
R-COM-MTDP: Comparing and Forming Plans for Team Formation in
Multiagent Systems

Ranjit Nair, Milind Tambe, Stacy Marsella, David V. Pynadath
Computer Science Department and Information Sciences Institute

University of Southern California
Los Angeles CA 90089

{nair,tambe}@usc.edu, {marsella,pynadath}@isi.edu

Abstract

Team formation, i.e., allocating agents to roles within
a team or subteams of a team, and the reorganiza-
tion of a team upon team member failure or arrival
of new tasks are critical aspects of teamwork. De-
spite significant progress, research in multiagent team
formation and reorganization has failed to provide a
rigorous analysis of the computational complexities of
the approaches proposed or their degree of optimal-
ity. This shortcoming has hindered quantitative com-
parisons of approaches or their complexity-optimality
tradeoffs, e.g., is the team reorganization approach in
practical teamwork models such as STEAM optimal
in most cases or only as an exception? To alleviate
these difficulties, this paper presents R-COM-MTDP,
a formal model based on decentralized communicating
POMDPs, where agents explicitly take on and change
roles to (re)form teams. R-COM-MTDP significantly
extends an earlier COM-MTDP model, by analyzing
how agents’ roles, local states and reward decomposi-
tions gradually reduce the complexity of its policy gen-
eration from NEXP-complete to PSPACE-complete to
P-complete. We also encode key role reorganization
approaches (e.g., STEAM) as R-COM-MTDP policies,
and compare them with a locally optimal policy deriv-
able in R-COM-MTDP, thus, theoretically and empir-
ically illustrating the complexity-optimality tradeoffs.

Introduction
Team formation, i.e., allocating agents to roles within a
(sub)team (Tidhar et al 1996) is a critical pre-requisite
for multiagent teamwork, i.e. before agents can act
together as team, we need to decide on how best
to form these team. Teams formed must often re-
form (reorganize role allocation) upon team member
failure or arrival of new tasks(Grosz & Kraus 1996;
Tambe 1997). Unfortunately, there are three key short-
comings in the current work on team formation and
reformation. First, each team formation/reformation
episode is considered independent of future reforma-
tions. Yet, in many dynamic domains, teams contin-
ually reorganize. Thus, planning ahead in team for-
mation can minimize costly reorganization given future
tasks or failures. We call this Team Formation for Ref-
ormation, i.e. forming teams taking into account fu-
ture eventualities like change in tasks and failures that
will necessitate a reformation. For instance, distributed

sensor agents may form subteams and continually reor-
ganize to track mobile targets(Modi et al. 2001); plan-
ning ahead may minimize reorganization and tracking
disruption. Such planning may also benefit dynamic
disaster rescue teams(Kitano et al 1999).

A second key shortcoming is the lack of analysis of
complexity-optimality tradeoffs in team (re)formation
algorithms. Certainly, the computational complexity of
the overall process of optimal team formation and refor-
mation, as suggested above, is unknown. Furthermore,
both the optimality and complexity of current team
reformation approaches remains uninvestigated, e.g.,
is the team reformation algorithm in STEAM(Tambe
1997), a key practical teamwork model, always opti-
mal or only as an exception? Even if suboptimal, un-
derstanding the computational advantages of these al-
gorithms could potentially justify their use. Finally,
while roles are central to teams(Tidhar et al 1996), we
still lack analysis of the impact of different role types
on teamwork computational complexity.

This paper presents R-COM-MTDPs (Roles and
Communication in a Markov Team Decision Process),
a formal model based on communicating decentral-
ized Partially Observable Markov Decision Processes
(POMDP), to address the above shortcomings. R-
COM-MTDP significantly extends an earlier model
called COM-MTDP (Pynadath & Tambe 2002), by
making important additions of roles and agents’ local
states, to more closely model current complex multi-
agent teams. Thus, R-COM-MTDP provides decen-
tralized optimal policies to take up and change roles
in a team (planning ahead to minimize reorganization
costs), and to execute such roles.

R-COM-MTDPs provide a general tool to analyze
role-taking and -executing policies in multiagent teams.
We show that while generation of optimal policies in R-
COM-MTDPs is NEXP-complete, different observabil-
ity and communication conditions, and role definitions,
significantly reduce such complexity. We also encode
key role reorganization approaches (e.g., STEAM) as
R-COM-MTDP policies; we compare them with a lo-
cally optimal policy derivable in R-COM-MTDP, thus,
analytically and empirically quantifying their optimal-
ity losses for efficiency gains. Thus, policies derived
directly using the R-COM-MTDP model are calculated
by planning for all possible reformations that may be

From: AAAI Technical Report WS-02-12. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

required in the future. However, it is possible to an-
alyze reactive approaches like STEAM that don’t per-
form “look-ahead” within this model.

Previous Work
While there are related multiagent models based on
MDPs (Bernstein et al 2000; Boutilier 1996; Peshkin
et al. 2000; Pynadath & Tambe 2002; Xuan et al 2001)
they have focused on coordination after team forma-
tion on a subset of domain types we consider, and
they do not address team formation and reformation.
The most closely related is COM-MTDP(Pynadath &
Tambe 2002), which, we discuss first before discussing
the others.

