
Generalized Queries on robabilistic Context-

David V. Pynadath and chael I? Wellman
Artificial Intelligence Laboratory

University of Michigan
1101 Beal Avenue

Ann Arbor, MI 48 109 USA
{pynadath,wellmanj @umich.edu

Abstract

Probabilistic context-free grammars (PCFGs) provide
a simple way to represent a particular class of dis-
tributions over sentences in a context-free language.
Efficient parsing algorithms for answering particular
queries about a PCFG (i.e., calculating the probability
of a given sentence, or finding the most likely parse)
have been applied to a variety of pattern-recognition
problems. We extend the class of queries that can be
answered in several ways: (1) allowing missing to-
kens in a sentence or sentence fragment, (2) supporting
queries about intermediate structure, such as the pres-
ence of particular nonterminals, and (3) flexible condi-
tioning on a variety of types of evidence. Our method
works by constructing a Bayesian network to repre-
sent the distribution of parse trees induced by a given
PCFG. The network structure mirrors that of the chart
in a standard parser, and is generated using a similar
dynamic-programming approach. We present an algo-
rithm for constructing Bayesian networks from PCFGs,
and show how queries or patterns of queries on the net-
work correspond to interesting queries on PCFGs.

Introduction
Most pattern-recognition problems start from ob-
servations generated by some structured stochas-
tic process. Probabilistic context-free gram-
mars (PCFGs) (Gonzalez & Thomason 1978;
Charniak 1993) have provided a useful method for
modeling uncertainty in a wide range of structures,
including programming languages (Wetherell 1980),
images (Chou 1989), speech signals (Ney 1992), and
RNA sequences (Sakakibara et al. 1995). Domains like
plan recognition, where non-probabilistic grammars have
provided useful models (Vilain 1990), may also benefit
from an explicit stochastic model.

Once we have created a PCFG model of a process, we can
apply existing PCFG parsing algorithms to answer a vari-
ety of queries. However, these techniques are limited in the
types of evidence they can exploit and the types of queries
they can answer. In particular, the standard techniques gen-
erally require specification of a complete observation se-

quence. In many contexts, we may have only a partial se-
quence available, or other kinds of contextual evidence. In
addition, we may be interested in computing the probabili-
ties of types of events that the extant techniques do not di-
rectly support. Finally, the PCFG model itself imposes re-
strictions on the probabilistic dependence structure, which
we may wish to relax.

To extend the forms of evidence, queries, and distribu-
tions supported, we need a flexible and expressive repre-
sentation for the distribution of structures generated by the
grammar. We adopt Bayesian networks for this purpose,
and define an algorithm to generate a network represent-
ing the distribution of possible parse trees corresponding to
a given PCFG. We then present algorithms for extending
the class of queries to include the conditional probability
of a symbol appearing anywhere within any region of the
parse tree, conditioned on any evidence about symbols ap-
pearing in the parse tree. The Bayesian network also pro-
vides a flexible structure for future extensions to context-
sensitive probabilities, similar to the probabilistic parse ta-
bles of (Briscoe & Carroll 1993).

robabilistic Context-Free Gra ars
A probabilistic context-free grammar is a tuple
(HT,HN,E~,P), where HT is the set of terminal
symbols, HN the set of nonterminal symbols, El E HN
the start symbol, and P the set of productions. Productions
taketheformE -+ 5 (p), withE E HN,~$ E (HTUHN)+,
andp = Pr(E + [), the probability that E will be ex-
panded into the string [. The probability of applying a
particular production to an intermediate string is condi-
tionally independent of what productions were previously
applied to obtain the current string, or what productions
will be applied to the other symbols in the current string,
given the presence of the left-hand symbol. Therefore, the
probability of a given derivation is simply the product of the
probabilities of the individual productions involved. The
probability of a string in the language is the sum taken over
all possible derivations. In the grammar (from (Charniak
1993)) shown in Figure 1, the start symbol is S.

