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Abstract

Multiagent research has made significant progress in constructing teams
of distributed entities (e.g., robots, agents, embedded systems) that act
autonomously in the pursuit of common goals. There now exist a va-
riety of prescriptive theories, as well as implemented systems, that can
specify good team behavior in different domains. However, each of
these theories and systems addresses different aspects of the teamwork
problem, and each does so in a different language. In this work, we
seek to provide a unified framework that can capture all of the common
aspects of the teamwork problem (e.g., heterogeneous, distributed enti-
ties, uncertain and dynamic environment), while still supporting analy-
ses of both the optimality of team performance and the computational
complexity of the agents’ decision problem. Our COMmunicative Mul-
tiagent Team Decision Problem (COM-MTDP) model provides such
a framework for specifying and analyzing distributed teamwork. The
COM-MTDP model is general enough to capture many existing models
of multiagent systems, and we use this model to provide some com-
parative results of these theories. We also provide a breakdown of the
computational complexity of constructing optimal teams under various
classes of problem domains. We then use the COM-MTDP model to
compare (both analytically and empirically) two specific coordination
theories (joint intentions theory and STEAM) against optimal coordi-
nation, in terms of both performance and computational complexity.

Introduction
A central challenge in the control and coordination of distributed
agents, robots, and embedded systems is enabling these different, dis-
tributed entities to work together as a team, toward a common goal.
Such teamwork is critical in a vast range of domains, e.g., for fu-
ture teams of orbiting spacecraft, sensor teams for tracking targets,
teams of unmanned vehicles for urban battlefields, software agent
teams for assisting organizations in rapid crisis response, etc. Re-
search in teamwork theory has built the foundations for successful
practical agent team implementations in such domains. On the fore-
front so far have been theories based on belief-desire-intentions (BDI)
frameworks (e.g., joint-intentions (Cohen & Levesque 1991), Shared-
Plans (Grosz & Kraus 1996), and others (Sonenberget al. 1994))
that have provided prescriptions for coordination in practical systems.
These theories have inspired the construction of practical, domain-
independent teamwork models (Jennings 1995; Rich & Sidner 1997;
Tambe 1997; Yenet al. 2001), successfully applied in a range of com-
plex domains. While the BDI-based theories continue to be useful
in practical systems, there is now a critical need for complementary
foundational frameworks as practical teams scale-up towards com-
plex, real-world domains. Such complementary frameworks would
address some key weaknesses in the existing theories, as outlined be-
low:

� Existing teamwork theories provide prescriptions that usually ig-
nore the various uncertainties and costs in real-world environ-
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ments. While such frameworks can still provide satisfactory behav-
ior, it is difficult to evaluate the degree ofoptimalityof the behavior
suggested by these theories/models. For instance, the joint inten-
tions theory (Cohen & Levesque 1991) suggests that team mem-
bers commit to attainment of mutual beliefs in key circumstances,
but it ignores the cost of attaining mutual belief (e.g., via com-
munication). Coordination strategies that blindly follow such pre-
scriptions may lead to highly suboptimal implementations. While
in some cases optimality may be practically unattainable, under-
standing the strengths and limitations of coordination prescriptions
is definitely useful.
Of course, while existing theories have avoided costs and uncer-
tainties, practical systems cannot do so in real-world environments.
For instance, STEAM (Tambe 1997) extends the BDI-logic ap-
proach with decision-theoretic extensions. Unfortunately, while
such approaches succeed in their intended domains, their very
pragmatism often necessarily leads to a lack of the theoretical rigor.
Furthermore, it remains unclear whether their suggested prescrip-
tions (e.g., STEAM’s prescriptions) necessarily lead to optimal
team coordination.

� Existing teamwork theories have so far failed to provide insights
into the computational complexity of various aspects of teamwork
decisions. Such results may show intractability of some coordina-
tion strategies in specific domains and potentially justify the use
of practical teamwork models as an approximation to optimality in
such domains.