Given a team of selfless agents, α, a COM-
MTDP (Pynadath & Tambe 2002) is a tuple,
〈S, Aα,Σα, P,Ωα, Oα, Bα, Rα〉. S is a set of world
states. Aα =

∏
i∈α Ai is a set of combined domain-

level actions, where Ai is the set of actions for agent
i. Σα =

∏
i∈α Σi is a set of combined messages, where

Σi is the set of messages for agent i. St is a random
variable for the world state at time t which takes val-
ues from S. The same notation is used for At

α, Ωt
α,

etc. P (sb,a, se) = Pr(St+1=se|St=sb, A
t
α=a) gov-

erns the domain-level action’s effects. Ωα =
∏

i∈α Ωi

is a set of combined observations, where Ωi is the
set of observations for agent i. Observation function,
Oα(s,a,ω) = Pr(Ωt

α=ω|St=s, At−1
α =a), specifies a prob-

ability distribution over the agents’ observations jointly
and may be classified as:

Collective Partial Observability: No assumptions
are made about the observability of the world state.

Collective Observability: Team’s combined obser-
vations uniquely determine world state: ∀ω ∈ Ωα,
∃s ∈ S such that ∀s′ �= s, Pr(Ωα

t = ω|St = s′) = 0.
Individual Observability: Each individual’s obser-

vation uniquely determines the world state: ∀ω ∈ Ωi,
∃s ∈ S such that ∀s′ �= s, Pr(Ωt

i = ω|St = s′) = 0.

Agent i chooses its actions and communication based
on its belief state, bt

i ∈ Bi, derived from the observa-
tions and communication it has received through time
t. Bα =

∏
i∈α Bi is the set of possible combined belief

states. Like the Xuan-Lesser model(Xuan et al 2001),
each decision epoch t consists of two phases. In the first
phase, each agent i updates its belief state on receiv-
ing its observation, ωt

i ∈ Ωi, and chooses a message to
send to its teammates. In the second phase, it updates
its beliefs based on communication received, Σt

α, and
then chooses its action. The agents use separate state-
estimator functions to update their belief states: ini-
tial belief state, b0

i = SE0
i (); pre-communication belief

state, bt
i•Σ = SEi•Σ(bt−1

iΣ• , ωt
i); and post-communication

belief state, bt
iΣ• = SEiΣ•(bt

i•Σ,Σt
α). The state estima-

tor functions could be as simple appending new obser-
vation or communication to previous history.

The COM-MTDP reward function represents the
team’s joint utility over states and actions, Rα : S×

Σα × Aα → R, and is the sum of two rewards: a
domain-action-level reward, RαA : S×Aα → R, and a
communication-level reward, RαΣ :S×Σα→R. COM-
MTDP (and likewise R-COM-MTDP) domains can be
classified based on the allowed communication and
its reward as i) General Communication: no as-
sumptions on Σα nor RαΣ, ii) No Communication:
Σα = ∅, and iii) Free Communication: ∀σ ∈ Σα,
RαΣ(σ) = 0. RαΣ is just the immediate cost of the
communication act and does not include the future re-
ward resulting from this communication.

The COM-MTDP model subsumes the other pre-
vious multiagent coordination models. For instance,
the decentralized partially observable Multiagent deci-
sion process (DEC-POMDP) (Bernstein et al 2000)
model focuses on generating decentralized policies
in collectively partially observable domains with no
communication; Multiagent Markov Decision Pro-
cesses(MMDPs) (Boutilier 1996) focuses on individually
observable domains with no communication; while the
Xuan-Lesser model (Xuan et al 2001) focuses only on
a subset of collectively observable environments. The
POIPSG model (Peshkin et al. 2000) is similar to DEC-
POMDP) (Bernstein et al 2000) in that it considers
collectively partially observable domains with no com-
munication.

The R-COM-MTDP Model
Roles reduce the complexity of action selection and
also enable better modeling of real systems, where each
agent’s role restricts its domain-level actions. Hence, we
build on the existing multiagent coordination models,
especially COM-MTDP, to include roles. Another key
multiagent concept that is missing in current models is
“local state”. We, thus, define a R-COM-MTDP as an
extended tuple, 〈S, Aα,Σα, P,Ωα, Oα, Bα, Rα,RL〉.

Extension for Explicit Roles
RL = {r1, . . . , rs} is a set of all roles that α can un-
dertake. Each instance of role rj requires some agent
i ∈ α to fulfill it. Agents’ domain-level actions are now
distinguished between two types:

Role-Taking actions: Υα =
∏

i∈α Υi is a set of com-
bined role taking actions, where Υi = {υirj

} contains
the role-taking actions for agent i. υirj

∈ Υi means
that agent i takes on the role rj ∈ RL. An agent’s
role can be uniquely determined from its belief state
and policy.

Role-Execution Actions: Φα =
∏

i∈α Φi is a set of
combined execution actions, where Φi=

⋃
∀rj∈RL Φirj

.
Φirj

is the set of agent i’s actions for executing role
rj ∈ RL, thus restricting the actions that an agent
can perform in a role.

