.
A third problem arises in team scale-up. Since creating
even small -scale teams is difficult, scaling up to larger
ones is even harder. Finally, since agents cannot reason
about teamwork, learning about teamwork has also proved
to be problematic. Thus, even after repeating a failure,
teams are often unable to avoid it in the future.

To remedy this situation and to enable rapid development
of agent teams, we are developing a novel software system
called TEAMCORE that integrates a general-purpose
teamwork model and team learning capabiliti es.



TEAMCORE provides these core teamwork capabiliti es to
individual agents, i.e., it wraps them with TEAMCORE.
Here, we call the individual TEAMCORE “wrapper” a
teamcore agent. A teamcore agent is a pure “social agent” ,
in that it is provided with only core teamwork capabiliti es.
Given an existing agent with domain-level action
capabiliti es (i.e., the domain-level agent), it is made team-
ready by interfacing with a teamcore agent.  Agents made
team-ready will be able to rapidly assemble themselves
into a team in any given domain.  That is, unlike past
approaches such as the open-agent-architecture (OAA) that
provides a centralized blackboard facilit ator to integrate a
distributed set of agents, TEAMCORE is fundamentally a
distributed team-oriented system.

Our goal is a TEAMCORE system capable of generating
teams that are:

1. Flexible and robust, able to surmount the uncertainties
mentioned above.
2. Capable of scale-up to hundreds of team members
3. Able to improve the team performance by learning at the
team level and avoiding past team failures.

An initial version of TEAMCORE system based on the
Soar [Newell90] integrated agent architecture is currently
up and running. A distributed set of teamcore agents can
form teams in cyberspace. The underlying communication
infrastructure is currently based on KQML. The rest of this
document now briefly describes the TEAMCORE design,
architecture and implementation.

TEAMCORE Design and Architecture

Figure 1 ill ustrates the basics of the TEAMCORE design.
It shows existing agents with domain-level expertise,
wrapped by teamcore agents. The communication between
teamcore agents themselves is based on KQML. KQML is
also used in communication with the domain-level agents,
but other techniques may also be used. For instance, one
domain-level agent may be a route-planner, another a UAV
(Unmanned Air Vehicle), and yet another a weather-query
service. The teamcore agents wrap these three individual
agents to create a team. The teamcore agents themselves do
not possess the domain-level capabiliti es of the individual
domain-level agents (such as the capabili ty to take the
relevant actions to fly a UAV). However, they provide the
necessary teamwork expertise.

Teamcore agents’ teamwork expertise can be categorized
into two components, a domain-specific and a domain-
independent component, the latter forming the central part
of teamcore. The domain-specific part consists of domain-
specific team reactive plans. These plans define the role of
the teamcore agent in the team and are provided by a user
or another teamcore agent. While these team reactive plans
are much like situated-plans or reactive-plans for

individual agents [Firby 87], the key difference is that they
explicitly express joint team activities of the relevant team.
In the above example, the team reactive plans will refer to
the team actions of the UAV, route-planner and weather-
query service. These team reactive plans essentially ensure
that all teamcore agents know the overall team procedure.
This team procedure may be to execute a team activity, to
plan a team activity, to collaboratively design an artifact, to
collaboratively schedule or to collaboratively monitor and
diagnose. Having common knowledge of team procedures
is akin to providing the team with the knowledge of
“standard-operating-procedures” in a military setting.

