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ABSTRACT
Adjustable autonomyrefers to agents’ dynamically varying their own au-
tonomy, transferring decision making control to other entities (typically hu-
man users) in key situations. Determining whether and when such trans-
fer of control must occur is arguably the fundamental research question in
adjustable autonomy. Practical systems have made significant in-roads in
answering this question and in providing high-level guidelines for transfer
of control decisions. For instance, [11] report that Markovdecision pro-
cesses were successfully used in transfer of control decisions in a real-world
multiagent system, but that use of C4.5 led to failures. Yet,an underlying
theory of transfer of control, that would explain such successes or failures
is missing. To take a step in building this theory, we introduce the notion
of a transfer-of-control strategy, which potentially involves several trans-
fer of control actions. A mathematical model based on this notion allows
both analysis of previously reported implementations and guidance for the
design of new implementations. The practical benefits of this model are
illustrated in a dramatic simplification of an existing adjustable autonomy
system.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence ]: Distributed Artificial Intelligence—
Intelligent Agents

General Terms
Theory

1. INTRODUCTION
A growing number of applications require that agents havead-

justable autonomy, i.e., that agentsdynamically adjust their own
level of autonomy based on the situation[4]. At the heart of ad-
justable autonomy (AA) is the question of whether and when agents
should make autonomous decisions and when they should transfer
decision-making control to other entities (e.g., human users).

Initial answers to this question, outlining specific transfer-of-
control techniques and their effectiveness have already appeared
in the literature[11, 3, 7]. For instance, one key report is by this
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paper’s authors[11] and focused on AA in a real-world multia-
gent system calledElectric Elves, that is deployed 24/7[1]. It is
reported that the use of C4.5[9] led to dramatic failures in transfer-
of-control decisions, but that the use of Markov decision processes
(MDPs) led to satisfactory decisions. Similarly, Horvitz[7] presents
a decision-theoretic approach to deciding whether to transfer con-
trol from an agent assistant to a user. Fleming[2] presents atech-
nique based on thresholds of learned rules to decide if agents should
transfer control to a user.

While such reports are useful, without an underlying,domain-
independentmodel of AA, we cannot predict whether an approach
that has success in one domain can translate that success to other
domains. For instance, could Horvitz’s[7] technique for transfer of
control have worked in Electric Elves? Should we forever banish
C4.5 from AA systems, given its failure in Electric Elves? Must
all AA applications use complex MDPs instead? There have been
informal answers given to these questions, e.g., that the context of
multiagent teams influences the AA approach[11], but no domain-
independent model or formal answer to the questions.

To take a step towards such a model of AA, this paper intro-
duces the notion of atransfer-of-control strategy. Previous AA re-
search, when focusing on the transfer-of-control of an individual
decision from an agent to another (e.g., a human user), has framed
the problem in terms of two basic choices: either transfer control
to a human or take autonomous action (i.e., do not transfer con-
trol). The notion of a transfer-of-control strategy implies that these
are just two of the many transfer-of-control strategies available to
an agent. In particular, a transfer-of-control strategy isa planned
sequence of transfer-of-control actions, including both those that
actually transfer control and those that simply buy more time to get
input. The agent executes such a strategy by performing the actions
in sequence, transferring control to the specified entity and buying
time as required, until some point in time when the entity currently
in control exercises that control and makes the decision. For in-
stance, anAH strategy implies that an agentA, initially attempts
autonomous actions given a problem. In this case, if it is unable
to make the decision it passes control to the human (H) for the
decision. Thus, there is uncertainty about which entity will make
that decision and when it will do so. The central AA problem is
to find a transfer-of-control strategy that maximizes the expected
utility (EU) of the decision.

Section 3 presents our model, which we have constructed to cap-
ture the factors important to AA reasoning identified in the litera-
ture: the relative decision-making quality of the entities, the prob-
ability that a given entity will respond in a timely manner, the
costs incurred by waiting for a response, and any intermediate ac-
tions that the agent can take to limit those costs. Our model uses



decision-theoretic techniques to determine the EU of a particular
transfer of control strategy within a specific domain. We canuse
the model to explain not only the successes and failures of specific
approaches in Electric Elves, but also to other systems, developed
and reported on by other researchers.