Bayesian Networks 1285

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

s -+
s -
*P -
*P -
*P -
“P -
“P -
“P -
“P -

*P “P
“P
n
* PP
* *P
V

” *P
“PP
“*PPP

(0.8)
(0.2)
(0.4)
(0.4)
(0.2)
(0.3)
(0.3)
(0.2)
(0.2)

Figure 1: A probabilistic context-free grammar.

PP - p *p (1.0)
P - like (1.0)
v - swat (0.2)

n -+ flies (0.45)
n - ants (0.5)

s ~1~4~2)

I
“P (194.1)

E-yh Pp (3,2,1)

I

\
nP (2,1,3)

1

v (4,1,3)

verb (1,1,2) noun (2,1,2) 1

1 1

Pr P

I

(3,W noun (4,1,2)

swat U,l,l) flies (2,l.l)
I

like (3,lJ ants (4,W

Figure 2: Parse tree for Swat flies like ants, with (i, j, k)
indices labeled.

Indexing Parse Trees

Calculating the probability of a particular parse tree can
sometimes be useful, but we may also wish to derive the
probability of some more abstract feature of a parse tree. To
pose such queries, we require a scheme to specify events as
the appearance of symbols at designated points in the parse
tree. We use three indices to identify a node in a parse in
terms of the structure of the subtree rooted at that node. Two
indices delimit the leaf nodes of the subtree, defining a sub-
string of the entire terminal sequence. The index i refers to
the position of the substring within the entire terminal string,
with i = 1 indicating the start of the string. The index j
refers to the length of the substring. For example, the pp
node in the parse tree of Figure 2 is the root of the subtree
whose leaf nodes are like and ants, so i = 3 and j = 2.
These i and j indices are commonly used in PCFG algo-
rithms.

However, we cannot always uniquely specify a node with
these two indices alone. In the branch of the parse tree pass-
ing through np, n, and flies, all three nodes have i = 2 and
j= 1. To differentiate them, we introduce the k index, de-
fined recursively. If a node has no child with the same i and
j indices, then it has k: = 1. Otherwise, its k: index is one
more than the Ic index of its child. Thus, the flies node has
k = 1, the n node above it has a Ic = 2, and its parent np
haslc = 3. We have labeled each node in the parse tree of
Figure 2 with its (i, j, k) indices.

We can think of the k index of a node as its level of ab-
straction, with higher values indicating more abstract sym-

bols. For instance, the flies symbol is a specialization of
the n concept, which, in turn, is a specialization of the np
concept. Each possible specialization corresponds to an ab-
straction production of the form E --) E’. In a parse tree
involving such a production, the nodes for E and E’ will
have identical i and j values, but the k value for E will be
one more than that of E’. We denote the set of abstraction
productions as PA E P.

All other productions are decomposition productions, in
the set PO = P \ PA, and have two or more symbols on
the right-hand side. If a node E is expanded by a decom-
position production, the sum of the j values for its children
will equal its own j value, since the length of the original
substring derived from E must equal the total lengths of the
substrings of its children. In addition, since each child must
derive a string of nonzero length, no child has the same j in-
dex as E, which must then have a k value of 1. Therefore,
abstraction productions connect nodes whose indices match
in the i and j components, while decomposition productions
connect nodes whose indices differ.

Dynamic Programming Algorithm

We can compute the probability of a string by summing
probabilities over the set of its possible parse trees, which
grows exponentially with the string’s length. Fortunately,
parse trees often share common subtrees, a fact exploited
by the standard dynamic programming approach for both
probabilistic and non-probabilistic CFGs (Jelinek, Lafferty,
& Mercer 1992). The central structure is a table, or chart,
storing previous results for each substring in the input sen-
tence. Each entry in the chart corresponds to a substring
xi * * . x:i+j - 1 (ignoring abstraction level, k) of the observa-
tion string 21 . . . XL. For each symbol E, an entry contains
the probability that the corresponding substring is derived
from that symbol, Pr(xi e. .xd+j-1IE).

