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ABSTRACT

Adjustable autonomyefers to agents’ dynamically varying their own au-
tonomy, transferring decision making control to othertéti(typically hu-
man users) in key situations. Determining whether and wieh $rans-
fer of control must occur is arguably the fundamental redeguestion in
adjustable autonomy. Practical systems have made sigrtificaoads in
answering this question and in providing high-level guiites for transfer
of control decisions. For instance, [11] report that Markimcision pro-
cesses were successfully used in transfer of control desisn a real-world
multiagent system, but that use of C4.5 led to failures. artunderlying
theory of transfer of control, that would explain such ssses or failures
is missing. To take a step in building this theory, we introglthe notion
of atransfer-of-control strategywhich potentially involves several trans-
fer of control actions. A mathematical model based on thisonaallows
both analysis of previously reported implementations awdance for the
design of new implementations. The practical benefits & thodel are
illustrated in a dramatic simplification of an existing astable autonomy
system.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence ]: Distributed Atrtificial Intelligence—
Intelligent Agents

General Terms
Theory

1. INTRODUCTION

A growing number of applications require that agents hede
justable autonomyi.e., that agentslynamically adjust their own
level of autonomy based on the situati@j. At the heart of ad-
justable autonomy (AA) is the question of whether and whemtsy
should make autonomous decisions and when they shoulddrans
decision-making control to other entities (e.g., humars)se

Initial answers to this question, outlining specific tramshf-
control techniques and their effectiveness have alreaggapd
in the literature[11, 3, 7]. For instance, one key reportyishos
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paper's authors[11] and focused on AA in a real-world multia
gent system calleélectric Elves that is deployed 24/7[1]. It is
reported that the use of C4.5[9] led to dramatic failuresangfer-
of-control decisions, but that the use of Markov decisicocpsses
(MDPs) led to satisfactory decisions. Similarly, Horvitgpresents

a decision-theoretic approach to deciding whether to fearton-
trol from an agent assistant to a user. Fleming[2] presetesta
nigue based on thresholds of learned rules to decide if ageould
transfer control to a user.

While such reports are useful, without an underlyidgmain-
independenmodel of AA, we cannot predict whether an approach
that has success in one domain can translate that succesgto o
domains. For instance, could Horvitz's[7] technique fansfer of
control have worked in Electric Elves? Should we foreverigtan
C4.5 from AA systems, given its failure in Electric Elves? $flu
all AA applications use complex MDPs instead? There have bee
informal answers given to these questions, e.g., that theegbof
multiagent teams influences the AA approach[11], but no diema
independent model or formal answer to the questions.

To take a step towards such a model of AA, this paper intro-
duces the notion of aansfer-of-control strategyPrevious AA re-
search, when focusing on the transfer-of-control of anviddial
decision from an agent to another (e.g., a human user), et
the problem in terms of two basic choices: either transfeitrob
to a human or take autonomous action (i.e., do not transfer co
trol). The notion of a transfer-of-control strategy imgligat these
are just two of the many transfer-of-control strategieslabe to
an agent. In particular, a transfer-of-control strategg {@anned
sequence of transfer-of-control actions, including bdtbse that
actually transfer control and those that simply buy moresttonget
input. The agent executes such a strategy by performingtiena
in sequence, transferring control to the specified entitylaunying
time as required, until some point in time when the entityeuatly
in control exercises that control and makes the decisiom. irFo
stance, am H strategy implies that an agendt, initially attempts
autonomous actions given a problem. In this case, if it ilena
to make the decision it passes control to the huni for the
decision. Thus, there is uncertainty about which entity mike
that decision and when it will do so. The central AA problem is
to find a transfer-of-control strategy that maximizes thpeeted
utility (EU) of the decision.

Section 3 presents our model, which we have constructegsto ca
ture the factors important to AA reasoning identified in tiera-
ture: the relative decision-making quality of the entitit®e prob-
ability that a given entity will respond in a timely mannehet
costs incurred by waiting for a response, and any internedie
tions that the agent can take to limit those costs. Our moskes u



decision-theoretic techniques to determine the EU of aquéar
transfer of control strategy within a specific domain. We oam
the model to explain not only the successes and failureseufifsp
approaches in Electric Elves, but also to other system=lojesd
and reported on by other researchers.