Our model also supports other key results useful in constructing
future AA systems. Most importantly, we prove that no transfer-
of-control strategy dominates all others across all application do-
mains. Therefore, AA developers must determine which strategy
or strategies are right for their application. To facilitate such a
search through the strategy space, we have developed an algorithm
that does a systematic search through the strategy space, using our
model’s ability to evaluate candidate strategy’s EU. We empirically
demonstrate the validity of this strategy by replacing the existing
complex MDP-based approach with the single strategy, andrepli-
cate previously published results.

2. AA SUCCESSES AND FAILURES
A key reported application of AA is the Electric Elves project[1],

which involves personal assistant agents helping with the day-to-
day activities of a human organization. Occasionally, the agents
need to decide whether and when to transfer control to their users
or whether to act. Users are not always available to answer agent
queries; hence, the agents require transfer-of-control strategies to
handle this contingency. We focus on two specific decisions that
need to be made to ensure the smooth running of the organization:
whether a user will attend a meeting on time and whether to close
an auction for an open role in the organization. Two approaches
to AA have been applied in the Electric Elves: one using C4.5 and
another using MDPs. We briefly summarize these approaches here,
but the full details are available in previous reports[11].

The first implementation used two sets of learned C4.5 rules:
one for deciding which action to take, and another set for deciding
whether to do a transfer of control[11]. For example, an autonomy
rule learned for one user was “if the department head is not atthe
meeting and it is a Monday, keep control and make a decision”.If
the autonomy rules decided that the agent should transfer control to
a user and the user failed to respond in a fixed amount of time (five
minutes), then the agent would take the autonomous action sug-
gested by its first set of rules. A second implementation usedMDPs
to do both decision making and transfer-of-control reasoning. The
MDP explicitly modeled the consequences of asking the user for
input and not receiving a prompt response, and it gave the agent
much more flexibility in choosing transfer-of-control actions and
timing. Despite initially promising behavior, the C4.5 rules made
some catastrophic mistakes, including autonomously cancelling a
meeting with the division director, while the MDP implementation
made no serious errors despite months of real-world use.

Many factors were thought to influence the Electric Elves results.
For example, previous reports suggested that the involvement of a
teamwas a critical point[11]. The dynamics of the domain and the
effect that waiting had on other users clearly played a part as well.
However, previous reports could not identify which of the factors
was actually the key to the downfall of the C4.5 approach and how
the MDP dealt with that factor. Without such an explanation,it is
difficult to generalize the conclusions.

Among other practical AA systems, Goodrich et al.[5], in work
on tele-operated robots, have looked at the effect ofuser neglect
on robot performance. More specifically, they looked at the perfor-
mance of four control systems (differing in the robot’s autonomy)
while varying the length of time the user “neglected” the robot.
Other work on AA and mixed-initiative planning has focused on
detailed comparisons of the EU of user and agent decision mak-

ing as the sole rationale for deciding who should have control[7,
3]. While intuitive reasons are given for the success of these ap-
proaches there is no general theory to support the claims.

3. TRANSFER OF CONTROL STRATEGIES
In this section, we present a model of AA using decision-theoretic

techniques. We first present the general framework and then give
a specific instantiation which illustrates some of the characteristics
of the problem.

We begin with some definitions. An agent,A, is responsible
for making a decision,d. There aren entities,e1 : : : en, who
can potentially make the decision. These entities can be human
users, other agents, or the agent itself. The agent has some mech-
anism for transferring decision-making control to any of the enti-
ties. The expected quality of decisions made by each of the entities,EQ = fEQdei (t) : R ! Rgni=1, is known, though perhaps not
exactly.P = fP>(t) : R ! Rg represent continuous probability
distributions over the time that the entity in control will respond
with a decision of qualityEQde(t).

Section 2 hinted that delaying a decision is an important con-
sideration for AA. We model the cost of delaying a decision until
time t asfW : t ! Rg. The set of possible wait-cost functions
isW. We assumeW(t) is non-decreasing and that there is some
point in time,�, when the costs of waiting stop accumulating (i.e.,8t � �; 8W 2W;W(t) =W(�)).