At the bottom of the table are the results for substrings
of length one, and the top entry holds the result for the en-
tire string, Pr(xl . . . XL 1 El), which is exactly the probabil-
ity of the observed string. We can compute these probabil-
ities bottom-up, since we know that Pr (xi 1 E) = 1 if E is
the observed symbol xi, and 0 otherwise. We can define all
other probabilities recursively as the sum, over all produc-
tions E + 5 (p), of the product of p and the probability
Pr(xi . 0 . xi+j- 1 I[). Here, we can make use of the PCFG
independence assumptions, and compute this probability as
the product of the probabilities of the individual symbols,
where we have to consider all possible substring lengths for
these symbols. A slight alteration to this procedure also al-
lows us to obtain the most probable parse tree for the ob-
served string.

To compute the probability of the sentence Swat flies
like ants, we would use the algorithm to generate the table
shown in Figure 3, after eliminating any intermediate entries

Uncertainty

s+vp: BOO72
s-+np(2) VP(~):

.000035
s-cnp(l) VP(~):

BOO256
vp+v np pp:

.OO14
vp-tv np: .00216

j = 4

VP+vpp: .016 1 3
np+n pp: .036

np+ n np: VP-+ v np: 2
0.0018 0.024

np-+n: 0.02
v+swaf: 0.2
n-bswat: 0.05

a=1

rip-m:: 0.18
vhflies: 0.4
n-bflies: 0.45

2

pp+p np: 0.2
rip-m:: 0.2
p-+ like: 1 .O n+ ants:
v+like: 0.4 0.5

3 4

Figure 3: Chart for Swat flies like ants.

that were not referenced by higher-level entries. There are
also separate entries for each production, though this is not
necessary if we are only interested in the final sentence prob-
ability. In the top entry, there are two listings for the produc-
tion s-+np VP, with different substring lengths for the right-
hand side symbols. The sum of all probabilities for produc-
tions with s on the right-hand side in this entry yields the
total sentence probability of 0.001011.

This algorithm is capable of computing any “inside”
probability, the probability of a particular terminal string ap-
pearing inside the subtree rooted by a particular nontermi-
ml. We can work top-down in an analogous manner to com-
pute any “outside” probability (Charniak 1993), the proba-
bility of a subtree rooted by a particular nonterminal appear-
ing amid a particular terminal string. Given these probabil-
ities we can compute the probability of any particular non-
terminal symbol appearing in the parse tree as the root of a
subtree covering some substring. For example, in the sen-
tence Swat flies like ants, we can compute the probability
that like ants is a prepositional phrase, using a combina-
tion of inside and outside probabilities. The Left-to-Right
Inside (LRI) algorithm (Jelinek, Lafferty, & Mercer 1992)
specifies how we can manipulate certain probability matri-
ces and combine the results with the inside probabilities to
obtain the probability of a given initial substring, such as the
probability of a sentence (of any length) beginning with the
words Swat flies. Furthermore, we can use such initial sub-
string probabilities to compute the conditional probability of
the next observation given all previous observations.

However, there are still many types of queries not covered
by existing algorithms. For example, given observations of
arbitrary partial observation strings, it is unclear how to ex-
ploit the standard chart directly. Similarly, we are unaware
of methods to handle observation of nonterminals only (e.g.,
the last two words form a prepositional phrase). We seek,
therefore, a mechanism that would admit observational evi-
dence of any form as part of a query about a PCFG, without
requiring us to enumerate all consistent parse trees.

ayesian Networks for PCFGs
Bayesiavz networks (Pearl 1987) provide an expressive and
efficient representation for probability distributions. They
are expressive in that they can represent any joint distribu-
tion over a finite set of discrete-valued random variables.
They are efficient in that they exploit an important class
of conditional independence relationships among the ran-
dom variables. Moreover, Bayesian networks are conve-
nient computational devices, supporting the calculation of
arbitrary conditional probability expressions involving their
random variables. Therefore, if we can create a Bayesian
network representing the distribution of parse trees for a
given probabilistic grammar, then we can incorporate par-
tial observations of a sentence as well as other forms of ev-
idence, and determine the resulting probabilities of various
features of the parse trees.