To answer these needs, we propose a new complementary frame-
work, the COMmunicative Multiagent Team Decision Problem
(COM-MTDP), inspired by earlier work ineconomic team the-
ory (Marschak & Radner 1971; Ho 1980), within the context of eco-
nomics and operations research. While our COM-MTDP model bor-
rows from a theory developed in another field, we are not just dress-
ing up old wine in a new bottle. We make several contributions in
applying and extending the original theory for applicability to intel-
ligent distributed systems. First, we extend the theory to include key
issues of interest in the distributed AI literature, most notably by ex-
plicitly including communication. Second, we introduce a catego-
rization of teamwork problems based on these extensions. Third, we
provide complexity analyses of these problems, providing a clearer
understanding of the difficulty of teamwork problems under differ-
ent circumstances. For instance, some researchers have advocated
teamwork without communication (Matari´c 1997). This paper clearly
identifies domains where such team planning remains tractable, at
least when compared to teamwork with communication. It also iden-
tifies domains where communication provides a significant advantage
in teamwork by reducing the time complexity.

In addition to analyzing complexity, our framework supports the
analysis of theoptimality of different means of coordination. We
isolate the conditions under which coordination based on joint in-
tentions (Cohen & Levesque 1991) is preferred, based on the re-



sulting performance of the distributed team at the desired task. We
provide similar results for coordination based on the STEAM algo-
rithm (Tambe 1997). We also analyze the complexity of the decision
problem within these frameworks. The end result is the beginnings of
a well-grounded characterization of the complexity-optimality trade-
off among various means of team coordination.

Finally, we are currently conducting experiments using the domain
of simulated helicopter teams, conducting a joint mission. We are
evaluating different coordination strategies, and comparing them to
the optimal strategy that we can compute using our framework. We
will use the helicopter team as a running example in our explanations
in the following sections.

Multiagent Team Decision Problems
Given a team of selfless, distributed entities,�, who intend to per-
form some joint task, we wish to evaluate the effectiveness of pos-
sible coordination policies. A coordination policy prescribes certain
behavior, on top of the domain-level actions the agents perform in di-
rect service of the joint task. We begin with the initial team decision
model (Ho 1980). This initial model focused on a static decision, but
we provide an extension to handle dynamic decisions over time. We
also provide other extensions to the individual components to gener-
alize the representation in ways suitable for representing multiagent
domains. We represent our resultingmultiagent team decision prob-
lem(MTDP) model as a tuple,hS;A; P;
;O; Ri. The remainder of
this section describes each of these components in more detail.

World States: S
� S: a set of world states (the team’s environment).

Domain-Level Actions:A
� fAigi2�: set of actions available to each agenti 2 �, implicitly

defining a set of combined actions,A �
Q
i2�

Ai.

These actions consist of tasks an agent may perform to change the
environment (e.g., change helicopter altitude/heading). These actions
correspond to the decision variables in team theory.

Extension to Dynamic Problem The original conception of the
team decision problem focused on a one-shot, static problem. The
typical multiagent domains require multiple decisions made over
time. We extend the original specification so that each component
is a time series of random variables, rather than a single one. The in-
teraction between the distributed entities and their environment obeys
the following probabilistic distribution:

� P : state-transition function,S �A! �(S).

This function represents the effects of domain-level actions (e.g., a
flying action changes a helicopter’s position). The given definition of
P assumes that the world dynamics obey the Markov assumption.

Agent Observations:

� f
igi2�: a set of observations that each agent,i, can experi-

ence of its world, implicitly defining a combined observation,

 �

Q
i2�


i.

In a completely observable case, this set may correspond exactly to
S � A, meaning that the observations are drawn directly from the
actual state and combined actions. In the more general case,
i may
include elements corresponding to indirect evidence of the state (e.g.,
sensor readings) and actions of other agents (e.g., movement of other
helicopters). In a team decision problem, theinformation structure
represents the observation process of the agents. In the original con-
ception, the information structure was a set of deterministic functions,
Oi : S ! 
i.

Extension of Allowable Information Structures Such determin-
istic observations are rarely present in nontrivial distributed domains,
so we extend the information structure representation to allow for un-
certain observations. There are many choices of models possible for
representing the observability of the domain. In this work, we use
a general stochastic model, borrowed from thepartially observable
Markov decision processmodel (Smallwood & Sondik 1973):

� fOigi2�: an observation function,Oi : S � A ! �(
i), that
gives a distribution over possible observations that an entity can
make. This function models the sensors, representing any errors,
noise, etc. EachOi is cross product of observation functions of the
state and actions of other entities:OiS�OiA, respectively. We can
define a combined observation function,O : S �A ! �(
), by
taking the cross product over the individual observation functions:
O �

Q
i2�

Oi. Thus, the probability distribution specified byO
forms the richerinformation structureused in our model.