Figure 1: The TEAMCORE Architecture

Common knowledge of team procedures obviously does
not protect the team members from incomplete or incorrect
beliefs about the environment or other team members,
from unexpected failures and successes, unexpected
communication failures and so on. The domain-
independent component of teamcore is responsible for
surmounting such uncertainties of dynamic complex
domains and adapting to the current environment. The
heart of the domain-independent component is teamwork
reasoning based on a general model of teamwork. This
teamwork model encodes common-sense teamwork
knowledge in the form of domain-independent axioms, that
explicitly specify a team member’s responsibiliti es and
commitments in teamwork. The model enables individual
agents to autonomously reason about coordination and
communication in teamwork, and thus provides significant
teamwork flexibili ty and robustness. In building this
model, we have built on previous work in theories of
teamwork, in particular, the Joint Intentions [LeveCN90]
and SharedPlans [GrosK96] theories, as well as our
experience in building agent teams for a variety of domains
[Tambmany98][Tamb97bjair][Dreamteam98a, b]. This
practical experience has led us to integrate novel
components into the teamwork model, such as a decision-
theoretic component to enable selective inter-agent
communication.
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The teamwork model in TEAMCORE also includes
CONSA (a collaborative negotiation system based on
argumentation) [QT98a, QT98b]. Due to agents'
incomplete information or different interpretation of
information, conflicting beliefs and plans often arise in
teamwork. CONSA addresses the problems of negotiation
to resolve these conflicts, based on an argumentation
pattern proposed in [Toulmin58]. The argumentation
process in CONSA involves a proposal/evaluate/counter-
proposal cycle between a sender and a receiver, and
generation and refutation of these proposals are
accomplished by several "argumentation moves" such as
rebut, undercut and improve-support (which is required for
CONSA' s collaborative aspect). CONSA is embedded in
TEAMCORE' s teamwork model and exploits the latter' s
domain independent teamwork knowledge to enable
generalized and reusable argumentation knowledge that
agents can use in negotiation. CONSA is also
collaborative, so it requires agents to detect real conflicts
where negotiation will improve team performance, which
is based on comparing different strengths of two
contradicting beliefs between teammates. To address
practical issues due to TEAMCORE' s dynamic, complex
environment, CONSA uses a decision-theoretic approach
to evaluate costs and utilities of negotiation before
deciding to start, and a pruning process before
communicating proposals to reduce communication
overhead.

The domain-independent component of TEAMCORE also
includes a role-based team learning capability based on
organizational adaptation for better team performance. In
order to accomplish tasks and missions that require
collaborative effort in a real-world situation that is
dynamic and uncertain, a group of individual agents must
adapt and learn as a team. Although the notion of “team
learning” clearly implies more than a collection of
individual learning agents, the precise difference between
team learning and single-agent learning is not clearly
defined.

In pursuing our objective to build adaptive agent teams, we
have analyzed a number of previous organizational
learning architectures in different domains, and proposed a
definition of team learning based on the notion of “roles”
and “assignments”. A role is defined as responsibilities in
service of a team plan, and an assignment assigns members
of a team to the roles. In the teamcore architecture, the
domain-specific component of a teamcore agent represents
its role. Each domain-level agent, depending on its
capability, is assigned to a teamcore agent and there might
be several types of role relationships among teamcore
agents. For example, in a team of leader-follower
formation flight of two URAVs (Unmanned
Reconnaissance Air Vehicles), the role of the leader may
be specified as route planning, while the role of the
follower is specified as following the leader. With these

two roles, there are two possible role assignments for the
two URAVs.

Given these concepts, team learning can be performed in at
least four aspects to continually improve the team
performance: (1) to improve an individual’s ability to
perform a role; (2) to change role assignment; (3) to
change roles themselves (such as create, delete, modify,
combine, or split roles); and (4) to modify the team
organization by changing the relationship between roles.
In our two URAV example, the first two aspects are
obvious. For the third aspect, the team may learn to modify
the leader' s role so as to avoid the foggy areas where the
follower cannot see the leader. For the fourth aspect, the
team may learn to change the distance maintained between
two URAVs. In contrast, non-team learning (or single-
agent learning) covers only the first of the four aspects of
team learning.

To operationalize this definition, we have developed a new
team learning framework called ROBOL (ROle Based
Organizational Learning) [SS98] based on our previous
work on autonomous learning [Shen93,Shen94,WS97],
multi-robot systems [Dreamteam98a, Dreamteam98b], and
the concept of a Cooperation Structure proposed by
d’Inverno, Luck and Wooldridge [dLW97]. Each teamcore
agent maintains and modifies a Partial Organizational
Structure (POS). A POS is an acyclic graph where nodes
are roles and edges are the relationship between roles. Each
node is also labeled with a domain-level agent identifier to
specify the role assignment. A POS graph is “partial” in
the sense that it may only provide a local view of the team
activities. In the context of a team, each teamcore agent
uses its own POS to perform its tasks. Based on the
feedback at the team level, all teamcore agents will modify
their own POS such that the composition of all POSs will
converge towards a better performance at the team level.
The novel aspect of POS is that it separates roles from
domain-level agents and allows richer relationships
between roles. Furthermore, it uses team performance as a
measurement of the quality of the POS and permits
adaptation in a distributed fashion. To address the problem
of how a set of POSs can be modified to produce a better
global measurement, we are also investigating Pareto
Rationality [WS97] as a negotiation strategy.

We are currently implementing this POS framework and
testing it on three domains: manufacturing scheduling
where agents may dynamically change their roles
according to the output of an assembly line, marching-band
formation where agents have to learn to establish  suitable
role assignments and role relationships in order to improve
the quality of the formation, and helicopter engage-attack
where agents must synchronize their activities. Limited
applications are also considered in the RoboCup
[MatsNH96] domain, where a team of agents must perform



in a highly dynamic, uncertain, and adversarial
environment.