We base our Bayesian-network encoding of PCFGs on
the parse tree indexing scheme presented in the previous
section The random variable NQ~ denotes the symbol in
the parse tree at the position indicated by the (i, j, L) in-
dices. Index combinations not appearing in the tree corre-
spond to N variables taking on the null value nil. To sim-
plify the dependency structure, we also introduce random
variables Pdjk to represent the productions that expand the
corresponding symbols Naj k . However, the identity of the
production is not quite sufficient to render the corresponding
children in the parse tree conditionally independent, so we
dictate that the P variable take on different values for each
breakdown of the right-hand symbols’ substring lengths.
This increases the state space of the variables, but simplifies
the dependency structure.

rogramming Phase
To complete the specification of the network, we identify the
symbols and productions making up the domains of our ran-
dom variables, as well as the conditional probability tables
representing their dependencies. The PCFG specifies the
relative probabilities of different productions for each non-
terminal, but to specify the probabilities of alternate parse
trees in terms of the Najk variables we need the probabili-
ties of the length breakdowns. We can calculate these with a
modified version of the standard dynamic programming al-
gorithm sketched in the previous section.

This modified algorithm constructs a chart based on the
set of all possible terminal strings, up to a bounded length n.
Our resulting chart defines a function ,8(E, j, k) (analogous
to the inside probability in the standard parsing algorithm),
specifying the probability that symbol E is the root node of
a subtree, at abstraction level L, with a terminal substring of
length j. Because this probability is not relative to a partic-
ular observation string, we can ignore the i index.

As in the previous dynamic programming algorithms, we
can define this function recursively, initializing the entries to

Bayesian Networks 1287

k E 1 ,6(&T, 4, k) 11 k E 1 /3(E,3, k) 11 k E

Figure 4: Final table for sample grammar.

0. Again, we start at j = 1 and work upward to j = n. For
each terminal symbol 2, P(z, 1,l) = 1. For X: > 1, only ab-
straction productions are possible, because, as discussed be-
fore, decomposition productions are applicable only when
k = 1. For each abstraction production E ---) E’ (p), we
incrementP(E, j,Ic)byp.P(E’, j,k-1). Iflc = l,onlyde-
composition productions are applicable, so for each decom-
position production E + El Es s . . Em (p), each substring
length breakdown ji, . . . , j, (such that the Et j, = j),
and each abstraction level kt legal for each j, , we increment
/3(E, j, k) by p . nz, p(Et, jt , kt). The table of Figure 4
lists the nonzero ,0 values for our grammar over strings of
maximum length 4.

For analysis of the complexity of this algorithm, it is use-
ful to define d as the maximum abstraction level, and m as
the maximum number of symbols on a production’s right-
hand side. For a maximum string length of n, the table re-
quires space 0(n2d 1 HN I), exploiting the fact that /3 for ter-
minal symbols is one in the bottom row and zero elsewhere.
For a specific value of j, there are O(d) possible k values
greater than 1, each requiring time 0(1 PA I). For k = 1,
the algorithm requires time 0(I PD I jmB1dm), for the eval-
uation of all decomposition productions, as well as all pos-
sible combinations of substring lengths and levels of ab-
stractions for each symbol on the right-hand side. There-
fore, the whole algorithm would take time O(n[d I PA I +
IPD In “-ldm]) = O(IPln”d”).

As an alternative, we can modify the standard chart pars-
ing algorithm (Younger 1967; Earley 1970) to compute the
required values for ,8 by recording the k values and probabil-
ities associated with each edge. We would also ignore any
distinctions among terminal symbols, since we are comput-
ing values over all possible terminal strings. Therefore, the
time required for computing /!? is equivalent to that required
for parsing a terminal string of length n, which is 0(n3) ig-
noring the parameters of the grammar.