Our model also supports other key results useful in contstigic
future AA systems. Most importantly, we prove that no trensf
of-control strategy dominates all others across all apfiie do-
mains. Therefore, AA developers must determine which exgsat
or strategies are right for their application. To faciauch a
search through the strategy space, we have developed aittatgo
that does a systematic search through the strategy spaog ous
model’s ability to evaluate candidate strategy’s EU. We igicgdly
demonstrate the validity of this strategy by replacing tkistang
complex MDP-based approach with the single strategy,rapii
cate previously published results

2. AA SUCCESSES AND FAILURES

A key reported application of AA is the Electric Elves prdjag,
which involves personal assistant agents helping with thetd-
day activities of a human organization. Occasionally, thenss
need to decide whether and when to transfer control to theeirsu
or whether to act. Users are not always available to answamtag
queries; hence, the agents require transfer-of-contrategfies to
handle this contingency. We focus on two specific decisibas t
need to be made to ensure the smooth running of the orgamizati
whether a user will attend a meeting on time and whether tgeclo
an auction for an open role in the organization. Two appresch
to AA have been applied in the Electric Elves: one using Cad a
another using MDPs. We briefly summarize these approachies he
but the full details are available in previous reports[11].

The first implementation used two sets of learned C4.5 rules:

one for deciding which action to take, and another set foidileg
whether to do a transfer of control[11]. For example, an iaomtay
rule learned for one user was “if the department head is nibteat
meeting and it is a Monday, keep control and make a decisibn”.
the autonomy rules decided that the agent should transférat o

a user and the user failed to respond in a fixed amount of tivee (fi
minutes), then the agent would take the autonomous actigh su
gested by its first set of rules. A second implementation (BEs

to do both decision making and transfer-of-control reasgniThe
MDP explicitly modeled the consequences of asking the umer f
input and not receiving a prompt response, and it gave thetage
much more flexibility in choosing transfer-of-control asts and
timing. Despite initially promising behavior, the C4.5ealmade
some catastrophic mistakes, including autonomously diémge
meeting with the division director, while the MDP implematibn
made no serious errors despite months of real-world use.

Many factors were thought to influence the Electric Elvesites
For example, previous reports suggested that the involreofea
teamwas a critical point[11]. The dynamics of the domain and the
effect that waiting had on other users clearly played a mawell.
However, previous reports could not identify which of thetéas
was actually the key to the downfall of the C4.5 approach awvd h
the MDP dealt with that factor. Without such an explanatibis
difficult to generalize the conclusions.

Among other practical AA systems, Goodrich et al.[5], in Wwor
on tele-operated robots, have looked at the effeatsafr neglect
on robot performance. More specifically, they looked at theqy-
mance of four control systems (differing in the robot's aaimy)
while varying the length of time the user “neglected” theabb
Other work on AA and mixed-initiative planning has focused o

ing as the sole rationale for deciding who should have cétro
3]. While intuitive reasons are given for the success ofedlegs
proaches there is no general theory to support the claims.

3. TRANSFER OF CONTROL STRATEGIES

In this section, we present a model of AA using decision-tégo
techniques. We first present the general framework and tiven g
a specific instantiation which illustrates some of the ctiastics
of the problem.

We begin with some definitions. An agem, is responsible
for making a decisiond. There aren entities,e; ... e,, who
can potentially make the decision. These entities can beahum
users, other agents, or the agent itself. The agent has sacte m
anism for transferring decision-making control to any of #nti-
ties. The expected quality of decisions made by each of ttitesn
EQ = {EQ‘ji (t) : R = R}i—,, is known, though perhaps not
exactly. P = {P+(t) : R — R} represent continuous probability
distributions over the time that the entity in control widspond
with a decision of qualityzQ? (¢).

Section 2 hinted that delaying a decision is an important con
sideration for AA. We model the cost of delaying a decisiotilun
timet as{W : t — R}. The set of possible wait-cost functions
is W. We assum@/V(t) is non-decreasing and that there is some
point in time, <1, when the costs of waiting stop accumulating (i.e.,
vVt > <1, VW e W, W(t) = W()).

Finally, the agent has some mechanism by which it can take som
action, with costD.,s¢, with the result of reducing the rate at which
wait costs accumulate. We call such an actiafeadline delaying
actionand denote iD. For example, & action might be as simple
as informing the party waiting for the decision that there haen
a delay, or more complex, such as reordering tasks. We mlbeel t
value of theD by lettingWV be a function of — D4, (rather than
t) after theD action.

We define the sef to be all possible transfer-of-control strate-
gies available to an agent. The problem for the agent cankiben
defined as:

Definition 3.1 For a decisiond, the agent must selegte S such
thatVs' € S,s' # s, EUt > EU%t

We define a simple shorthand for referring to particularsfen
of-control strategies by simply writing the order that &gt receive
control or, alternativelyDs are executed. For example,

@ fred@barney Pabarney 1S Shorthand for a strategy where the agent
gives control to the agentred, then gives it to the ageburney,
then does &, and finally gives control back indefinitely barney.
Notice that the shorthand does not record the timing of tinesfiers

of control. In the following discussion we assume that therag
itself can always make the decision itself, instantly.

