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Abstract 

Probabilistic context-free grammars (PCFGs) provide 
a simple way to represent a particular class of dis- 
tributions over sentences in a context-free language. 
Efficient parsing algorithms for answering particular 
queries about a PCFG (i.e., calculating the probability 
of a given sentence, or finding the most likely parse) 
have been applied to a variety of pattern-recognition 
problems. We extend the class of queries that can be 
answered in several ways: (1) allowing missing to- 
kens in a sentence or sentence fragment, (2) supporting 
queries about intermediate structure, such as the pres- 
ence of particular nonterminals, and (3) flexible condi- 
tioning on a variety of types of evidence. Our method 
works by constructing a Bayesian network to repre- 
sent the distribution of parse trees induced by a given 
PCFG. The network structure mirrors that of the chart 
in a standard parser, and is generated using a similar 
dynamic-programming approach. We present an algo- 
rithm for constructing Bayesian networks from PCFGs, 
and show how queries or patterns of queries on the net- 
work correspond to interesting queries on PCFGs. 

Introduction 
Most pattern-recognition problems start from ob- 
servations generated by some structured stochas- 
tic process. Probabilistic context-free gram- 
mars (PCFGs) (Gonzalez & Thomason 1978; 
Charniak 1993) have provided a useful method for 
modeling uncertainty in a wide range of structures, 
including programming languages (Wetherell 1980), 
images (Chou 1989), speech signals (Ney 1992), and 
RNA sequences (Sakakibara et al. 1995). Domains like 
plan recognition, where non-probabilistic grammars have 
provided useful models (Vilain 1990), may also benefit 
from an explicit stochastic model. 

Once we have created a PCFG model of a process, we can 
apply existing PCFG parsing algorithms to answer a vari- 
ety of queries. However, these techniques are limited in the 
types of evidence they can exploit and the types of queries 
they can answer. In particular, the standard techniques gen- 
erally require specification of a complete observation se- 

quence. In many contexts, we may have only a partial se- 
quence available, or other kinds of contextual evidence. In 
addition, we may be interested in computing the probabili- 
ties of types of events that the extant techniques do not di- 
rectly support. Finally, the PCFG model itself imposes re- 
strictions on the probabilistic dependence structure, which 
we may wish to relax. 

To extend the forms of evidence, queries, and distribu- 
tions supported, we need a flexible and expressive repre- 
sentation for the distribution of structures generated by the 
grammar. We adopt Bayesian networks for this purpose, 
and define an algorithm to generate a network represent- 
ing the distribution of possible parse trees corresponding to 
a given PCFG. We then present algorithms for extending 
the class of queries to include the conditional probability 
of a symbol appearing anywhere within any region of the 
parse tree, conditioned on any evidence about symbols ap- 
pearing in the parse tree. The Bayesian network also pro- 
vides a flexible structure for future extensions to context- 
sensitive probabilities, similar to the probabilistic parse ta- 
bles of (Briscoe & Carroll 1993). 

robabilistic Context-Free Gra ars 
A probabilistic context-free grammar is a tuple 
(HT,HN,E~,P), where HT is the set of terminal 
symbols, HN the set of nonterminal symbols, El E HN 
the start symbol, and P the set of productions. Productions 
taketheformE -+ 5 (p), withE E HN,~$ E (HTUHN)+, 
andp = Pr( E + [), the probability that E will be ex- 
panded into the string [. The probability of applying a 
particular production to an intermediate string is condi- 
tionally independent of what productions were previously 
applied to obtain the current string, or what productions 
will be applied to the other symbols in the current string, 
given the presence of the left-hand symbol. Therefore, the 
probability of a given derivation is simply the product of the 
probabilities of the individual productions involved. The 
probability of a string in the language is the sum taken over 
all possible derivations. In the grammar (from (Charniak 
1993)) shown in Figure 1, the start symbol is S. 
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Figure 1: A probabilistic context-free grammar. 