Some key teamwork reasoning capabilities provided by the
teamwork model include the following:

1. Enable agents to responsibly commit to a given team
goal.

2. Enable agents to learn how to reorganize their team to
improve the team performance. For example, if an
individual team member is unable to perform its role in the
team thereby disabling the team from achieving its current
goal, then other agents may reorganize the team to
compensate for this failure.

3. Enable agents to share relevant information with others,
where relevance is determined based on the current joint
goal being performed.

4. Enable agents to reason about selective communication
with others, where selectivity is determined via a decision-
theoretic reasoning component.

In previous work, we have shown applications of an earlier
version of this teamwork model called STEAM
[Tambe97a, TAAEKMM98]. STEAM was successfully
used in several applications --- STEAM-based synthetic
pilot-agent teams have successfully participated in
DARPA’s synthetic theater of war (STOW)
demonstrations in 1997 [Tambe97b] and it was also reused
in developing our award-winning team for the
RoboCup’97 international multi-agent soccer tournament
[Tambemany98].

The TEAMCORE project is building on STEAM’s earlier
successes, extending it in several ways. First, in our earlier
implementation, STEAM was integrated within an agent’s
knowledge base. In contrast, TEAMCORE separates out
the teamwork knowledge into a separate teamcore agent.
This teamcore agent is currently capable of communicating
via KQML (a capability not available within STEAM).
Second, novel capabilities such as the negotiation
capability (CONSA) have been added to TEAMCORE’s
teamwork model. Finally, teamcore agents will be
provided with novel role based team learning capabilities.

Summary and Current Status

The potential contributions of the TEAMCORE project for
agent teamwork in cyberspace, both in the military and
commercial arenas, are very significant. The goal of
TEAMCORE is to make agents in cyberspace “team-
ready”, by wrapping them with teamcore agents. Thus,
TEAMCORE could rapidly develop flexible, robust and
adaptive agent teams for information gathering and
filtering, as well as mission planning and execution. For
instance, it would enable rapid creation of robust and

flexible teams from agents aboard UAVs (Unmanned Air
Vehicles), satellites and persistent stores, route-planners
and other relevant agents for rapid information gathering
and sharing, for applications such as traffic monitoring, or
battlefield monitoring. Agent teams could also be
assembled for distributed planning or mixed-initiative
planning. Teamwork among synthetic forces in battlefield
simulations would improve as well, improving training and
analysis. Furthermore, TEAMCORE’s contributions could
extend to a range of agent-based systems, from agent-
teams for air-traffic control to teams of spacecraft.

The current Unix implementation of the teamcore agents
includes an extended version of the STEAM rules in the
Soar integrated architecture, as well as the KQML
infrastructure for communication. The teamcore agents
form teams, make joint commitments, and maintain
coherent group beliefs, all through the teamwork reasoning
mentioned above.  For instance, when wrapping pilot
agents flying helicopters in a ModSAF simulation
environment, the teamcore agents decide upon a joint
mission and then provide individual task information to
each pilot agent.  The helicopters can thus perform team
tasks with only minimal alteration to the original agent
code.  In addition, the required alteration concerns only the
teamcore communication interface, which builds on
domain-independent knowledge of tasking and monitoring.
The end system demonstrates TEAMCORE' s ability to
support flexible team assembly in a dynamic environment.

The implementation of ROBOL is currently underway. In
particular, we have built a Java-based system that allows
flexible adaptations of roles, role assignments, and role
relationships. It will interface with multiple environments
such as a Java simulation environment or ModSAF. We
will test this implementation in several example domains,
including the adaptive marching example and helicopter
missions in ModSAF. Furthermore, we are also
implementing the learning component of this framework to
change Soar' s production rules.

Planned extensions to the current TEAMCORE system
also include the integration of a novel bottom-up data-
driven modeling approach using augmented Markov
models (AMMs) [Goldberg & Mataric 1998].  The
approach can learn models of the interaction dynamics
between an agent and its environment, and may be
employed to achieve various levels of coordination among
the members of a team.  Applications of the model include
monitoring individual performance, group performance,
and characterizing the experience and abilities of team
members.  Models are generated on-line and in real-time
with little computational and space overhead, thus
conforming to limitations that may exist in many practical
team-based scenarios.  This approach builds on previous
work exploring tradeoffs between various robot team



structures for performing a task [Goldberg & Mataric
1997].
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