To calculate the EU of an arbitrary strategy, we multiply the
probability of response at each instant of time with the esqx
utility of receiving a response at that instant, and then geprod-
ucts. Hence, for an arbitrary continuous probability disttion:

BU = / Pr(H)EU (t) .dt )
70
wheree, represents the entity currently in decision-making cdntro

Since we are primarily interested in the effects of delayed r
sponse, we can decompose the expected utility of a decisian a
certain instant,EUfn (), into two terms. The first term captures
the quality of the decision, independent of delay costs thadec-
ond captures the costs of delay, i.65U%t = EQZ(t) — W(t).

detailed comparisons of the EU of user and agent decision mak A D action affects the future cost of waiting. For example, tlaét w



cost after performing & at¢ = A at costDcos¢ is : W(t|D) =
W(A) - W(A - D'ualue) + W(tl - D'ualue) + Dcost-

To calculate the EU of a strategy, we need to ensure that tie pr
ability of response function and the wait-cost calculatieftect the
control situation at that point in the strategy. For examfjl¢he
user has control at timg P+ (¢) should reflect the user’s probabil-
ity of responding at. To do this simply, we can break the integral
from Equation 1 into separate terms, with each term reptiegen
one segment of the strategy, e.g., for a strategythere would
be one term for whem has control and another for wheh has
control.

Using this basic technique, we can now write down the eqostio
for some general transfer-of-control strategies. Equati®-7 are
the general EU equations for the AA strategies, e A andeDe A
respectively. We create the equations by writing down tiegiral
for each of the segments of the strategy, as described afibie.
the time when the agent takes control from the user, arid the
time at which theD occurs. One can write down the equations for
more complex strategies in the same way.

So far, we have presented general equations for some séisiteg
To make things more concrete, we instantiate the generakimod
with specific functions. We look specifically at the case vehiie
agent has only one entity to call on (i.e., the ug@rthe response
probability is Markovian, and the wait costs increase exmially
with time until some deadlineq. More specifically, folV(t), we
use the following function:

W(t) = {w exp®?

wexp® <

t<«
n 2
otherwise @
and for the probability of response we uge; (t) = pexp *t.
The entities’ decision-making quality is constant overejme.,
EQ%(t) = a and for EQY (t) = (. For convenience, lef =

p — w. Table 2 shows the resulting instantiated equations for the

strategies in Table 1. Figures 1(a) and (b) show graphitaiy the

EU of thee A strategy varies along different axes. Notice how the
EU depends on the transfer time as much as it doe8. oRigure
1(d) shows the value of B (explained later).

Figure 1(c) compares the EU of th®e A ande strategies. No-
tice that in some parts of the graph stratedye A has higher EU,
while in others strategy has higher EU. In, general, the more com-
plex the transfer-of-control strategy (i.e., the more ¢fars of con-
trol it makes), the flatter the EU graph when plotted agairet w
cost and response probability. More complex strategiefopar
relatively worse when probability of response is high andfe
cost of waiting it low. Conversely, more complex strategies-
form relatively muchbetter when the wait costs are high and the
probability of response is low, confirming our contentioattbom-
plex strategies are in fact useful.

4. MANY USEFUL STRATEGIES

The rationale for introducing complex strategies is to give
agent more flexibility which in turn leads to higher EU. Howev
as we saw in the previous section, itis not always the casetbie
complex strategies have higher EU. This section presers them-

EUS = EQ%(0) — W(0) ®)

BU! = [ Pr(t) x (EQLt) ~ W().dt+  (4)
2 Pr(t) x (BEQE(t) — W(D)).dt

EUl, = foT Pr(t) x (EQI(t) —W(t).dt)+ (5)
[ Pr(t).dt x (EQL(T) — W(T))

EUfip.a = (6)

JA Prt)(BQA(t) — W(t)).dt +
Jx Pr(t)(EQX(t) — W(A) + W(A = Dyatue)
_W(t - D’Ualue) — Dcost).dt “+
f;o Pr (t)(EQ%(t) - W(A) + W(A - D'ualue)
_W(T - D’Ualue) - Dcost).dt

Table 1: General AA EU equations for simple transfer of con-
trol strategies.