PP - p *p (1.0) 
P - like (1.0) 
v - swat (0.2) 

n -+ flies (0.45) 
n - ants (0.5) 

s ~1~4~2) 

I 
“P (194.1) 

E-yh Pp (3,2,1) 

I 

\ 
nP (2,1,3) 

1 

v (4,1,3) 

verb (1,1,2) noun (2,1,2) 1 

1 1 

Pr P 

I 

(3,W noun (4,1,2) 

swat U,l,l) flies (2,l.l) 
I 

like (3,lJ ants (4,W 

Figure 2: Parse tree for Swat flies like ants, with (i, j, k) 
indices labeled. 

Indexing Parse Trees 

Calculating the probability of a particular parse tree can 
sometimes be useful, but we may also wish to derive the 
probability of some more abstract feature of a parse tree. To 
pose such queries, we require a scheme to specify events as 
the appearance of symbols at designated points in the parse 
tree. We use three indices to identify a node in a parse in 
terms of the structure of the subtree rooted at that node. Two 
indices delimit the leaf nodes of the subtree, defining a sub- 
string of the entire terminal sequence. The index i refers to 
the position of the substring within the entire terminal string, 
with i = 1 indicating the start of the string. The index j 
refers to the length of the substring. For example, the pp 
node in the parse tree of Figure 2 is the root of the subtree 
whose leaf nodes are like and ants, so i = 3 and j = 2. 
These i and j indices are commonly used in PCFG algo- 
rithms. 

However, we cannot always uniquely specify a node with 
these two indices alone. In the branch of the parse tree pass- 
ing through np, n, and flies, all three nodes have i = 2 and 
j= 1. To differentiate them, we introduce the k index, de- 
fined recursively. If a node has no child with the same i and 
j indices, then it has k: = 1. Otherwise, its k: index is one 
more than the Ic index of its child. Thus, the flies node has 
k = 1, the n node above it has a Ic = 2, and its parent np 
haslc = 3. We have labeled each node in the parse tree of 
Figure 2 with its (i, j, k) indices. 

We can think of the k index of a node as its level of ab- 
straction, with higher values indicating more abstract sym- 

bols. For instance, the flies symbol is a specialization of 
the n concept, which, in turn, is a specialization of the np 
concept. Each possible specialization corresponds to an ab- 
straction production of the form E --) E’. In a parse tree 
involving such a production, the nodes for E and E’ will 
have identical i and j values, but the k value for E will be 
one more than that of E’. We denote the set of abstraction 
productions as PA E P. 

All other productions are decomposition productions, in 
the set PO = P \ PA, and have two or more symbols on 
the right-hand side. If a node E is expanded by a decom- 
position production, the sum of the j values for its children 
will equal its own j value, since the length of the original 
substring derived from E must equal the total lengths of the 
substrings of its children. In addition, since each child must 
derive a string of nonzero length, no child has the same j in- 
dex as E, which must then have a k value of 1. Therefore, 
abstraction productions connect nodes whose indices match 
in the i and j components, while decomposition productions 
connect nodes whose indices differ. 

Dynamic Programming Algorithm 

We can compute the probability of a string by summing 
probabilities over the set of its possible parse trees, which 
grows exponentially with the string’s length. Fortunately, 
parse trees often share common subtrees, a fact exploited 
by the standard dynamic programming approach for both 
probabilistic and non-probabilistic CFGs (Jelinek, Lafferty, 
& Mercer 1992). The central structure is a table, or chart, 
storing previous results for each substring in the input sen- 
tence. Each entry in the chart corresponds to a substring 
xi * * . x:i+j - 1 (ignoring abstraction level, k) of the observa- 
tion string 21 . . . XL. For each symbol E, an entry contains 
the probability that the corresponding substring is derived 
from that symbol, Pr(xi e. .xd+j-1IE). 

At the bottom of the table are the results for substrings 
of length one, and the top entry holds the result for the en- 
tire string, Pr(xl . . . XL 1 El), which is exactly the probabil- 
ity of the observed string. We can compute these probabil- 
ities bottom-up, since we know that Pr (xi 1 E) = 1 if E is 
the observed symbol xi, and 0 otherwise. We can define all 
other probabilities recursively as the sum, over all produc- 
tions E + 5 (p), of the product of p and the probability 
Pr(xi . 0 . xi+j- 1 I[). Here, we can make use of the PCFG 
independence assumptions, and compute this probability as 
the product of the probabilities of the individual symbols, 
where we have to consider all possible substring lengths for 
these symbols. A slight alteration to this procedure also al- 
lows us to obtain the most probable parse tree for the ob- 
served string. 