The distinction between role-taking and -execution
actions (Aα=Υα ∪ Φα) enables us to separate their
costs. We can then compare costs of different role-
taking policies analytically and empirically as shown

in future sections. Within this model, we can represent
the specialized behaviors associated with each role, and
also any possible differences among the agents’ capabil-
ities for these roles. While filling a particular role, rj ,
agent i can perform only those role-execution actions,
φ ∈ Φirj , which may not contain all of its available ac-
tions in Φi. Another agent � may have a different set
of available actions, Φ�rj , allowing us to model the dif-
ferent methods by which agents i and � may fill role rj .
These different methods can produce varied effects on
the world state (as modeled by the transition probabil-
ities, P) and the team’s utility. Thus, the policies must
ensure that agents for each role have the capabilities
that benefit the team the most.

As in the models seen in the previous section (Xuan et
al 2001; Pynadath & Tambe 2002), each decision epoch
consists of two stages, a communication stage and an
action stage. However, the action stage in each suc-
cessive epoch, alternates between role-taking and role-
execution actions. Thus, the agents are in the role-
taking epoch if the time index is divisible by 2, and
are in the role execution epoch otherwise. Although,
this sequencing of role-taking and role-execution epochs
restricts different agents from running role-taking and
role-execution actions in the same epoch, it is con-
ceptually simple and synchronization is automatically
enforced. This allows us to easily reason about role
taking actions and role execution actions in isolation
as will be shown in section 6. As with COM-MTDP,
the total reward is a sum of communication and ac-
tion rewards, but the action reward is further sep-
arated into role-taking action vs. role-execution ac-
tion: RαA(s,a) = RαΥ(s,a)+RαΦ(s,a). By definition,
RαΥ(s, φ) = 0 for all φ ∈ Φα, and RαΦ(s, υ) = 0 for
all υ ∈ Υα. We view the role taking reward as the
cost (negative reward) for taking up different roles in
different teams. Such costs may represent preparation
or training or traveling time for new members, e.g., if
a sensor agent changes its role to join a new sub-team
tracking a new target, there is a few seconds delay in
tracking. However, change of roles may potentially pro-
vide significant future rewards.

We can define a role-taking policy, πiΥ : Bi → Υi for
each agent’s role-taking action, a role-execution policy,
πiΦ : Bi → Φi for each agent’s role-execution action,
and a communication policy πiΣ : Bi → Σi for each
agent’s communication action. The goal is to come up
with joint policies παΥ, παΦ and παΣ that will maximize
the total reward over a finite horizon T .

Extension for Explicit Local States: Si

In considering distinct roles within a team, we con-
sider that only a distinct part of the state space S is
relevant for each individual agent. If we consider the
world state to be made up of orthogonal features (i.e.,
S = Ξ1×Ξ2×· · ·×Ξn), then we can identify the subset
of features of the world state that affect the observation
of agent i. We denote this subset of features as its local
state, Si = Ξi1 × Ξi2 × · · · × Ξimi

. The local state of

an agent is dynamic and could change with change in
the agent’s role, world state, etc. By definition, the ob-
servation that agent i at time t receives is independent
of any features not covered by St

i : Pr(Ωt
i = ω|St =

〈ξ1, ξ2, . . . , ξn〉 , At−1
α = a,Ωt

α−i = ωα−i) = Pr(Ωt
i =

ω|St
i = 〈ξi1, . . . , ξimi

〉 , At−1
α = a,Ωt

α−i = ωα−i), where
Ωt

α−i =
∏

j∈α\{i} Ωt
j .

Thus, observations made by an agent depend on only
i) its local state, ii) the last combined domain-level ac-
tion, and iii) the observations of some (possibly none)
of the other agents’ observations . This definition of lo-
cal state allows us to identify a new class of observation
functions to closely model (possibly as an approxima-
tion) key types of complex multiagent systems such as
RoboCupRescue(Kitano et al 1999), where each agent
knows its local state perfectly at all times.
Local Observability: Each individual’s observation

uniquely determines its local state: ∀ω ∈ Ωi, ∃s ∈ Si

such that ∀s′ �= s, Pr(Ωt
i = ω|St

i = s′) = 0.
The R-COM-MTDP model works as follows: Ini-

tially, the global world state is S0, where each agent
i ∈ α has local state S0

i and belief state b0
i = SE0

i () and
no role. Each agents receives an observation, ω0

i which
is part of a joint observation ω0 drawn from probabil-
ity distribution Oα(S0,null,ω0) (there are no actions
yet) and updates its belief state, b0

i•Σ = SEi•Σ(b0
i , ω

0
i)

to incorporate this new evidence. Each agent then de-
cides what to broadcast based on its communication
policy, πiΣ, and updates its belief state according to
b0
iΣ• = SEiΣ•(b0

i•Σ,Σ0
α). Each agent, based on its be-

lief state then executes the role-taking action according
to its role-taking policy, πiΥ. By the central assump-
tion of teamwork, all of the agents receive the same
joint reward, R0

α = Rα(S0,Σ0
α, A0

α). The world then
moves into a new state, S1, according to the distri-
bution, P (S0, A0

α). Each agent then receives the next
observation about its new local state and updates its be-
lief state using b1

i•Σ = SEi•Σ(b0
iΣ•, ω

1
i). This is followed

by another communication action resulting in the belief
state, b1

iΣ• = SEiΣ•(b1
i•Σ,Σ1

α). The agent then decides
a role-execution action based on its policy πiΦ. It then
receives new observations about its local state and the
cycle of observation, communication, role-taking action,
observation, communication and role-execution action
continues.