However, Lemma 1 shows that sometimes, even when wait costs
continue to accrue, a strategy with a single transfer-ofrodbmight

be optimal. In particular, i#V(t) is non-decreasingz Q% (t) = 3
andEQ4 (¢) = a:

LEMMA 1: If s € S is a strategy ending with/, and s’ is s A4,
thenEUY > EUZ iff Ve € E,3t < < such that

[2 Pryw().dt' — W(t) > EQY(t) — EQ4 (1)

Thus, in cases where, even if all wait costs accrue whileimgait
for a decision, getting a user’s input is better than makingua-
tonomous decision, then a strategy that leaves controkitnémds
of the user indefinitely is better than one that hands ovehéo t
agent at some point. Hence, in an application with a singée us
and agent, we can immediately exclude half the possibleegiks.

A D can be a very useful action since it buys time to increase
the chance of getting a user response. One might exp&ctta
be useful whenever wait costs accrue reasonably Tast, is not
too high, and the user’s decisions are far superior to thatage
However, it turns out to be more subtle than that. We calettlze
expected value of @ by comparing the EU of a strategy with and
without theD (excluding the cost). Th® is useful if and only if
its expected value is greater than its cost. Given the speuiidel
instance given in Section 3 we have:

LEMMA 2: if s € S has noD ands' is s with a D added then
EU%t > EUt iff — dwpexp %2(1 — exp “Pratue) > Doy

Figure 1(d) shows that the value of tfi&is highest when the
probability of response is neither too low or too high. Whka t
probability of response is low, the user is unlikely to respoeven
given the extra time, and hence, the agent will have inculred:

mas that show when certain types of strategy are optimal. The with no benefit. AD has low value when the probability of re-

Lemmas narrow the field of potentially appropriate straedor
a particular application.

An important assumption underlying transfer-of-contrivhte-
gies is that several transfers-of-control will sometimesdxjuired.

sponse is high, because the user will likely respond sharftigr
the D, meaning that it has little effect (the effect of tiie is on
the wait costsafterward. So, the usefulness of B is far more
restricted than it would initially seem. While we have shothis
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Figure 1: Equation 8 plotted against (a)w (rate of wait cost increase parameter) ancg (probability of response parameter) and (b)
T (time to transfer control back to agent) and 8 (quality of user’s decision making). (c) Comparing strate@geseDe A and e(dotted

lineise). (d) The value of aD.
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Table 2: Instantiated AA EU equations for simple transfer of
control strategies.

for only a specific instance of the model, it is also true inegah
In fact, since the specific model has exponential wait castaod-
els where wait costs grow more slowly, the value of theés likely
to be even less. The value of teturns out to depend not only
on when it is done, but also on when control is given back to the
agent afterward. This is a good illustration of the need fanp
ning transfer-of-control strategies—whether or n@ & useful at
a certain point in time depends heavily on when a later tearcf
control will take place.

In cases where onP is of value, it is reasonable to ask if five

Ds would be of considerably more value. Usually, this is net th
case, for a variety of reasons. In fact:

LEMMA 3: VK € N,3W(t) e W, 3P (t) € P,
JEQZ(t) € EQ such thatK is the optimal number dbs

The proof builds on Lemma 2. Consider a situation where the
cost of aD was a function of the number @s to date. For ex-
ample, in the Electric Elves’ meeting case, the cost of detan
meeting for the third time is higher than the cost of the fiedtgl.
Given that the cost of th&'th D is f(K), the test for the usefulness
of the Kth D is:

fK) <

w(exp™

(10

D 6T A _expu)Apr)

vatue® 1) x (Eexp T — % exp™

Depending on the nature ¢f K'), Equation 10 might be made to

hold for any number oDs. As with Lemma 2, although the details

of the proof are specific to the model, the conclusion is ganer
There are other reasons, too, why m®®&might not necessarily

be better. Figure 1(d) shows that the value ofthdepends on the

wait cost. Doing @& reduces the accruing wait costs, hence making

anotherD less valuable (unless no decision is made and costs start

accruing quickly again.) Notice also thBfs become redundant at

the time when wait costs stop accruing (i.e,. the deadlisiae

they no longer provide any benefit after this time.

4.1 Discussion

Lemmas 1-3 show that the relative EU of transfer-of-corghalte-
gies depends on factors like the total possible wait costthad
value of aD. We can conclude from this that it is not possible to
find a general optimal strategy for all parameters. This ignan
portant result for developers, since it tells them that thegd to
carefully consider which strategies to use. In the follayyimve
discuss three other conclusions that can be drawn from tlieino

Why Plan Transfers-of-Control?