To compute the probability of the sentence Swat flies 
like ants, we would use the algorithm to generate the table 
shown in Figure 3, after eliminating any intermediate entries 
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Figure 3: Chart for Swat flies like ants. 

that were not referenced by higher-level entries. There are 
also separate entries for each production, though this is not 
necessary if we are only interested in the final sentence prob- 
ability. In the top entry, there are two listings for the produc- 
tion s-+np VP, with different substring lengths for the right- 
hand side symbols. The sum of all probabilities for produc- 
tions with s on the right-hand side in this entry yields the 
total sentence probability of 0.001011. 

This algorithm is capable of computing any “inside” 
probability, the probability of a particular terminal string ap- 
pearing inside the subtree rooted by a particular nontermi- 
ml. We can work top-down in an analogous manner to com- 
pute any “outside” probability (Charniak 1993), the proba- 
bility of a subtree rooted by a particular nonterminal appear- 
ing amid a particular terminal string. Given these probabil- 
ities we can compute the probability of any particular non- 
terminal symbol appearing in the parse tree as the root of a 
subtree covering some substring. For example, in the sen- 
tence Swat flies like ants, we can compute the probability 
that like ants is a prepositional phrase, using a combina- 
tion of inside and outside probabilities. The Left-to-Right 
Inside (LRI) algorithm (Jelinek, Lafferty, & Mercer 1992) 
specifies how we can manipulate certain probability matri- 
ces and combine the results with the inside probabilities to 
obtain the probability of a given initial substring, such as the 
probability of a sentence (of any length) beginning with the 
words Swat flies. Furthermore, we can use such initial sub- 
string probabilities to compute the conditional probability of 
the next observation given all previous observations. 

However, there are still many types of queries not covered 
by existing algorithms. For example, given observations of 
arbitrary partial observation strings, it is unclear how to ex- 
ploit the standard chart directly. Similarly, we are unaware 
of methods to handle observation of nonterminals only (e.g., 
the last two words form a prepositional phrase). We seek, 
therefore, a mechanism that would admit observational evi- 
dence of any form as part of a query about a PCFG, without 
requiring us to enumerate all consistent parse trees. 

ayesian Networks for PCFGs 
Bayesiavz networks (Pearl 1987) provide an expressive and 
efficient representation for probability distributions. They 
are expressive in that they can represent any joint distribu- 
tion over a finite set of discrete-valued random variables. 
They are efficient in that they exploit an important class 
of conditional independence relationships among the ran- 
dom variables. Moreover, Bayesian networks are conve- 
nient computational devices, supporting the calculation of 
arbitrary conditional probability expressions involving their 
random variables. Therefore, if we can create a Bayesian 
network representing the distribution of parse trees for a 
given probabilistic grammar, then we can incorporate par- 
tial observations of a sentence as well as other forms of ev- 
idence, and determine the resulting probabilities of various 
features of the parse trees. 

We base our Bayesian-network encoding of PCFGs on 
the parse tree indexing scheme presented in the previous 
section The random variable NQ~ denotes the symbol in 
the parse tree at the position indicated by the (i, j, L) in- 
dices. Index combinations not appearing in the tree corre- 
spond to N variables taking on the null value nil. To sim- 
plify the dependency structure, we also introduce random 
variables Pdjk to represent the productions that expand the 
corresponding symbols Naj k . However, the identity of the 
production is not quite sufficient to render the corresponding 
children in the parse tree conditionally independent, so we 
dictate that the P variable take on different values for each 
breakdown of the right-hand symbols’ substring lengths. 
This increases the state space of the variables, but simplifies 
the dependency structure. 

rogramming Phase 
To complete the specification of the network, we identify the 
symbols and productions making up the domains of our ran- 
dom variables, as well as the conditional probability tables 
representing their dependencies. The PCFG specifies the 
relative probabilities of different productions for each non- 
terminal, but to specify the probabilities of alternate parse 
trees in terms of the Najk variables we need the probabili- 
ties of the length breakdowns. We can calculate these with a 
modified version of the standard dynamic programming al- 
gorithm sketched in the previous section. 