Network Generation Phase

Upon completion of the dynamic programming phase, we - -
can use the table entries to compute the domains of random
variables N. e ag k and Pij k and the required conditional proba-
bilities. We begin at the top of the abstraction hierarchy for

strings of the maximum length n starting at position 1. The
corresponding symbol variable can be either El or the spe-
cial null symbol nil*, indicating that the parse tree begins at
some other point below. The prior probability of the start
symbol is proportional to ,0(El, n, k), while that of nil* is
proportional to the sum of all other ,B values for the start
symbol El. The exact probabilities are normalized so that
the sum equals one.

We start with this node and pass through all of the
nodes in order of decreasing j and k. With each N
node, we insert the possible productions into the do-
main of its corresponding P node. For a production
rule r that maps E to El . . . Ena with probability p and
a breakdown of substring lengths and abstraction lev-
els (ji , ICI), . . . , (j,, km), the conditional probability
Pr(&jk = r ((h, h), - - -, (jm,km>) INijk = E) m

~-nP(EtA,kt). m e exact probability is normalized so
that the sum over all rules P and breakdowns ((j, , kt)) for a
particular left-hand symbol E is 1. For any symbol E’ # E
in the domain of Nij k , we can set the conditional probability
Pr(Pijk = r ((jl, kl), - - -, (h, km)) INijk = E’) = 0.

A symbol variable which takes on the value nil has no
children, so its production variable will also take on a null
value (i.e., Pr(Pijk = tlillNijr, = nil) = 1). For the special
symbol nil*, there are two possibilities, either the parse tree
starts at the next level below, or it starts further down the
tree. In the first case, the production is nil* + El, and has
a conditional probability proportional to the ,f3 value of El
at the j and k value immediately below the current position,
given that Ndjk = nil*. In the second case, the production is
nil* + nil*, and has a conditional probability proportional
to the sum of the p values of El at all j and k more than one
level below, given that Nijk = nil*.

When all possible values for a production variable are
added, we add a link from the corresponding node to the
variables corresponding to each symbol on the right-hand
side and insert these symbols into the domains of these child
variables. A child nodes takes on the appropriate right-hand
side symbol with probability 1 if the parent node has taken
on the value of the given production. A child node takes on
the value nil with probability 1 if none of its parent nodes
assign it a symbol value.

Figure 5 illustrates the network structure resulting from
applying this algorithm to the table of Figure 4 with a length
bound of 4. In general, the resulting network has O(n2d)
nodes. The n N. ali variables have 0(I HT I) states each,
while the O(n2d) other N variables have 0(I HN I) possi-
ble states. The Pijk variables for k > 1 (of which there are
O(n2 d)) have a domain of 0(I PA I) states. For Pij 1 vari-
ables, there are states for each possible decomposition pro-
duction, for each possible combination of substring lengths,
and for each possible level of abstraction of the symbols on
the right-hand side. Therefore, the Pij 1 variables (of which

1288 Uncertainty

JN-1-421

Figure 5: Network from example grammar.

there are O(n2)) have a domain of 0(IPD I jmeldm) states.
Unfortunately, even though each particular P variable

has only the corresponding N variable as its parent, a given
Ndjk variable could have potentially O(i . (n - i - j))
P variables as parents, and the size of a node’s conditional
probability table is exponential in the number of its par-
ents. If we define T to be the maximum number of en-
tries of any conditional probability table in the network,
then the total time complexity of the algorithm is then
O(n2dlPAIT + n21PDlnmw1dmTm + ndT + n2dT) =

OWln m+ldmTm), which dwarfs the complexity of the
dynamic programming algorithm for the ,8 function. How-
ever, this network is created only once for a particular gram-
mar and length bound.