We can make some useful distinctions between different classes of
information structures:

Collective Unobservability This is the general case, where we make
no assumptions on the observations.

Collective Observability 8! 2 
, 9s 2 S such thatPr(St =
sj
t = !) = 1. In other words, the state of the world is uniquely
determined by thecombinedobservations of the team of agents.
The set of domains that are collectively observable is a strict sub-
set of the domains that are collectively unobservable.

Individual Observability 8!i 2 
i, 9s 2 S such thatPr(St =
sj
t

i
= !i) = 1. In other words, the state of the world is uniquely

determined by the observations of each individual agent. The set
of domains that are individually observable is a strict subset of the
domains that are collectively observable.

Policy (Strategy) Space:�

� �iA: a domain-levelpolicy (or strategy, in the original team theory
specification) to govern each agent’s behavior.

Each such policy maps an agent’s belief state to an action, where, in
the original formalism, the agent’s beliefs correspond directly to its
observations (i.e.,�iA : Oi ! A).

Extension to Richer Strategy Space We generalize the set of pos-
sible strategies to capture the more complex mental states of the
agents. Each agent,i 2 �, forms a belief state,bt

i
2 Bi, based on

its observations seen through timet, whereBi circumscribes the set
of possible belief states for the agent. We define the set of possi-
ble combined belief states over all agents to beB �

Q
i2�

Bi. The
corresponding random variable,bt, represents the agents’ combined
belief state at timet. Thus, we define the set of possible domain-level
policies as mappings from belief states to actions,�iA : Bi ! A. We
elaborate on different types of belief states and the mapping of ob-
servations to belief states (i.e., thestate estimator function) in a later
section.

Reward Function: R

� R: reward function (or payoff function, or loss criterion),S�A!
R.

This function represents the team’s joint preferences over domain-
level states (e.g., destroying enemy is good, returning to home base
with only 10% of original force is bad). The function also represents
the cost of domain-level actions (e.g., flying consumes fuel). Thus,
all the agents share the same common interest. Following the original
team-theoretic specification, we assume a Markovian property toR.



Extension for Explicit Representation of
Communication: �

We make an explicit separation between the domain-level actions (A
in the original team-theoretic model) and communication actions. In
principle,A can include communication actions, but the separation is
useful for the purposes of this framework. Thus, we extend our initial
MTDP model to be acommunicative multiagent team decision prob-
lem(COM-MTDP), that we define as a tuple,hS;A;�; P;
;O; Ri,
with the additional component,�, and an extended reward function,
R, as follows:

� f�igi2�: a set of possible “speech acts”, implicitly defining a set
of combined communications,� �

Q
i2�

�i. In other words, an
agent,i, may communicate an element,x 2 �i, to its teammates,
who interpret the communication as they wish (e.g., broadcast ar-
rival in enemy territory). We assume here perfect communication,
in that each agent immediately observes the speech acts of the oth-
ers without any noise or delay.

� R: reward function,S � A � � ! R. This function represents
the team’s joint preferences over domain-level states and domain-
level actions, as in the original team-theoretic model. However,
we now extend it to also represent the cost of communicative acts
(e.g., communication channels may have associated cost).
We assume that the cost of communication and cost of domain-
level actions are independent of each other, given the current state
of the world. With this assumption, we can decompose the reward
function into two components: a domain-level reward function,
RA : S � A ! R, and a communication-level reward function,
R� : S ��! R. The total reward is the sum of the two compo-
nent values:R(s; a;�) = RA(s; a) + R�(s;�). We assume that
communication has no inherent benefit and may instead have some
cost, so that for all states,s 2 S, and messages,� 2 �, the reward
is never positive:R(s;�) � 0.

With the introduction of this communication stage, the agents now
update their belief states at two distinct points within each decision
epocht: once upon receiving observation
ti (producing thepre-
communicationbelief statebt

i��
), and again upon observing the other

agents’ communications (producing thepost-communicationbelief
statebt

i��
). The distinction allows us to differentiate between the

belief state used by the agents in selecting their communication ac-
tions and the more “up-to-date” belief state used in selecting their
domain-level actions. We also distinguish between the separatestate-
estimatorfunctions used in each update phase:

b0i = SE0
i () b

t
i��

= SEi��(b
t�1

i��
;
ti) b

t
i��

= SEi��(b
t
i��

;�t)

whereSEi�� : Bi�
i ! Bi is the pre-communication state estima-
tor for agenti, andSEi�� : Bi��! Bi is the post-communication
state estimator for agenti. They specify functions that update the
agent’s beliefs based on the latest observation and communication,
respectively. The initial state estimator,SE0

i
: ; ! Bi, specifies

the agent’s prior beliefs, before any observations are made. For each
of these, we also make the obvious definitions for the corresponding
estimators for the combined belief states:SE��, SE��, andSE0.
Note that, although we assume perfect communication here, we could
potentially use the post-communication state estimator to model any
noise in the communication channel.