This modified algorithm constructs a chart based on the 
set of all possible terminal strings, up to a bounded length n. 
Our resulting chart defines a function ,8( E, j, k) (analogous 
to the inside probability in the standard parsing algorithm), 
specifying the probability that symbol E is the root node of 
a subtree, at abstraction level L, with a terminal substring of 
length j. Because this probability is not relative to a partic- 
ular observation string, we can ignore the i index. 

As in the previous dynamic programming algorithms, we 
can define this function recursively, initializing the entries to 
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Figure 4: Final table for sample grammar. 

0. Again, we start at j = 1 and work upward to j = n. For 
each terminal symbol 2, P(z, 1,l) = 1. For X: > 1, only ab- 
straction productions are possible, because, as discussed be- 
fore, decomposition productions are applicable only when 
k = 1. For each abstraction production E ---) E’ (p), we 
incrementP(E, j,Ic)byp.P(E’, j,k-1). Iflc = l,onlyde- 
composition productions are applicable, so for each decom- 
position production E + El Es s . . Em (p), each substring 
length breakdown ji, . . . , j, (such that the Et j, = j), 
and each abstraction level kt legal for each j, , we increment 
/3( E, j, k) by p . nz, p( Et, jt , kt ). The table of Figure 4 
lists the nonzero ,0 values for our grammar over strings of 
maximum length 4. 

For analysis of the complexity of this algorithm, it is use- 
ful to define d as the maximum abstraction level, and m as 
the maximum number of symbols on a production’s right- 
hand side. For a maximum string length of n, the table re- 
quires space 0( n2d 1 HN I), exploiting the fact that /3 for ter- 
minal symbols is one in the bottom row and zero elsewhere. 
For a specific value of j, there are O(d) possible k values 
greater than 1, each requiring time 0( 1 PA I). For k = 1, 
the algorithm requires time 0( I PD I jmB1dm), for the eval- 
uation of all decomposition productions, as well as all pos- 
sible combinations of substring lengths and levels of ab- 
stractions for each symbol on the right-hand side. There- 
fore, the whole algorithm would take time O(n[d I PA I + 
IPD In “-ldm]) = O(IPln”d”). 

As an alternative, we can modify the standard chart pars- 
ing algorithm (Younger 1967; Earley 1970) to compute the 
required values for ,8 by recording the k values and probabil- 
ities associated with each edge. We would also ignore any 
distinctions among terminal symbols, since we are comput- 
ing values over all possible terminal strings. Therefore, the 
time required for computing /!? is equivalent to that required 
for parsing a terminal string of length n, which is 0( n3) ig- 
noring the parameters of the grammar. 

Network Generation Phase 

Upon completion of the dynamic programming phase, we - - 
can use the table entries to compute the domains of random 
variables N. e ag k and Pij k and the required conditional proba- 
bilities. We begin at the top of the abstraction hierarchy for 

strings of the maximum length n starting at position 1. The 
corresponding symbol variable can be either El or the spe- 
cial null symbol nil*, indicating that the parse tree begins at 
some other point below. The prior probability of the start 
symbol is proportional to ,0( El, n, k), while that of nil* is 
proportional to the sum of all other ,B values for the start 
symbol El. The exact probabilities are normalized so that 
the sum equals one. 

We start with this node and pass through all of the 
nodes in order of decreasing j and k. With each N 
node, we insert the possible productions into the do- 
main of its corresponding P node. For a production 
rule r that maps E to El . . . Ena with probability p and 
a breakdown of substring lengths and abstraction lev- 
els (ji , ICI), . . . , (j,, km), the conditional probability 
Pr(&jk = r ((h, h), - - -, (jm,km>) INijk = E) m 

~-nP(EtA,kt). m e exact probability is normalized so 
that the sum over all rules P and breakdowns ((j, , kt)) for a 
particular left-hand symbol E is 1. For any symbol E’ # E 
in the domain of Nij k , we can set the conditional probability 
Pr(Pijk = r ((jl, kl), - - -, (h, km)) INijk = E’) = 0. 