Complexity of R-COM-MTDPs
R-COM-MTDP enables a critically needed system-
atic investigation of the complexity for generat-
ing optimal policies under different communication
and observability conditions. (Given space lim-
its, detailed proofs for all our theorems are at:
http://www.isi.edu/teamcore/uai).

Theorem 1 We can reduce a R-COM-MTDP to an
equivalent COM-MTDP and vice versa.

Proof: Reduction from COM-MTDP to R-COM-MTDP
is easy. Given that R-COM-MTDP is a generalization

of COM-MTDP, we set its role taking action to null.
The difficult direction is the reduction from R-COM-
MTDP to COM-MTDP, where the key idea is that we
generate a new COM-MTDP where its state space has
all the features of the original R-COM-MTDP state
space S = Ξ1 × · · · × Ξn, and an additional feature
Ξphase = {taking, executing}. This new feature indicates

whether the current state corresponds to a role-taking or
-executing stage of the R-COM-MTDP. The new transition
probability function, P ′, augments the original function
P with an alternating behavior for this new feature:
P ′(〈ξ1b, . . . , ξnb, taking〉 , υ, 〈ξ1e, . . . , ξne, executing〉) =
P (〈ξ1b, . . . , ξnb〉 , υ, 〈ξ1e, . . . , ξne〉) where υ is a role-taking
action in the R-COM-MTDP(similarly from executing to
taking).�

Thus, the problem of finding optimal policies for R-
COM-MTDPs has the same complexity as the problem
of finding optimal policies for COM-MTDPs. Table 1
shows the computational complexity results for various
classes of R-COM-MTDP domains, where the results
for individual, collective, and collective partial observ-
ability follow from COM-MTDPs (Pynadath & Tambe
2002). New results in Table 1 come from analyzing the
key addition in R-COM-MTDP, that of local states and
local observability.

Theorem 2 Given a collectively observable R-COM-
MTDP, 〈S, Aα,Σα, P,Ωα, Oα, Bα, Rα,RL〉, there
is an equivalent locally observable R-COM-MTDP,
〈S′, Aα,Σα, P ′,Ωα, O′

α, Bα, R′
α,RL〉, such that any

policies, παΥ, παΦ, and παΣ, will achieve identical
expected rewards under both R-COM-MTDPs.

Proof: We can define a R-COM-MTDP such that each
agent’s local state is exactly the observation it receives
according to the original collectively observable R-COM-
MTDP. The world state in the resulting R-COM-MTDP is
exactly the combined observations of the agents. The re-
sulting R-COM-MTDP is locally observable and equivalent
to the original collectively observable R-COM-MTDP�

Thus, while collective observability is a team’s global
property, we can still generate from it a locally ob-
servable R-COM-MTDP. A locally observable R-COM-
MTDP is not collectively observable however. By def-
inition, a locally observable R-COM-MTDP is collec-
tively partially observable (the most general observabil-
ity class). Since under no communication, the com-
plexity of both collectively observable R-COM-MTDP
and collectively partially observable R-COM-MTDP is
NEXP-complete, Theorem 2 implies that the complex-
ity of locally observable R-COM-MTDP under no com-
munication is also NEXP-complete. This explains the
NEXP-complete entries for local observability in Ta-
ble 1. Finally, we can also show the following result:

Theorem 3 The decision problem of determining if
there exist policies, παΣ and παA, for a given R-COM-
MTDP with free communication and local observabil-
ity, that yield a total reward at least K over finite hori-
zon T is PSPACE-complete.

Table 1: Computational Complexity
Ind. Obs. Coll. Obs. Coll. Part. Obs. Loc. Obs.

No Comm. P-Comp. NEXP-Comp. NEXP-Comp. NEXP-Comp.
Gen. Comm. P-Comp. NEXP-Comp. NEXP-Comp. NEXP-Comp.
Free Comm. P-Comp. P-Comp. PSPACE-Comp. PSPACE-Comp.

Role Decomposition
While roles are seen to be central in designing multi-
agent systems, some designers exploit roles further by
decomposition of the multiagent coordination problem
into smaller subproblems, isolating the specific factors
relevant to each of the separate roles(Marsella et al
2001; Yoshikawa 1978). The qualitative intuition be-
hind this role decomposition is that this separation sim-
plifies the overall problem facing the agent team, even
if it only approximates optimal behavior.