We extend our definition of agent’s policy to include acoordination
policy, �i� : Bi ! �i, analogous to the domain-level policy. We
define the joint policies,�� and�A, as the combined policies across
all agents in�. We also define the overall policy,�i, as the pair,
h�iA; �i�i, and the overall combined policy,�, as the pair,h�A;��i.

Communication Subclasses
One key assumption we make is that communication has no latency,
i.e., agents communication instantly reaches other agents without de-

lay. However, as with the observability function, we parameterize the
communication costs associated with message transmissions:

General Communication In this general case, we make no assump-
tions on the communication.

Free Communication R(s; a;�1) = R(s; a;�2) for any�1;�2 2
�, s 2 S, anda 2 A. In other words, communication actions have
no effect on the agents’ reward.

No communication � = ;, so the agents have noexplicit commu-
nication capabilities. Alternatively, communication may be pro-
hibitively expensive, so that8� 2 �, s 2 S, and a 2 A,
R(s; a;�) = �1. If communication has such an unbounded neg-
ative cost, then we can effectively treat the agents as having no
communication capabilities when determining optimal policies.

The free-communicationcase is common in the multiagent liter-
ature, when researchers wish to focus on issues other than com-
munication cost. We also identify theno-communicationcase be-
cause such decision problems have been of interest to researchers as
well (Matarić 1997). Of course, even if� = ;, it is possible that
there are domain-level actions inA that have communicative value.
Suchimplicitly communicative actions may act as signals that convey
information to the other agents. However, we still label such agent
teams as havingno communicationfor the purposes of the work here,
where we gain extensive leverage fromexplicit models of communi-
cation when available.

Model Illustration
We can view the evolving state as a Markov chain with separate stages
for domain-level and coordination-level actions. In other words, the
agent team begins in some initial state,S0, with separate features,
�0
1
; : : : ; �0m. We also add initial belief states for each agenti 2 �,

b0i = SE0
i (). Each agent,i 2 �, receives an observation
0i drawn

from 
i according to the probability distributionOi(S0; �), since
there are no actions yet. Then, each agent updates its belief state,
b0
i��

= SEi��(b
0
i ;


0
i ).

Next, each agenti 2 � selects a speech act according to its co-
ordination policy,�0

i
= �i�(b

0

i��
), defining a combined speech act

�0. Each agent observes the communications of all of the others, and
it updates its belief state,b0

i��
= SEi��(b

0

i��
;�0). Each then se-

lects an action according to its domain-level policy,A0

i
= �iA(b

0

i��
),

defining a combined actionA0. In executing these actions, the team
receives a single reward,R0 = R(S0;A0;�0). The world then
moves into a new state,S1, according to the distribution,P (S0;A0),
and the process continues.

Now, each agenti receives an observation
1i drawn from
i ac-
cording to the distributionOi(S1;A0), and it updates its belief state,
b1
i��

= SEi��(b
1

i��
;
1

i
). Each agent again chooses its speech act,

�1i = �i�(b
1

i��
). The agents then incorporate the received messages

into their new belief state,b1
i��

= SEi��(b
1

i��
;�1). The agents then

choose new domain-level actions,A1

i
= �iA(b

1

i��
), resulting in yet

another state, etc.
Thus, in addition to the time series of world states,S0; S1; : : : ; St,

the agents themselves determine a time series of coordination-level
and domain-level actions,�0;�1; : : : ;�t andA1;A1; : : : ;At, re-
spectively. We also have a time series of observations for each agent
i,
0i ;


1
i ; : : : ;


t
i. Likewise, we can treat the combined observations,



0;
1; : : : ;
t, as a similar time series of random variables.
Finally, the agents receive a series of rewards,R0; R1; : : : ; Rt. We

can define thevalue, V , of the policies,�A and��, as the expected
reward received when executing those policies. Over a finite horizon,
T , this value is equivalent to the following:

V T (�A;��) = E

"
TX
t=0

Rt

������A;��
#

(1)



Individually Collectively Collectively
Observable Observable Unobservable

No Comm. P-complete NEXP-complete NEXP-complete
Gen. Comm. P-complete NEXP-complete NEXP-complete
Free Comm. P-complete P-complete PSPACE-complete

Table 1: Time complexity of COM-MTDPs under combinations of
observability and communicability.