A symbol variable which takes on the value nil has no 
children, so its production variable will also take on a null 
value (i.e., Pr(Pijk = tlillNijr, = nil) = 1). For the special 
symbol nil*, there are two possibilities, either the parse tree 
starts at the next level below, or it starts further down the 
tree. In the first case, the production is nil* + El, and has 
a conditional probability proportional to the ,f3 value of El 
at the j and k value immediately below the current position, 
given that Ndjk = nil*. In the second case, the production is 
nil* + nil*, and has a conditional probability proportional 
to the sum of the p values of El at all j and k more than one 
level below, given that Nijk = nil*. 

When all possible values for a production variable are 
added, we add a link from the corresponding node to the 
variables corresponding to each symbol on the right-hand 
side and insert these symbols into the domains of these child 
variables. A child nodes takes on the appropriate right-hand 
side symbol with probability 1 if the parent node has taken 
on the value of the given production. A child node takes on 
the value nil with probability 1 if none of its parent nodes 
assign it a symbol value. 

Figure 5 illustrates the network structure resulting from 
applying this algorithm to the table of Figure 4 with a length 
bound of 4. In general, the resulting network has O(n2d) 
nodes. The n N. ali variables have 0( I HT I) states each, 
while the O(n2d) other N variables have 0( I HN I) possi- 
ble states. The Pijk variables for k > 1 (of which there are 
O(n2 d)) have a domain of 0( I PA I) states. For Pij 1 vari- 
ables, there are states for each possible decomposition pro- 
duction, for each possible combination of substring lengths, 
and for each possible level of abstraction of the symbols on 
the right-hand side. Therefore, the Pij 1 variables (of which 
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Figure 5: Network from example grammar. 

there are O(n2)) have a domain of 0( IPD I jmeldm) states. 
Unfortunately, even though each particular P variable 

has only the corresponding N variable as its parent, a given 
Ndjk variable could have potentially O(i . (n - i - j)) 
P variables as parents, and the size of a node’s conditional 
probability table is exponential in the number of its par- 
ents. If we define T to be the maximum number of en- 
tries of any conditional probability table in the network, 
then the total time complexity of the algorithm is then 
O(n2dlPAIT + n21PDlnmw1dmTm + ndT + n2dT) = 

OWln m+ldmTm), which dwarfs the complexity of the 
dynamic programming algorithm for the ,8 function. How- 
ever, this network is created only once for a particular gram- 
mar and length bound. 

Inference 
The Bayesian network can answer any of the queries ad- 
dressed by the usual parsing algorithm. To find the prob- 
ability of a particular terminal string 21 . . . XL, we can in- 
stantiate the variables Nili to be xi, for i < 15, and nil, for 
i > L. Then, we can use any of the standard Bayesian net- 
work propagation algorithms to compute the probability of 
this evidence. The result is the conditional probability of the 
sentence, given that the string is bounded in length by n. 
We can easily acquire the unconditional probability, since 
the probability of a string having length no more than n is 
the sum of the ,8 values for El over all lengths of n and un- 
der. To find the most probable parse tree, we would use the 
standard network algorithms for finding the most probable 
configuration of the network. 

The network represents a distribution over strings of 
bounded length, so we cannot obtain the same probability of 
an initial substring ~1x2 . a . XL as (Jelinek, Lafferty, & Mer- 

cer 1992), which considered all completion lengths. How- 
ever, we can find initial substring probabilities over comple- 
tions of length bounded by n - L. The algorithm is identical 
to that for the probability of the entire sentence, except that 
we do not instantiate the Nili variables beyond i = L to be 
nil. 

The procedure for finding the probability that a particu- 
lar symbol derives a particular substring is complicated by 
the fact that there are multiple levels of abstraction possible 
for a particular substring. Therefore, after we instantiate the 
evidence, we must query all of the N variables for the par- 
ticular i and j values of interest. We can start with the a par- 
ticular k value and find the posterior probability of Nij k be- 
ing the symbol of interest. Having “counted” this event, we 
set the likelihood of Ndjk being that symbol to be zero, and 
proceed to a different k. We maintain a running total as we 
proceed, with the final probability being the result when all 
of the nodes have been counted. 