Inference
The Bayesian network can answer any of the queries ad-
dressed by the usual parsing algorithm. To find the prob-
ability of a particular terminal string 21 . . . XL, we can in-
stantiate the variables Nili to be xi, for i < 15, and nil, for
i > L. Then, we can use any of the standard Bayesian net-
work propagation algorithms to compute the probability of
this evidence. The result is the conditional probability of the
sentence, given that the string is bounded in length by n.
We can easily acquire the unconditional probability, since
the probability of a string having length no more than n is
the sum of the ,8 values for El over all lengths of n and un-
der. To find the most probable parse tree, we would use the
standard network algorithms for finding the most probable
configuration of the network.

The network represents a distribution over strings of
bounded length, so we cannot obtain the same probability of
an initial substring ~1x2 . a . XL as (Jelinek, Lafferty, & Mer-

cer 1992), which considered all completion lengths. How-
ever, we can find initial substring probabilities over comple-
tions of length bounded by n - L. The algorithm is identical
to that for the probability of the entire sentence, except that
we do not instantiate the Nili variables beyond i = L to be
nil.

The procedure for finding the probability that a particu-
lar symbol derives a particular substring is complicated by
the fact that there are multiple levels of abstraction possible
for a particular substring. Therefore, after we instantiate the
evidence, we must query all of the N variables for the par-
ticular i and j values of interest. We can start with the a par-
ticular k value and find the posterior probability of Nij k be-
ing the symbol of interest. Having “counted” this event, we
set the likelihood of Ndjk being that symbol to be zero, and
proceed to a different k. We maintain a running total as we
proceed, with the final probability being the result when all
of the nodes have been counted.

In general, we can answer any query about an event that
can be expressed in terms of the basic N and P random vari-
ables. Obviously, if we are interested in whether a symbol
appeared at a particular i, j, k location in the parse tree, we
only need to examine the marginal probability distribution
of the corresponding N variable. Alternatively, we can find
the probability of a particular symbol deriving any part of
a particular substring (specified by i and j indices) by per-
forming a similar procedure to that for an exact substring
described above. However, in this case, we would continue
computing posterior probabilities over all i and j variables
within the bounds.

As another example, consider the case of possible four-
word sentences beginning with the phrase Swat flies. In
the network of Figure 5, we instantiate Nl11 to be swat
and N2i1 to be flies and then propagate this evidence. We
then need only to examine the joint distributions of Nail
and N411 to find that like flies is the most likely completion.
This is similar to the Left-to-Right Inside algorithm of (Je-
linek, Lafferty, & Mercer 1992), except that we can find the
most probable joint configuration over multiple time steps,
instead of over only the one immediately subsequent.

A greater advantage is in the utilization of evidence. Any
of the queries mentioned previously can be conditioned on
any event that can be expressed in terms of N and P vari-
ables. If we only have a partial observation of the string,
we simply instantiate the Nili variables corresponding to
the positions of whatever observations we have, and then
propagate to find whatever posterior probability we require.
In addition, we can exploit additional evidence about non-
terminals within the parse tree. For instance, we may want
to find the probability of the sentence Swat flies like ants
with the additional stipulation that like ants is a preposi-
tional phrase. In this case, we instantiate the Nili variables
as usual, but we also instantiate N321 to be pp.

Bayesian Networks 1289

Conclusion
The algorithms presented here automatically generate a
Bayesian network representing the distribution over all
parses of strings (bounded in length by some parameter) in
the language of a PCFG. The first stage uses a dynamic pro-
gramming approach similar to that of standard parsing al-
gorithms, while the second stage generates the network, us-
ing the results of the first stage to specify the probabilities.
This network is generated only once for a particular PCFG
and length bound. Once created, we can use this network to
answer a variety of queries about possible strings and parse
trees. In general, we can use the standard inference algo-
rithms to compute the conditional probability or most proba-
ble configuration of any collection of our basic random vari-
ables, given any other event which can be expressed in terms
of these variables.

These algorithms have been implemented and tested on a
number of grammars, with the results verified against those
of existing dynamic programming algorithms when appli-
cable, and against enumeration algorithms when given non-
standard queries. When answering standard queries, the
time requirements for network inference were comparable
to those for the dynamic programming techniques. Our net-
work inference methods achieved similar response times for
some other types of queries, providing a vast improvement
over the much slower brute force algorithms.