Finally, the agent has some mechanism by which it can take some
action, with costDcost, with the result of reducing the rate at which
wait costs accumulate. We call such an action adeadline delaying
actionand denote itD. For example, aD action might be as simple
as informing the party waiting for the decision that there has been
a delay, or more complex, such as reordering tasks. We model the
value of theD by lettingW be a function oft�Dvalue (rather thant) after theD action.

We define the setS to be all possible transfer-of-control strate-
gies available to an agent. The problem for the agent can thenbe
defined as:

Definition 3.1 For a decisiond, the agent must selects 2 S such
that8s0 2 S; s0 6= s; EUds t � EUds0t

We define a simple shorthand for referring to particular transfer-
of-control strategies by simply writing the order that entities receive
control or, alternatively,Ds are executed. For example,afredabarneyDabarney is shorthand for a strategy where the agent
gives control to the agentfred, then gives it to the agentbarney,
then does aD, and finally gives control back indefinitely tobarney.
Notice that the shorthand does not record the timing of the transfers
of control. In the following discussion we assume that the agent
itself can always make the decision itself, instantly.

To calculate the EU of an arbitrary strategy, we multiply the
probability of response at each instant of time with the expected
utility of receiving a response at that instant, and then sumthe prod-
ucts. Hence, for an arbitrary continuous probability distribution:EU = Z 10 P>(t)EUdec(t) :dt (1)

whereec represents the entity currently in decision-making control.
Since we are primarily interested in the effects of delayed re-

sponse, we can decompose the expected utility of a decision at a
certain instant,EUdec(t), into two terms. The first term captures
the quality of the decision, independent of delay costs, andthe sec-
ond captures the costs of delay, i.e.,:EUdec t = EQde(t) �W(t).
A D action affects the future cost of waiting. For example, the wait



cost after performing aD at t = � at costDcost is : W(tjD) =W(�)�W(��Dvalue) +W(t0 �Dvalue) +Dcost.
To calculate the EU of a strategy, we need to ensure that the prob-

ability of response function and the wait-cost calculationreflect the
control situation at that point in the strategy. For example, if the
user has control at timet, P>(t) should reflect the user’s probabil-
ity of responding att. To do this simply, we can break the integral
from Equation 1 into separate terms, with each term representing
one segment of the strategy, e.g., for a strategyeA there would
be one term for whene has control and another for whenA has
control.

Using this basic technique, we can now write down the equations
for some general transfer-of-control strategies. Equations 3-7 are
the general EU equations for the AA strategiesA, e, eA andeDeA
respectively. We create the equations by writing down the integral
for each of the segments of the strategy, as described above.T is
the time when the agent takes control from the user, and� is the
time at which theD occurs. One can write down the equations for
more complex strategies in the same way.

So far, we have presented general equations for some strategies.
To make things more concrete, we instantiate the general model
with specific functions. We look specifically at the case where the
agent has only one entity to call on (i.e., the userU ), the response
probability is Markovian, and the wait costs increase exponentially
with time until some deadline,�. More specifically, forW(t), we
use the following function:W(t) = (! exp!t t � �! exp!� otherwise

(2)

and for the probability of response we use:P>(t) = � exp��t.
The entities’ decision-making quality is constant over time, i.e.,EQdA(t) = � and forEQdU(t) = �. For convenience, letÆ =� � !. Table 2 shows the resulting instantiated equations for the

strategies in Table 1. Figures 1(a) and (b) show graphicallyhow the
EU of theeA strategy varies along different axes. Notice how the
EU depends on the transfer time as much as it does on�. Figure
1(d) shows the value of aD (explained later).

Figure 1(c) compares the EU of theeDeA ande strategies. No-
tice that in some parts of the graph strategyeDeA has higher EU,
while in others strategye has higher EU. In, general, the more com-
plex the transfer-of-control strategy (i.e., the more transfers of con-
trol it makes), the flatter the EU graph when plotted against wait
cost and response probability. More complex strategies perform
relatively worse when probability of response is high and/or the
cost of waiting it low. Conversely, more complex strategiesper-
form relativelymuchbetter when the wait costs are high and the
probability of response is low, confirming our contention that com-
plex strategies are in fact useful.