In general, we can answer any query about an event that 
can be expressed in terms of the basic N and P random vari- 
ables. Obviously, if we are interested in whether a symbol 
appeared at a particular i, j, k location in the parse tree, we 
only need to examine the marginal probability distribution 
of the corresponding N variable. Alternatively, we can find 
the probability of a particular symbol deriving any part of 
a particular substring (specified by i and j indices) by per- 
forming a similar procedure to that for an exact substring 
described above. However, in this case, we would continue 
computing posterior probabilities over all i and j variables 
within the bounds. 

As another example, consider the case of possible four- 
word sentences beginning with the phrase Swat flies. In 
the network of Figure 5, we instantiate Nl11 to be swat 
and N2i1 to be flies and then propagate this evidence. We 
then need only to examine the joint distributions of Nail 
and N411 to find that like flies is the most likely completion. 
This is similar to the Left-to-Right Inside algorithm of (Je- 
linek, Lafferty, & Mercer 1992), except that we can find the 
most probable joint configuration over multiple time steps, 
instead of over only the one immediately subsequent. 

A greater advantage is in the utilization of evidence. Any 
of the queries mentioned previously can be conditioned on 
any event that can be expressed in terms of N and P vari- 
ables. If we only have a partial observation of the string, 
we simply instantiate the Nili variables corresponding to 
the positions of whatever observations we have, and then 
propagate to find whatever posterior probability we require. 
In addition, we can exploit additional evidence about non- 
terminals within the parse tree. For instance, we may want 
to find the probability of the sentence Swat flies like ants 
with the additional stipulation that like ants is a preposi- 
tional phrase. In this case, we instantiate the Nili variables 
as usual, but we also instantiate N321 to be pp. 
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Conclusion 
The algorithms presented here automatically generate a 
Bayesian network representing the distribution over all 
parses of strings (bounded in length by some parameter) in 
the language of a PCFG. The first stage uses a dynamic pro- 
gramming approach similar to that of standard parsing al- 
gorithms, while the second stage generates the network, us- 
ing the results of the first stage to specify the probabilities. 
This network is generated only once for a particular PCFG 
and length bound. Once created, we can use this network to 
answer a variety of queries about possible strings and parse 
trees. In general, we can use the standard inference algo- 
rithms to compute the conditional probability or most proba- 
ble configuration of any collection of our basic random vari- 
ables, given any other event which can be expressed in terms 
of these variables. 

These algorithms have been implemented and tested on a 
number of grammars, with the results verified against those 
of existing dynamic programming algorithms when appli- 
cable, and against enumeration algorithms when given non- 
standard queries. When answering standard queries, the 
time requirements for network inference were comparable 
to those for the dynamic programming techniques. Our net- 
work inference methods achieved similar response times for 
some other types of queries, providing a vast improvement 
over the much slower brute force algorithms. 

The network representation of the probability distribu- 
tion also allows possible relaxations of the independence 
assumptions of the PCFG framework. We could extend 
the context-sensitivity of these probabilities within our net- 
work formalism by adjusting the probability tables associ- 
ated with our production nodes. For instance, we may make 
the conditional probabilities a function of the (i, j, k) index 
values. Alternatively, we may introduce additional depen- 
dencies on other nodes in the network, or perhaps on fea- 
tures beyond the parse tree itself. The context-sensitivity 
of (Charniak & Carroll 1994), which conditions the produc- 
tion probabilities on the parent of the left-hand side symbol, 
would require only an additional link from N nodes to their 
potential children P nodes. Other external influences could 
include explicit context representation in natural language 
problems or influences of the current world state in plan- 
ning, as required by many plan recognition problems (Py- 
nadath & Wellman 1995). 

Therefore, even though the evidence propagation is ex- 
ponential in the worst case, our method incurs this cost in 
the service of greatly increased generality. Our hope is that 
the enhanced scope will make PCFGs a useful model for 
plan recognition and other domains that require more flexi- 
bility in query forms and in probabilistic structure. In addi- 
tion, these algorithms may extend the usefulness of PCFGs 
in natural language processing and other pattern recognition 
domains where they have already been successful. 
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