The network representation of the probability distribu-
tion also allows possible relaxations of the independence
assumptions of the PCFG framework. We could extend
the context-sensitivity of these probabilities within our net-
work formalism by adjusting the probability tables associ-
ated with our production nodes. For instance, we may make
the conditional probabilities a function of the (i, j, k) index
values. Alternatively, we may introduce additional depen-
dencies on other nodes in the network, or perhaps on fea-
tures beyond the parse tree itself. The context-sensitivity
of (Charniak & Carroll 1994), which conditions the produc-
tion probabilities on the parent of the left-hand side symbol,
would require only an additional link from N nodes to their
potential children P nodes. Other external influences could
include explicit context representation in natural language
problems or influences of the current world state in plan-
ning, as required by many plan recognition problems (Py-
nadath & Wellman 1995).

Therefore, even though the evidence propagation is ex-
ponential in the worst case, our method incurs this cost in
the service of greatly increased generality. Our hope is that
the enhanced scope will make PCFGs a useful model for
plan recognition and other domains that require more flexi-
bility in query forms and in probabilistic structure. In addi-
tion, these algorithms may extend the usefulness of PCFGs
in natural language processing and other pattern recognition
domains where they have already been successful.

Acknowledgments We are grateful to the anonymous re-
viewers for careful reading and helpful suggestions. This
work was supported in part by Grant F49620-94-I-0027
from the Air Force Office of Scientific Research.

References
Briscoe, ‘I., and Carroll, J. 1993. Generalized probabilistic
LR parsing of natural language (corpora) with unification-
based grammars. Computational Linguistics 19(1):25-59.

Charniak, E., and Carroll, G. 1994. Context-sensitive
statistics for improved grammatical language models. In
Proceedings of the National Conference on AI, 728-733.

Charniak, E. 1993. Statistical Language Learning. Cam-
bridge, MA: MIT Press.

Chou, I? 1989. Recognition of equations using a two-
dimensional stochastic context-free grammar. In Proceed-
ings SPIE, Visual Communications and Image Processing
ZV, 852-863.

Earley, J. 1970. An efficient context-free parsing algo-
rithm. Communications of the Association for Computing
Machinery 13(2):94-102.

Gonzalez, R. C., and Thomason, M. S. 1978. Syntac-
tic pattern recognition: An introduction. Reading, MA:
Addison-Wesley Publishing Company. 177-2 15.

Jelinek, F.; Lafferty, J. D.; and Mercer, R. 1992. Basic
methods of probabilisticcontext free grammars. In Laface,
P., and DeMori, R., eds., Speech Recognition and Under-
standing. Berlin: Springer. 345-360.

Ney, H. 1992. Stochastic grammars and pattern recogni-
tion. In Laface, P., and DeMori, R., eds., Speech Recogni-
tion and Understanding. Berlin: Springer. 3 19-344.

Pearl, J. 1987. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. San Mateo, CA:
Morgan Kaufmann.

Pynadath, D. V., and Wellman, M. P. 1995. Accounting
for context in plan recognition, with application to traffic
monitoring. In Proceedings of the Conference on Uncer-
tainty in AI, 472-48 1.

Sakakibara, Y.; Brown, M.; Underwood, R. C.; Mian, I. S.;
and Haussler, D. 1995. Stochastic context-free grammars
for modeling RNA. In Proceedings of the 27th Hawaii In-
ternational Conference on System Sciences, 284-293.

Vilain, M. 1990. Getting serious about parsing plans: A
grammatical analysis of plan recognition. In Proceedings
of the National Conference on AI, 190-197.

Wetherell, C. S. 1980. Probabilistic languages: a review
and some open questions. Comp. Surveys 12(4):361-379.

Younger, D. 1967. Recognition and parsing of context-free
languages in time n 3. Info. and Control lO(2): 189-208.

1290 Uncertainty