This section presents a quantitative evaluation of the
computational savings gained by role decomposition, as
well as of the sub-optimality introduced by its approx-
imation. This fits in with our idea of analyzing the ex-
tremes to understand boundary conditions. For role de-
composition, the following three constraints must hold.
First, the dynamics of the local state must depend on
only the current local state and the agent’s domain-
level action: Pr(St+1

i |St=〈ξ1, . . . , ξn〉 , At
α=Πj∈αaj) =

Pr(St+1
i |St

i = 〈ξi1, . . . , ξimi
〉 , At

i = ai). Second, agent’s
observations are independent and governed by the fol-
lowing observation functions, Oi(s, a, ω) = Pr(Ωt

i =
ω|St−1

i =s, At−1
i =a) which implies that the observations

of agent i at time t are unaffected by the observations
and actions of other agents. Finally, we also structure
the reward function so that the agents’ actions earn in-
dependent rewards: Rα(s,

∏
i∈α ai) =

∑
i∈α Ri(si, ai),

where Ri is the local reward function for agent i and si

is its local state. We now examine the computational
savings given role decomposition.

Theorem 4 The decision problem of determining if
there exist policies, παΥ, παΦ and παΣ, for a R-COM-
MTDP with role decomposition, that yield a total re-
ward at least K over some finite horizon T is PSPACE-
complete.

Proof: Given role decomposition, the value of the opti-
mal policy for the whole team is identical to the sum of the
values of the locally optimal policies for the separate agents.
Thus, the problem is equivalent to solving |α| single-agent
POMDPs, a problem known to be PSPACE-Complete.�

Theorem 5 The decision problem of determining
whether there exist policies, παΥ, παΦ and παΣ, for a
R-COM-MTDP with role decomposition in a locally ob-
servable domain, that yield a total reward at least K
over some finite horizon T is P-complete.

Proof: Under local observability, we can reduce the over-
all R-COM-MTDP to |α| separate single-agent MDPs.�

Table 2 demonstrates that role decomposition can
significantly lower computational complexity and to-
gether with Table 1, it allows us to compare the relative

Table 2: Computational Complexity after Role Decom-
position

Ind. Obs. Coll. Obs. Coll. Part. Obs. Loc. Obs.

No Comm. P-Comp. PSPACE-Comp. PSPACE-Comp. P-Comp.
Gen. Comm. P-Comp. PSPACE-Comp. PSPACE-Comp. P-Comp.
Free Comm. P-Comp. P-Comp. PSPACE-Comp. P-Comp.

value of communication and role decomposition in sim-
plifying the decision problem facing an agent team. Ex-
amining the bottom two rows of Table 1, we see that,
under collective observability, having the agents com-
municate all of their observations all of the time re-
duces the problem from NEXP to P. Examining the
difference between Tables 1 and 2, we see that role de-
composition, in contrast, reduces the problem to only
PSPACE under collective observability (top row, Table
2). However, under local observability, full communi-
cation reduces the problem from NEXP to PSPACE,
while role decomposition produces a decision problem
that is only P.

Most real-world domains are not exactly decompos-
able, so role decomposition often gains its computa-
tional savings at the cost of an approximate model of
the domain. Similarly, full communication may sac-
rifice optimality when communication incurs nonzero
costs. We can quantify the relative optimality of these
two methods.

Theorem 6 Given an expected reward loss from role
decomposition of K, and a maximum communication
cost C per epoch such that K > T · C, where T is the
finite horizon, the optimal policy using full communi-
cation strictly dominates the optimal policy with role
decomposition.

New Role Replacement Algorithms
R-COM-MTDP analysis of the complexity of forming
the optimal policy for an entire team, including team
formation and reformation, illustrates its difficulty.
Hence, implemented systems often restrict the problem
to “Role Replacement”. For example, STEAM(Tambe
1997) assumes an initial team formation performed by
a human, and focuses on reformation via role replace-
ment, where a failed agent must be replaced by another.
Similarly, the SharedPlans theory focuses on unrecon-
ciled actions(Grosz & Kraus 1996), where an agent or a
subteam considers substituting for an unfilled (or failed)
role. However, the complexity of the decision problem
faced in such role substitution, or the optimality of the
approaches proposed, has previously not been analyzed.

R-COM-MTDP can analyze the complexity and op-
timality of current approaches to the “Role Replace-
ment” problem. As an illustration, we focus on the
STEAM policy for replacing a failed agent within a R-
COM-MTDP. Consider a simple scenario where a task
is being executed by a team of agents jointly, and that
a single agent of this team fails in its role and needs
to be replaced. An agent AR observes (or is informed
of) this failure and needs to decide whether it should

replace the failed agent or not. In STEAM, the policy
AR will follow is this: an agent in role R will replace
a failed agent in role F only if the following inequality
holds:

Criticality (F) − Criticality (R) > 0 (1)

Criticality (x) = 1 if x is critical; = 0 otherwise

In other words, replacement occurs if role F is con-
sidered critical and role R is not critical. A role is
critical if its non-achievement results in the task re-
maining unfulfilled. Criticality is determined in O(|α|)
by processing role-dependency conditions supplied by
a human. While this STEAM approach is tractable,
it is difficult to evaluate its optimality or quantita-
tively compare it with other approaches. To address
this problem, R-COM-MTDP can be used to come up
with an optimal joint role-taking policy. This pol-
icy, which we refer to as, the “globally optimal” pol-
icy, allows any number of agents to perform any role
taking action at any point in time (even before the
actual failure). The time complexity for finding the
globally optimal joint policy by searching this space is

thus: O

((

|Υα|
|Ωα|T −1
|Ωα|−1

)|α|
· (|S| · |Ωα|)T

)

, i.e. dou-

bly exponential in the finite horizon and the number
of agents. The intractability of the “globally optimal”
policy search motivated us to look for policy that is “lo-
cally optimal” in the sense that we consider only one
agent’s decision about another agent’s failure and the
decision is further restricted to either replace or not at
the moment the agent learns of the failure.