The EU of strategy might be lower tham even if human deci-
sion making is superior, since high wait costs are incumestriat-
egy e when the user takes time to respond. However, stratepy
might be better than both, allowing the agent to safely gvatol
to the userprovidedit plans ahead and considers complex strate-
gies. In applications where personal preference is an irapbas-
pect of a decision, giving the user an opportunity to resperdn
if an autonomous decision is eventually made, may increase u
acceptance of the system.

How Important is Decision Quality?

Costs due to delays in the user’s decision can eventually ove

whelm even large differences in the expected quality of egaend
user’s decisions. In Figure 1(c) the expected quality ofuber's
decision is four times that of the agent’s, yet, in some sitng,
strategies where the agent will eventually act still haghbir EU
to those where the user has control indefinitely. This hasesting
implications for AA approaches that focus on detailed dalibons
of the relative quality of user and agent decision making,, 7,
3]. If even large differences in expected decision-makiogligy
are not sufficient to dictate which strategy is optimal, tperhaps
more fine tuning of the decision-making quality calculatioay
not be critically important.

Why is Timing so Important?

The EU of a strategy is very sensitive to the timing of trarsfe
of-control. It is relatively easy to understand why the tigniof a
transfer-of-control back to the agent is important — if taolg the
opportunity for a better user decision is lost; if too lated digh
costs have already been incurred. The reason for the seéysiti
of the D action timing is slightly more subtle. While the cost of
the D is constant, its value depends on how long afterEhthat
a decision is made, as well as the wait costs accrued duratg th
period. In particular, if a decision is made straight aftép shere
is no value to thé since there are no saved wait costs (but there is
incurredD.,s:). The model shows thdP actions are most useful
when wait costs are accruing sufficiently fast and probgbof
response is sufficiently low.

5. FINDING OPTIMAL STRATEGIES

The model above shows how to calculate the EU of a strategy
but does not provide a method for finding an optimal stratégy.
this section we present an algorithm that finds the optinmatesyy
with up to K transfers of control. The algorithm is a basic branch
and bound search that starts with the simplest strategiesatids
new segments to create more complex strategies. New s&mteg
are created by appending a transfer of control to anothéy enta
D (and control back to the same entity) to an existing strafagy
less the strategy length s K). New strategies added as branches
of the strategy from which they were created.

In the worst case, the algorithm does an exhaustive searmh of
possible strategies under lendgth However, two simple heuristics
are used to exclude many of the strategies from search. Botish
tics will cut a strategys, if it or its children can be no better than
other strategies that will be checked. In particular, theriséics ex-
clude strategies where the optimal time for any transfereuitrol
is either infinite or the same as the optimal time of anotterdfer-
of-control. In such cases, the optimal timing of the trarsfef-
control effectively excludes one of the transfer-of-cohaictions.

The algorithm was implemented and run over random configu-
rations of entities and wait costs. There were between #mdesix
entities, with one being the agent. The functions used werset
shown in the model instantiation in Section 3. The respomnsb-p
ability parameter andzQ¢(t) of each of the entities was selected
at random at the start of each trial, as was the wait cost param

Strategies Searched as K is Varied

-

8 9

Strategies Searched

10

K
Figure 2: The average number of strategies searched over 182
trials for different maximum strategy lengths (K).

ter. Figure 2 shows how the number of strategies checkedases
with K and shows the algorithm to be both efficient and scale well
asK isincreased.

6. WHY WAS THE ELF AUTONOMOUS?

The instantiated functions given in Section 3 are a coarse ap
proximation of a number of domains, including the Electrieds.
Hence we can use the instantiated model to make predicatimms
the AA reasoning required for Electric Elves. In particulese
focus on the decision whether the user will attend a meeting o
time. A key feature of the Electric Elves is that the user is mo
bile. As she moves around the environment, her probabifitg-o
sponding to requests for decisions changes drastically, ghe is
most likely to respond when at her workstation. When the faigen
communicates via a workstation dialog box, the user wilbogsl,
on average, in five minutes. However, when the agent communi-
cates via a Palm pilot the average user response time is an hou
Users generally take longer to decide whether they wantdsemt
at a research meeting, taking approximately two days orageer
So, the functionPr (¢) should have an average value of 5 minutes
when the user in her office, an average of one hour when the user
is contacted via a Palm pilot and an average of two days wten th
decision is whether to present at a research meeting. Wenassu
that the user's decision-makidgQ% (¢) is high with respect to the
agent’s, EQ“ (t). When dealing with more important decisions,
the cost of the agent’s errors is higher and, hence, itsidadmpal-
ity lower. Thus, in some cases, the decision-making quafitje
user and the agent will be similar, i.&QY (t) ~ EQZ (t); while
in other cases, there will be an order of magnitude diffezene.,
EQY(t) = 10 * EQZ(t). The wait cost functionW(t), will be
much larger when more other users are waiting for the datisio
to be made. Finally, the cost of delays, i.B4.s¢, Can vary by
about an order of magnitude. For example, the cost of resitingd
meetings varies greatly, e.g., the cost of reschedulingdl $nfiar-
mal meetings with colleagues is far less than reschedulifgl a
lecture room at 3 PM Friday.