Complexity Analysis of Team Decision Problems
The problem facing these agents (or the designer of these agents) is
how to construct the joint policies,�� and�A, so as to maximize
their joint utility,R(St;At;�t).

Theorem 1 The decision problem of determining whether there exist
joint policies,�� and�A, for a given team decision problem that
yield a total reward at leastK over some finite horizonT (given
integersK andT ) is NEXP-complete ifj�j � 2 (i.e., more than one
agent).

The proof for this theorem follows from some recent results in
decentralized POMDPs (Bernstein, Zilberstein, & Immerman 2000).
Due to lack of space, we will not provide the proofs for the theorems
outlined in this paper.

The distributed nature of the agent team is one factor behind the
complexity of the problem. The ability of the agents to communicate
potentially allows sharing of observations and, thus, simplification of
the agents’ problem.

Theorem 2 The decision problem of determining whether there exist
joint policies,�� and�A, for a given team decision problem with
free communication, that yield a total reward at leastK over some
finite horizonT (given integersK andT ) is PSPACE-complete.

Theorem 3 The decision problem of determining whether there exist
joint policies,�� and�A, for a given team decision problem with
free communicationand collective observability, that yield a total
reward at leastK over some finite horizonT (given integersK and
T ) is P-complete.

Table 1 summarizes the above results. The columns outline dif-
ferent observability conditions, while the rows outline the different
communication conditions. We can make the following observations:

� We can identify that difficult problems in teamwork — in the sense
of providing agent teams with domain-level and coordination poli-
cies — arise under the conditions of collective observability or un-
observability, and when there are costs associated with communi-
cation. In attacking teamwork problems, our energies should con-
centrate in these arenas.

� When the world is individually observable, communication makes
little difference in performance.

� The collective observability case clearly illustrates a case where
teamwork without communication is highly intractable, potentially
with a double exponential. However, with communication, the
complexity drops down to a polynomial running time.

� There is a reduction in complexity with the collectively unobserv-
able case as well, but the difference is not as significant as with the
collectively unobservable case.

Evaluating Coordination Strategies
While providing domain-level and coordination policies for teams in
general is seen to be a difficult challenge, many systems attempt to
alleviate this difficulty by having human users provide agents with
domain-level plans (Tambe 1997). The problem for the agents then is

to generate appropriate team coordination actions, so as to ensure that
the domain-level plans are suitably executed. In other words, agents
are provided with�A, but they must compute�� autonomously. Dif-
ferent team coordination strategies have been proposed in the litera-
ture, essentially to compute��. We illustrate that COM-MTDP can
be used to evaluate such coordination strategies, by focusing on a key
theory and a practical teamwork model.

Communication under Joint Intentions

Joint-intention theory provides a prescriptive framework for multi-
agent coordination in a team setting. It does not make any claims
of optimality in its coordination, but it provides theoretical justifi-
cations for its prescriptions, grounded in the attainment of mutual
belief among the team members. Our goal here is to identify the do-
main properties under which joint-intention theory provides a good
basis for coordination. By “good”, we mean that a team of agents
communicates as specified under joint-intention theory will achieve
a high expected utility in performing a given task. A team following
joint-intention theory may not perform optimally, but we wish to find
a method for identifying precisely how suboptimal the performance
will be. In addition, we have already shown that finding the optimal
policy is a complex problem. The complexity of finding the joint-
intention coordination policy is lower than that of the optimal policy.
In many problem domains, we may be willing to incur the suboptimal
performance in exchange for the gains in efficiency.