Assume KF is the earliest time when any agent can
replace the failed agent after learning about the fail-
ure. We consider the decision at time KF = t0 to per-
form role-taking action υF , which will replace the failed
agent, by an agent AR = i which knows of the failure
and has a pre-communication belief state bi•Σ = β. In
order to quantify the difference between performing the
role-replacement action υF and doing nothing, we de-
fine the following term:
∆

T
(t0, i, β) ≡ E

T−t0∑

t=0
R

t0+t
α

∣
∣
∣
∣
∣
∣
Υ

t0
i = υF , KF = t0, AR = i, b

t0
i•Σ = β

− E

T−t0∑

t=0
R

t0+t
α

∣
∣
∣
∣
∣
∣
Υ

t0
i = null, KF = t0, AR = i, b

t0
i•Σ = β

We assume that, for all times other than KF , the
agents follow some role-taking policy, πΥ. Thus, ∆T

measures the difference in expected reward that hinges
on agent i’s specific decision to perform or not perform
υF at time t0. It is locally optimal for agent i to perform
the role replacing action, υF , at time t0, if and only if
∆T ≥ 0.

The R-COM-MTDP model can be used to derive an
operational expression of ∆T ≥ 0. For simplicity, we
define notational shorthand for various sequences and
combinations of values. We define a partial sequence of
random variables, X<t, to be the sequence of random
variables for all times before t: X0, X1, . . . , Xt−1. We
make similar definitions for the other relational opera-
tors. The expression, (S)T , denotes the cross product

over states of the world,
∏T

t=0 S, as distinguished from
the time-indexed random variable, ST , which denotes
the value of the state at time T . The notation, s≥t0 [t],
specifies the element in slot t within the vector s≥t0 .

In inequality 2, the function Λ is a shorthand to com-
pactly represent a particular subsequence of world and
agent belief states occurring, conditioned on the current
situation, as follows: Pr(Λ (〈ti, tf 〉 , s,β•Σ, t0, i, β)) ≡
Pr(S≥ti,≤tf=s, b•Σ

≥ti,≤tf=β•Σ
∣
∣KF=t0, AR=i, bt0

i•Σ=β) .
The function, βΣ•, maps a pre-communication belief
state into the post-communication belief state that
arises from a communication policy: βΣ•(β•Σ,πΣ)≡
SEΣ•(β•Σ,πΣ(β•Σ))

Theorem 7 If we assume that, upon failure F , no ac-
tion other than υF by agent i is possible to replace the
failed agent, then condition ∆T (t0,i,β) ≥ 0 holds if and
only if:

∑

s≤t0∈(S)t0

∑

β
≤t0
•Σ ∈Bt0

Pr(Λ(〈0, t0〉 , s≤t0 , β≤t0
•Σ , t0, i, β)|Υt0

i = υF)

·

∑

s>t0∈(S)T−t0

∑

β
>t0
•Σ ∈BT−t0

Pr
(
Λ(〈t0 + 1, T 〉 , s>t0 , β>t0

•Σ , t0, i, β)

∣
∣
∣Υ

t0
i = υF , Λ(〈0, t0〉 , s≤t0 , β≤t0

•Σ , t0, i, β)
)

·
T∑

t=t0+1

Rα

(
s>t0 [t], πΣ

(
β•Σ

>t0 [t]
)
, πA

(
βΣ•

(
β•Σ

>t0 [t], πΣ

)))

−Pr
(
Λ(〈t0 + 1, T 〉 , s>t0 , β>t0

•Σ , t0, i, β)
∣
∣
∣Υ

t0
i = null, Λ(〈0, t0〉 , s≤t0 , β≤t0

•Σ , t0, i, β)
)

·
T∑

t=t0+1

Rα

(
s>t0 [t], πΣ

(
β•Σ

>t0 [t]
)
, πA

(
βΣ•

(
β•Σ

>t0 [t], πΣ

)))
)

≥−
∑

s∈F

∑

β∈B

Pr (Λ(〈t0, t0〉 , s, β, t0, i, β)) RαΥ(s, υF) (2)

Proof: We can rewrite the expression for ∆T (t0, i, β)
as an explicit summation over the possible state and belief
state sequences:

∆T (t0, i, β)=
∑

s≤T ∈(S)T

∑

β•Σ
≤T ∈(B)T

∑

βΣ•≤T ∈(B)T

Pr
(
S≤T = s≤T ,b•Σ

≤T = β•Σ
≤T ,bΣ•

≤T = βΣ•
≤T

|Υt0
i = υF , KF = t0, AR = i, bt0

i•Σ = β
)

·
T∑

t=0

Rα(s≤T [t], πA(βΣ•
≤T [t]), πΣ(β•Σ

≤T [t]))