Above we have shown how the parameters vary from decision
to decision. For a specific decision, we can calculate exatt E
values for different strategies and draw the following dosions
(Table 6.2 in Section 6.2 presents a quantitative illustrenf these
predictions):

e The strategy should not be used, since for all combinations
of user location and meeting importance the EU of this strat-
egy is very low.

e Multiple strategies are required, since for different ueea-
tions and meeting importance different strategies arer@iti

e Since quite different strategies are required when theiaser
in different locations, the AA reasoning will need to change
strategies when the user changes location.



e No strategy has a reasonable EU for all possible parameter

instantiations, hence always using the same strategy @vill o
casionally cause dramatic failures.

e For most decisions, strategies will end with the agent gkin
a decision, since strategies ending with the user in control
generally have very low EU.

These predictions provide important guidance about a sstue
solution for AA in the E-Elves. In the remainder of this seatiwe
use those predictions to explain the success and failudeeafito
approaches used in the application.

6.1 Using C4.5to Learn AA

The initial implementation of AA using C4.5 made some catas-
trophic mistakes. At the time we identified several reasonghe
mistakes including not having enough training data and akt t
ing into account the uncertainty and potential costs iredlin an
agent’s decision. While these reasons are correct the mtee i
esting questions are “Why is so much training data requiradd
“Why is uncertainty so important?” With the model we are in a
position to answer these more fundamental questions.

The C4.5 implementation learned one strategy and stuck with

that strategy, even when the situation’s parameters wete dif-
ferent from those under which it learned the strategy. Thdeho
predicts that such an approach would fail and this was phcis
what was observed. Enough of the training data fell into a par
ticular an area of the-p space that the learning focused on the
appropriate rule for that area of the space, ignoring otbssible
strategies. The rule that caused the autonomous canesllattia
meeting with the division director illustrates this pointhe rule
said that on Mondays strategy should be followed. This was
(likely) due to training data that showed the user was uhlike
respond in a timely manner on Mondays. If the training dasa al
showed the expected quality of agent and user decision igain
be reasonably close then the strategig the correct strategy. How-
ever, in the unusual situation of a meeting with the divigioector
the high cost of error associated with cancelling an impntaeet-
ing lowers the expected quality of the agents decision. Ading

to the model this means a strategy which gives more oppayttori

[ Location | A [ e | eA [eDeA] MDP |
Small meeting, active participant
office 14.8 | -277 419 | 42.05 | DDeDA
not @ dept.| 14.8 | -6E7 31.4 28.0 DDeA
@ meetloc.| 14.8 | -2E5 39.2 39.1 eA
Large meeting, passive participant
office 14.6 | -7E12 | 30.74| 30.65 DDeA
not @ dept.| 14.6 | -2E17 | 14.6 7.7 DDeA
@ meetloc.| 145 | -7E14| 25.1 235 eA

Table 3: EU values for the simple strategies as calculateddm
the model. The last column shows the strategy actually follwed
by the MDP.

No. of actions per meeting

No. of meetings

2 4 6 8
No. of actions

10 12

Figure 3: Graph showing the frequency distribution of the
number of steps taken in an AA strategy for the meeting sce-
nario.

where the probability of response stays constant). The Huksa
computed by the model and the strategy selected by the MDP are
shown in Table 6.2. We ignore ary’s that the MDP performs
before the user is asked they are not currently representdtei
model. Except for a slight discrepency in the first case thieimia
exact. Notice, that the strategyshould never be used and is never
chosen by the MDP. Thus, despite the model being a considerab
simplification of the MDP the correspondence between theltses
is very close. The particular parameters are not uniqueavighing

user response should have been employed but the fixed C&.5 rul @ Matching model; in fact, many other parameter sets witglriyu

could not reason about this and ended up making a serious erro
According to the model predictions, the C4.5 approach oftim
out after five minutes and returning control to the agenhéegifor

the same relative values led to matches as well. Moreovaerge
properties of the policies that were predicted by the modaiew
borne out exactly. In particular, recall that the model ot dif-

aD or a decision on attendance) might be reasonable in some sit-férent strategies would be required, that strategyould not be

uations, very suboptimal in others. This is another exglandor
C4.5's enigmatic behavior.