Under the joint-intention framework, the agents,�, make commit-
ments to achieve certain joint goals. We specify a joint goal,G, as
a subset of states,G � S, where the desired condition holds. Under
joint-intention theory, when an individual privately believes that the
team has achieved its joint goal, it should then attain mutual belief
of this achievement, with its teammates. Presumably, such a pre-
scription indicates that joint intentions do not apply toindividually
observableenvironments, since all of the agents would observe that
St 2 G, and they would instantaneously attain mutual belief. Instead,
the joint-intention framework aims at domains with some degree of
unobservability. In such domains, the agents must communicate to at-
tain mutual belief. However, we can also assume that joint-intention
theory does not apply to domains withfree communication. In such
domains, we do not need any specialized prescription for behavior,
since we can simply have the agents communicate everything, all the
time.

The joint-intention framework does not specify a precise commu-
nication policy for the attainment of mutual belief. Let us consider
one possible instantiation of joint-intention theory: asimple joint-
intention communication policy,�SJI

�
, that prescribes that agents

communicate the achievement of the joint goal,G, in each and ev-
ery belief state where they believeG to be true. Under joint inten-
tions, we make an assumption ofsincerity(Smith & Cohen 1996), so
that the agents never select the special�G message in any belief state
whereG is not believed to be true with certainty. We make no other
assumptions about what messages�SJI

�
specifies in all other belief

states.
Given the assumption of sincerity, we can assume that all of the

other agents immediately accept the special message,�G, as true, and
we define our post-communication state estimator function accord-
ingly. With this assumption, as well as our assumptions of perfect
communication, the team attains mutual belief thatG is true immedi-
ately upon receiving the message,�G.

We can define thenegatedsimple joint-intention communication
policy, �:SJI

�
, as an alternative to�SJI

�
. In particular, this negated

policy neverprescribes communicating the�G message. For all other
belief state, the two policies are identical. The difference between
these policies depends on many factors within our model. Given that
the domain is not individually observable, certain agents may not be
aware of the achievement ofG when it happens. The risk with the



Individually Collectively Collectively
Observable Observable Unobservable

No Comm. 
(1) 
(1) 
(1)
General Comm. 
(1) O((jSj � j
j)T ) O((jSj � j
j)T )

Free Comm. 
(1) 
(1) 
(1)

Table 2: Time complexity of choosing betweenSJI and:SJI poli-
cies at a single point in time.

negated policy,�:SJI
�

, is that, even if one of their teammates knows
of the achievement, these unaware agents may unnecessarily continue
performing actions in the pursuit of achievingG. The performance
of these extraneous actions could potentially incur costs and lead to a
lower utility than one would expect under the simple joint-intention
policy,�SJI

�
.

To more precisely compare a communication policy against its
negation, we define the following difference value, for a fixed
domain-level policy,�A:

�T

X � V T (�A;��
X)� V T (�A;��

:X) (2)

So all else being equal, we would like to see that the simple joint-
intention policy dominates its negation—i.e.,�T

SJI
� 0. The execu-

tion of the two policies differs only if the agents achieveG andone
of the agents comes to know this fact with certainty. Due to space re-
strictions, we omit the precise characterization of the policies, but we
can use our COM-MTDP model to derive a computable expression
corresponding to our condition,�T

SJI
� 0. This expression takes

the form of a page-long inequality grounded in the basic elements of
our model. Informally, the inequality states that we prefer theSJI
policy whenever the magnitude of the cost of execution after already
achievingG outweighs the cost of communication of the fact thatG
has been achieved. At this high level, the result may sound obvi-
ous, but the inequality provides an operational criterion for an agent
to make optimal decisions. Moreover, the details of the inequality
provide a measure of the complexity of making such optimal deci-
sions. In the worst case, determining whether this inequality holds for
a given domain requires iteration over all of the possible sequences
of states and observations, leading to a computational complexity of
O((jSj � j
j)T ).

However, under certain domain conditions, we can reduce our de-
rived general criterion to draw general conclusions about theSJI
and:SJI policies. Underno communication, the inequality is al-
ways false, and we know to prefer:SJI (i.e., we do not communi-
cate). Underfree communication, the inequality is always true, and
we know to preferSJI (i.e., we always communicate). Under no
assumptions about communication, the determination is more com-
plicated. When the domain isindividually observable, the inequality
is always false (unless underfree communication), and we prefer the
:SJI policy (i.e., we do not communicate).

When the environment is only partially observable, then agenti is
unsure about whether its teammates have observed thatG has been
achieved. In such cases, the agent must evaluate the general criterion
in its full complexity. In other words, it must consider all possible
sequences of states and observations to determine the belief states of
its teammates. Table 2 provides a table of the complexity required to
evaluate our general criterion under the various domain properties.