−
∑

βΣ•≤T ∈(B)T

Pr
(
S≤T = s≤T ,b•Σ

≤T = β•Σ
≤T ,bΣ•

≤T = βΣ•
≤T

|Υt0
i = null, KF = t0, AR = i, bt0

i•Σ = β
)

·
T∑

t=0

Rα(s≤T [t], πA(βΣ•
≤T [t]), πΣ(β•Σ

≤T [t]))

)

We then separate πA into πΥ and πΦ, the policies for
role-taking and role-execution. We define πΥυ and πΥnull

as two policies that differ only in the action for belief state β
for agent i. The reward earned up to t0 will be identical. By
isolating the cost of role replacement and then substituting
the resulting expression into ∆T ≥ 0, we produce exactly
the inequality from the statement of the theorem. �

Thus, Theorem 7 states that performing the role-
replacement action υF is preferred when its total ex-
pected benefit exceeds its expected cost. More pre-
cisely, the outer summations on the left-hand side of
the inequality iterate over all possible past histories of
world and belief states, producing a probability distri-
bution over the possible states the team can be in at
time t0. For each such state, the expression inside the
parentheses computes the difference in domain-level re-
ward, over all possible future sequences of world and
belief states, between performing and not performing
υF . The right-hand side of the inequality is a sum-
mation of the cost of performing the role replacement
action υF over possible current states and belief states.
Note that to calculate the inequality in Theorem 7, an
agent would, in the worst case, need to sum rewards
over all possible sequences of states and observations.
This leads to a time complexity of O((|S| · |Ωα|)T).
Thus, finding the locally optimal policy represents an

O

((

|Υα|
|Ωα|T −1
|Ωα|−1

)|α|)

speed-up over finding the glob-

ally optimal role replacement policy.
Contrast inequality 2 with inequality 1 (STEAM’s

role replacement policy): Criticality(F) is really an ap-
proximation of the total future reward for doing the role
replacement, while criticality(R) is an approximation of
the total future reward for not doing the role replace-
ment. Thus, Theorem 7 provides some justification for
STEAM’s role replacement policy. Of course, inequal-
ity 1 is only an approximation; but it is at least compu-

tationally much cheaper (O(|α|)). To further quantify
this optimality-efficiency tradeoff, we rely on empirical
evaluations (see next section).

Experimental Results
To demonstrate the utility of R-COM-MTDPs and
specifically results of Theorem 7 (locally optimal pol-
icy), we now consider an example domain involving heli-
copter agents. These agents must decide whether to do
a role replacement when a failure occurs. We compare
the performance of the policies introduced in the previ-
ous section, across a space of distinct domains obtained
by varying the cost of replacement and the probability
of a failure.

Consider a scenario where 2 transport helicopters and
2 scouting helicopters have a joint goal to get from a
point X to point Y along a path of 4 way-points. When
a scouting helicopter moves along the path the traversed
portion becomes safe for other helicopters to travel on.
A helicopter may either move from its current position
to the next point on the path with a single move ac-
tion or may remain where it is. When a scout fails
(e.g., it crashes) it can be replaced by a transport by
incurring a Role replacement cost for expending addi-
tional man-power. Once a transport becomes a scout
it cannot transform back. (We assume that there is an
ordering that determines which transport will perform
a role replacement.) Further, we assume that a heli-
copter can fail at any unscouted point x between X and
Y based on some known (uniform) probability distribu-
tion. To ensure a focus on role replacement, we assume
that the policies for role execution and communication
are the same for all approaches. A helicopter’s role
execution policy while assigned to a scout role is that
it will always go forward until it reaches Y, while the
transport role execution policy is to wait at X until any
one scout reaches Y. The reward is higher if more he-
licopters reach the destination safely and if they reach
early rather than late.

We compared the performance of the two policies
from the previous section and two straw-men policies,
Always Replace and Never Replace to the globally op-
timal policy. In the Locally Optimal policy, transports
use inequality 2 (from Theorem 7) to determine whether
to replace a failed scout. In the Never Replace policy,
no replacement is ever done. In the Always Replace pol-
icy, every failed scout is replaced; while in the STEAM
policy, the transports use inequality 1 to determine
whether to replace a failed scout. In STEAM, failure o
f the last remaining scout would be seen as critical and
all other roles as non-critical. We varied role replace-
ment cost of a single replacement(RiΥ) from 0 to 20 in
steps of 1 on the Y-axis and the probability of failure
of an agent given its position from 0.0 to 0.18 in steps
of 0.02 on the X-axis, and plotted sub-optimality, i.e.,
the difference between the value of the globally optimal
policy and the policy under consideration (Vopt−V) for
these 210 configurations on the Z-axis of Fig. 1. The
Always policy does much worse than the other policies

for the configurations considered and so we omit it from
this figure.

The uppermost, middle and lowest surfaces corre-
spond to Vopt − VNever, Vopt − VSTEAM and Vopt −
VLocally Optimal, respectively. The closer the surface to
the XY-plane the better is the performance. As seen
in Fig. 1, in all cases that we consider, Locally Optimal
does better than STEAM and Never. While STEAM
does better than Never and Always in most cases, in-
terestingly, it does worse than Never when replacement
cost and probability of failure increases.