6.2 MDPs for AA

Figure 3 shows a frequency distribution of the number of ac-
tions taken per meeting. The number of actions taken for a-mee
ing corresponds to the length of the strategy followed. Tizply
shows both that the MDP followed complex strategies in tlz re
world and that it followedlifferentstrategies at different times. The
model predicted this would be required in a successful mwluit
was not present in C4.5 which failed and is present here,hier t
successful solution.

Using the instantiated model from Section 3 and the spedfic p
rameters given above we can calculate the EU of variousestrat

used, and that generally strategies ending would be best — all
properties of the MDP policies.

6.3 Auction Closing MDP

The model predicts that if parameters do not vary greatlynfro
instance to instance of a particular decision then it is Gefiit to
find a single optimal strategy and simply follow that strategery
time the decision is encountered. The auction closing AAiga
stance of this for the Electric Elves. From a team perspecthe
behavior of the team when auctioning off an open role, islg@mi
for every auction, i.e., the wait cost is the same and theepatf
incoming bids is reasonably consistent, hence from the team
spective the probability of response is constant (averagponse
time was two days). Using the algorithm described in Sed&iore

gies and compare them with the strategies given by the MDP. In determined that the strategyl was optimal and that the transfer-

its current form, the model cannot directly deal with parterse
that change during strategy execution. In order to do a mgéui

of-control time should vary according to the expected dyali the
agent’s decision (which is based on the percentage of bégsve

comparison between the model and the MDP’s results, we focus so far). We replaced the very complex, computationally akpe

on only those cases when the user’s location does not chaage (

sive MDP code, that originally made the decision, with veémyse



code implementing the fixed strategy. Using log files recomigr-
ing the actual auctions reported in [11], we experimentadisified
that both the MDP and theA strategy produced the same result.
Table 6.3 shows the percentage of available auction timaireny
(e.g., if the auction was opened four days before the rolaldhze
performed, closing the auction one day before would comedpo
25%) when the MDP version and thel version of the code closed
the auction. The number of bids is used to estimate the agext’
pected decision quality. The times at which the MDP wouldelo
the auction and the times at which thd strategy would close the
auction are very similar, certainly within a few hours. Hoee the
result is not precisely the same for the MDP and strategyeampl
mentations, because the MDP implementation was more veacti
to incoming bids.

Date | No.Bids| MDP | eA
7/20/00 9 25% | 26%
7/27/00 7 14% | 20%

8/3/00 8 29% | 23%

Table 4: Auction results. The “MDP” column shows the per-
centage of available auction time remaining when the MDP
closed the auction. The € A” column shows the percentage of
available auction time remaining when the strategye Awould

have closed the auction.

7. EXPLAINING EARLIER WORK

Goodrich et al.[5] report on tele-operated teams of rohebere
both the user’s high-level reasoning and the robots’ lovellskills
are required to achieve some task. Within this domain, tfese h
examined the effect ofiser neglecon robot performance. Four
control systems were tested on the robot, each giving areliffe

Performance

Neglect
@

Goodrich robot operation EU

EU
o

2 15 1 0.5 0
P

(b)

Figure 4: Goodrich at al's various control strategies ploted
against neglect. (a) Experimental results. Thinner lines ep-
resent control systems with more intelligence and autonomy
(b) Results theoretically derived from model of strategiegpre-
sented in this article.

robot’s decision quality is less than the user’s. The gragttse

amount of autonomy to the robot, and the performance was mea-four strategies, plotted against the probability of resgoparame-

sured as user neglect was varied. Figure 4 shows the perioema
(y-axis) of the four control policies as the amount of usegleet
was increased (x-axis). The experiments showed that higihet
autonomy allowed the operator to “neglect” the robot morthauit
as serious an impact on its performance. The idea of useectegl
is similar to our idea of entities taking time to make dedisioin
this case, if the user “neglects” the robot, the joint tagkesdonger
to perform. Thus, the work can be straightforwardly mapmeolir
model and the notion of transfer-of-control strategieslmnsed to
qualitatively predict the same behavior as was observethictioe,
even though Goodrich et al. did not use the notion of strategi
The lowest autonomy control policy used by Goodrich et ak wa
a pure tele-operation one. Since the robot cannot resaid tmin
decision making, we represent this control policy with atsgylU

ter (getting smaller to the right, to match “neglect” in theddrich

et al graph) is shown in Figure 4. Notice that the shape of taptg
theoretically derived from our model (Figure 4(b)) is qtatively
the same as the shape of the experimentally derived gragh (Fi
ure 4(a)). Hence, the model qualitatively predictenin theorythe
same performance as was found from experimentation.