4. MANY USEFUL STRATEGIES
The rationale for introducing complex strategies is to givethe

agent more flexibility which in turn leads to higher EU. However,
as we saw in the previous section, it is not always the case that more
complex strategies have higher EU. This section presents three Lem-
mas that show when certain types of strategy are optimal. The
Lemmas narrow the field of potentially appropriate strategies for
a particular application.

An important assumption underlying transfer-of-control strate-
gies is that several transfers-of-control will sometimes be required.

EUdA = EQdA(0)�W(0) (3)EUde = R �0 P>(t)� (EQde(t)�W(t)):dt+ (4)R1� P>(t)� (EQde(t)�W(D)):dtEUdeA = R T0 P>(t)� (EQde(t)�W(t):dt) + (5)R1T P>(t):dt� (EQda(T )�W(T ))EUdUDeA = (6)R�0 P>(t)(EQde(t)�W(t)):dt+R T� P>(t)(EQde(t)�W(�) +W(��Dvalue)�W(t�Dvalue)�Dcost):dt+R1T P>(t)(EQdA(t)�W(�) +W(��Dvalue)�W(T �Dvalue)�Dcost):dt
Table 1: General AA EU equations for simple transfer of con-
trol strategies.

However, Lemma 1 shows that sometimes, even when wait costs
continue to accrue, a strategy with a single transfer-of-control might
be optimal. In particular, ifW(t) is non-decreasing,EQdU(t) = �
andEQdA(t) = �:

LEMMA 1: If s 2 S is a strategy ending withU , ands0 is sA,
thenEUds0 > EUds iff 8e 2 E; 9t < � such thatR �t P>(t0)W(t0):dt0 �W(t) > EQdU(t)�EQdA(t)

Thus, in cases where, even if all wait costs accrue while waiting
for a decision, getting a user’s input is better than making an au-
tonomous decision, then a strategy that leaves control in the hands
of the user indefinitely is better than one that hands over to the
agent at some point. Hence, in an application with a single user
and agent, we can immediately exclude half the possible strategies.

A D can be a very useful action since it buys time to increase
the chance of getting a user response. One might expect aD to
be useful whenever wait costs accrue reasonably fast,Dcost is not
too high, and the user’s decisions are far superior to the agent’s.
However, it turns out to be more subtle than that. We calculate the
expected value of aD by comparing the EU of a strategy with and
without theD (excluding the cost). TheD is useful if and only if
its expected value is greater than its cost. Given the specific model
instance given in Section 3 we have:

LEMMA 2: if s 2 S has noD ands0 is s with aD added thenEUds0 t > EUds t iff � Æ!� exp�Æ�(1� exp�!Dvalue ) > Dcost
Figure 1(d) shows that the value of theD is highest when the

probability of response is neither too low or too high. When the
probability of response is low, the user is unlikely to respond, even
given the extra time, and hence, the agent will have incurredDcost
with no benefit. AD has low value when the probability of re-
sponse is high, because the user will likely respond shortlyafter
theD, meaning that it has little effect (the effect of theD is on
the wait costsafterward). So, the usefulness of aD is far more
restricted than it would initially seem. While we have shownthis
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Figure 1: Equation 8 plotted against (a)! (rate of wait cost increase parameter) and� (probability of response parameter) and (b)T (time to transfer control back to agent) and� (quality of user’s decision making). (c) Comparing strategieseDeA and e(dotted
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Table 2: Instantiated AA EU equations for simple transfer of
control strategies.

for only a specific instance of the model, it is also true in general.
In fact, since the specific model has exponential wait costs,in mod-
els where wait costs grow more slowly, the value of theD is likely
to be even less. The value of theD turns out to depend not only
on when it is done, but also on when control is given back to the
agent afterward. This is a good illustration of the need for plan-
ning transfer-of-control strategies—whether or not aD is useful at
a certain point in time depends heavily on when a later transfer of
control will take place.