Fig. 2(a) shows a 2D-slice of Fig. 1 for probability
of failure = 0.18. Fig. 2(a) indicates that the dif-
ference between STEAM(solid line) and Never(dotted
line) reduces with increasing replacement cost. Even-
tually, Never starts overtaking STEAM — STEAM al-
ways chooses role substitution without considering the
replacement cost (inequality 1). The difference between
STEAM and the globally optimal policy(and locally op-
timal policy) initially decreases and then increases with
increase in replacement cost, giving rise to a U-shape.

To understand the phenomenon such as the U-shape
of STEAM’s graph, Fig. 2(b) shows the number of role
replacements for each of the policies, with increasing re-
placement cost for probability of failure=0.18. Policies,
like STEAM, Never, and Always which don’t consider
replacement cost when deciding whether to do a re-
placement are not affected by the change in replacement
cost, and hence the flat line for STEAM, Never, and Al-
ways. The locally optimal and globally optimal keep re-
ducing the number of replacements made as the replace-
ment cost is increased. Fig. 2(a) and Fig. 2(b) shows
us that the sub-optimality of STEAM’s policy is lowest
when the number of replacements of the globally opti-
mal policy and STEAM are closest. Initially STEAM
was doing too few replacements and later too many re-
placements giving rise to the U-shape of STEAM’s sub-
optimality curve.

In this domain, the difference between values of the
locally optimal policy and the globally optimal is very
small as can be seen in Figs. 1 and 2(a). However, the
locally optimal algorithm gave an order of magnitude
speedup over the globally optimal, indicating that our
“locally optimal” algorithm is a computationally advan-
tageous alternative to the “globally optimal” strategy,
and has optimality superior to current heuristic-based
approaches. Thus, we have illustrated how we can de-
sign algorithms with different tradeoffs using R-COM-
MTDP.

Summary

In this paper we present a formal model called R-COM-
MTDP for Team Formation for Reformation. i.e., team
formation keeping in mind future reformations that
may be required. R-COM-MTDP which is based on
decentralized communicating POMDPs, enables us to
come up with policies for team (re)formation, com-
munication and action and also enables a rigorous

Figure 1: Sub-optimality of replacement policies:3D

(a) (b)

Figure 2: a: Sub-optimality of replacement poli-
cies, and b: Number of replacements vs. RiΥ for
Pr(failure)=0.18

analysis of complexity-optimality tradeoffs in com-
ing up with these policies team formation and reor-
ganization approaches. It provided: (i) worst-case
complexity analysis of the team (re)formation under
varying communication and observability conditions;
(ii) illustrated under which conditions role decompo-
sition can provide significant reductions in computa-
tional complexity; (iii) enabled theoretical and em-
pirical analysis of specific role reorganization policies
(e.g., showed where STEAM’s role replacement does
well). (These results have been rigorously proven,
please see http://www.isi.edu/teamcore/uai). Thus, R-
COM-MTDP could open the door to a range of novel
analyses of multiagent coordination.

References
Bernstein, D. S.; Zilberstein, S.; and Immerman, N. 2000.
The complexity of decentralized control of MDPs. In UAI.

Boutilier, C. 1996. Planning, learning & coordination in
multiagent decision processes. In TARK.

Grosz, B., and Kraus, S. 1996. Collaborative plans for
complex group action. Artificial Intelligence 86(2):269–
357.

Kitano, H.; Tadokoro, S.; and Noda, I. 1999. Robocup-
rescue: Search and rescue for large scale disasters as a
domain for multiagent research. In IEEE Conference SMC.

Marsella, S.; Tambe, M.; and Adibi, J. 2001. Experiences
acquired in the design of robocup teams: A comparison of
two fielded teams. JAAMAS 4:115–129.

Modi, P. J.; Jung, H.; Tambe, M.; Shen, W.-M.; and
Kulkarni, S. 2001. A dynamic distributed constraint sat-
isfaction approach to resource allocation. In Constraints
Proc (CP).

Peshkin, L.; Meuleau, N.; Kim, K.-E.; and Kaelbling, L.
2000. Learning to cooperate via policy search. In UAI.

Pynadath, D., and Tambe, M. 2002. Multiagent teamwork:
Analyzing the optimality complexity of key theories and
models. In AAMAS.

Tambe, M. 1997. Towards flexible teamwork. JAIR 7:83–
124.

Tidhar, G.; Rao, A.; and Sonenberg, E. 1996. Guided
team selection. In ICMAS.

Xuan, P.; Lesser, V.; and Zilberstein, S. 2001. Communi-
cation decisions in multiagent cooperation. In Agents.

Yoshikawa, T. 1978. Decomposition of dynamic team deci-
sion problems. Proceedings of the IEEE AC-23(4):627–632.

0
0.05

0.1
0.15

0.2

0

10

20
0

0.2

0.4

0.6

0.8

1

Pr(failure)R
iϒ

V
op

t −
 V

steam
never
local

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

R
iϒ

V
op

t −
 V

steam
never
local

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
iϒ

N
um

be
r

of
 R

ep
la

ce
m

en
ts steam

never
always
local
global