A common assumption in earlier AA work has been that if any
entity is asked for a decision it will make that decision ppily
hence strategies handling the contingency of a lack of respo
have not been required. For example, Hortvitz's[7] worlngsile-
cision theory is aimed at developing general, theoreticatiehs
for AA reasoning for a user at a workstation. A prototype sgst
called LookOut, for helping users manage their calendasdkan
implemented to test these ideas[7]. In the typical case tmkL

(whereU denotes the user). The second control policy allows the Out, the agent has three options: to take some action, nakéo t

user to specifywaypointsand on-board intelligence works out the
details of getting to the waypoints. Since the robot has igh-hi
level decision-making ability, we again use a stratégyo model
its behavior. However, since the coordination between thotr
and user is more abstract, the wait cost function is lessseXso
the human is giving less detailed guidance than in the falg-t

the action, or to engage in dialog. The central factor infbirgn
the decision is whether the user has a particular goal teadtion
would aid, i.e., if the user has the goal, then the actionésulisbut
if he/she does not have the goal, the action is disruptiveo€ing
to act or not to act corresponds to pursuing stratégyChoosing
to seek user input corresponds to stratéfy Figure 5(a) shows

operated case (which is not as good according to [5]), hereee w a graph of the different options plotted against the prdiigithe

use a lower value for the expected quality of the user detiSibe

next control policy allows the robot to choose its own way®i
given that the user inputegions of interest The robot can also
accept waypoints from the user. The ability for the robotab c
culate waypoints is modeled as/y since it effectively delays the
need for the user to provide input. We model this controlqyodis

the strategyUDU. The final control policy is full autonomy, i.e.,
A. Robot decision making is inferior to that of the user, hetiee

user has the goal (corresponds to Figure 6 in [7]). The agert’
pected decision qualityzQ? (¢) is derived from Equation 2 in [7].
(In other words, Lookout performs more detailed calculsiof
expected decision quality.) Our model then predicts theessatec-
tion of strategies as LookOut does, i.e., choosing strategshen

"We consider choosing not to act an autonomous decisionghenc
categorize it in the same way as autonomous action
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Figure 5: EU of different agent options. The solid (darkest)
line shows the EU taking an autonomous action, the dashed
(medium dark) line shows the EU of autonomously deciding not
to act and the dotted line shows the EU of transferring contrd
to the user. (a) Plotted against the probability of user havig
goal, no wait cost. (b) plotted against wait cost, fixed prohail-
ity of user having goal.

EQ4 (t) is low, U otherwise (assuming that only those two strate-
gies are available). However, our model further predictsetbing
that LookOut did not consider, i.e., that if the rate at whiehit
costs accrue becomes non-negligible then the choice issreitra
ple. Figure 5(b) shows how the EU of the two strategies change
as the rate of wait costs accrue is increased. The fact thaigh
timal strategy varies with wait cost suggests that Look©ap-
proach would not immediately be appropriate for a domainreshe
wait costs were non-negligible, e.qg., it would need to be ifiext

in many multi-agent settings.

8. SUMMARY AND RELATED WORK

In this paper we have introduced the idea of transfer-ofrcbn
strategies for AA. We presented a decision theoretic mddehns-
fer of control strategies which allowed us to explain repdntesults
and can also guide the design of algorithms for AA reasonikig.
presented an algorithm which can quickly find optimal st&e.
The algorithm, leveraging the model, enabled us to dramidtic
simplify the complexity of an existing implementation.

Other work has addressed the effect of timeliness on the per-
formance of a system. Hexmoor has looked at how an agent can

reason about autonomy when time is limited[6]. Since thenbge
must select some actions under more time pressure tharsother
complexity of the AA reasoning must vary. The agent seldsts i
method of reasoning (ranging from following built-in digions,

to careful expected-utility analysis) to determine itselesf auton-

omy based on the amount of time available. However, Hexmoor

does not address possible transfer of control strategies.
Research in more general Al areas, sucharadgime algorithmd 2],

meta-reasonind.0], and contingency planning[8], addresses issues
similar to those addressed by this work. AA can be viewed @ th
same framework as meta-reasoning by viewing entities apatan
tions. To our knowledge an analogy of multiple transfersaftrol

has not been dealt with in these related areas, primarilgus
they make different assumptions than are made here.
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