STEAM
In choosing between theSJI and:SJI policies, we are faced with
two relatively inflexible styles of coordination: always communicate
or never communicate. Recognizing that practical implementations
must be more flexible in addressing varying communication costs,
the STEAM teamwork model includes decision-theoretic communi-
cation selectivity. The algorithm that computes this selectivity uses

an inequality, similar to the high-level view of our optimal criterion
for communication: � Cmt > Cc Here,Cc is the cost of communi-
cation that the joint goal has been achieved;Cmt is the cost of mis-
coordinated termination, where miscoordination may arise because
teammates may remain unaware that the goal has been achieved; and
 is the probability that other agents are unaware of the goal being
achieved.

While each of these parameters has an corresponding expression
in the optimal criterion for communication, in STEAM, each param-
eter is a fixed constant. Thus, STEAM’s criterion is not sensitive to
the particular world and belief state that the team finds itself in at
the point of decision, nor does it conduct any lookahead over future
states. Therefore, STEAM provides a rough approximation to the
optimal criterion for communication, but it will suffer some subopti-
mality in domains of reasonable complexity.

On the other hand, while optimality is crucial, feasibility of exe-
cution is also important. Agents can compute the STEAM selectivity
criterion in constant time, which presents an enormous savings over
the worst-case complexity of the optimal decision, as shown in Table
2. In addition, STEAM is more flexible than theSJI policy, since its
conditions for communication are more selective.

Summary and Future Experimental Work
In addition to providing these analytical results over general classes
of problem domains, the COM-MTDP framework also supports the
analysis ofspecificdomains. Given a particular problem domain, we
can use the COM-MTDP model to construct an optimal coordina-
tion policy. If the complexity of computing an optimal policy is pro-
hibitive, we can instead use the COM-MTDP model to evaluate and
compare candidates for approximate policies.

To provide a concrete illustration of the application of the COM-
MTDP framework to a specific problem, we are investigating an
example domain inspired by our experiences in constructing teams
of agent-piloted helicopters. Consider two helicopters that must fly
across enemy territory to their destination without detection. The
first, piloted by agentA, is a transport vehicle with limited firepower.
The second, piloted by agentB, is an escort vehicle with significant
firepower. Somewhere along their path is an enemy radar unit, but
its location is unknown (a priori) to the agents. AgentB’s escort he-
licopter is capable of destroying the radar unit upon encountering it.
However, agentA’s transport helicopter is not, and it will itself be
destroyed by enemy units if detected. On the other hand, agentA’s
transport helicopter can escape detection by the radar unit by travel-
ing at a very low altitude (nap-of-the-earthflight), though at a lower
speed than at its typical, higher altitude. In this scenario, agentB will
not worry about detection, given its superior firepower; therefore, it
will fly at a fast speed at its typical altitude.

The two agents form a top-level joint commitment,GD , to reach
their destination. There is no incentive for the agents to communicate
the achievement of this goal, since they will both eventually reach
their destination, at which point they will achieve mutual belief in the
achievement ofGD . However, in the service of their top-level goal,
GD, the two agents also adopt a joint goal,GR, of destroying the
radar unit, since, without destroying the radar unit, agentA’s trans-
port helicopter cannot reach the destination. We consider here the
problem facing agentB with respect to communicating the achieve-
ment of goal,GR. If agentB communicates the achievement ofGR,
then agentA knows that the enemy is destroyed and that it is safe
to fly at its normal altitude (thus reaching the destination sooner). If
agentB doesnot communicate the achievement ofGR, there is still
some chance that agentA will observe the event anyway. If agent
A does not observer the achievement ofGR, then it must fly nap-of-
the-earth the whole distance, and the team receives a lower reward
because of the later arrival. Therefore, agentB must weigh the in-
crease in expected reward against the cost of communication.



We are in the process of conducting experiments using this exam-
ple scenario with the aim of characterizing the optimality-efficiency
tradeoffs made by various policies. In particular, we will compute the
expected reward achievable by the agents using the optimal coordi-
nation policy vs. STEAM vs. the simple joint-intentions policy. We
will also measure the amount of computational time required to gen-
erate these various policies. We will evaluate this profile over various
domain parameters—more precisely, agentA’s ability to observeGR

and the cost of communication. The results of this investigation will
appear in a forthcoming publication (Pynadath & Tambe 2002).
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