In cases where oneD is of value, it is reasonable to ask if five

Ds would be of considerably more value. Usually, this is not the
case, for a variety of reasons. In fact:

LEMMA 3: 8K 2 N; 9W(t) 2W; 9P>(t) 2 P;9EQde (t) 2 EQ such thatK is the optimal number ofDs

The proof builds on Lemma 2. Consider a situation where the
cost of aD was a function of the number ofDs to date. For ex-
ample, in the Electric Elves’ meeting case, the cost of delaying a
meeting for the third time is higher than the cost of the first delay.
Given that the cost of theKthD isf(K), the test for the usefulness
of theKthD is:f(K) < (10)!(exp�Dvalue! �1)� ( pÆ exp�ÆT �!Æ exp�Æ�� exp!���T )
Depending on the nature off(K), Equation 10 might be made to
hold for any number ofDs. As with Lemma 2, although the details
of the proof are specific to the model, the conclusion is general.

There are other reasons, too, why moreDs might not necessarily
be better. Figure 1(d) shows that the value of theD depends on the
wait cost. Doing aD reduces the accruing wait costs, hence making
anotherD less valuable (unless no decision is made and costs start
accruing quickly again.) Notice also thatDs become redundant at
the time when wait costs stop accruing (i.e,. the deadline),since
they no longer provide any benefit after this time.

4.1 Discussion
Lemmas 1-3 show that the relative EU of transfer-of-controlstrate-

gies depends on factors like the total possible wait cost andthe
value of aD. We can conclude from this that it is not possible to
find a general optimal strategy for all parameters. This is anim-
portant result for developers, since it tells them that theyneed to
carefully consider which strategies to use. In the following, we
discuss three other conclusions that can be drawn from the model.

Why Plan Transfers-of-Control?



The EU of strategye might be lower thanA even if human deci-
sion making is superior, since high wait costs are incurred in strat-
egye when the user takes time to respond. However, strategyeA
might be better than both, allowing the agent to safely give control
to the user,providedit plans ahead and considers complex strate-
gies. In applications where personal preference is an important as-
pect of a decision, giving the user an opportunity to respond, even
if an autonomous decision is eventually made, may increase user
acceptance of the system.

How Important is Decision Quality?
Costs due to delays in the user’s decision can eventually over-

whelm even large differences in the expected quality of agent’s and
user’s decisions. In Figure 1(c) the expected quality of theuser’s
decision is four times that of the agent’s, yet, in some situations,
strategies where the agent will eventually act still have higher EU
to those where the user has control indefinitely. This has interesting
implications for AA approaches that focus on detailed calculations
of the relative quality of user and agent decision making, e.g., [7,
3]. If even large differences in expected decision-making quality
are not sufficient to dictate which strategy is optimal, thenperhaps
more fine tuning of the decision-making quality calculationmay
not be critically important.

Why is Timing so Important?
The EU of a strategy is very sensitive to the timing of transfers-

of-control. It is relatively easy to understand why the timing of a
transfer-of-control back to the agent is important — if too early, the
opportunity for a better user decision is lost; if too late, and high
costs have already been incurred. The reason for the sensitivity
of theD action timing is slightly more subtle. While the cost of
theD is constant, its value depends on how long after theD that
a decision is made, as well as the wait costs accrued during that
period. In particular, if a decision is made straight after aD there
is no value to theD since there are no saved wait costs (but there is
incurredDcost). The model shows thatD actions are most useful
when wait costs are accruing sufficiently fast and probability of
response is sufficiently low.

5. FINDING OPTIMAL STRATEGIES
The model above shows how to calculate the EU of a strategy

but does not provide a method for finding an optimal strategy.In
this section we present an algorithm that finds the optimal strategy
with up toK transfers of control. The algorithm is a basic branch
and bound search that starts with the simplest strategies then adds
new segments to create more complex strategies. New strategies
are created by appending a transfer of control to another entity or aD (and control back to the same entity) to an existing strategy(un-
less the strategy length is� K). New strategies added as branches
of the strategy from which they were created.

In the worst case, the algorithm does an exhaustive search ofall
possible strategies under lengthK. However, two simple heuristics
are used to exclude many of the strategies from search. Both heuris-
tics will cut a strategy,s, if it or its children can be no better than
other strategies that will be checked. In particular, the heuristics ex-
clude strategies where the optimal time for any transfer-of-control
is either infinite or the same as the optimal time of another transfer-
of-control. In such cases, the optimal timing of the transfers-of-
control effectively excludes one of the transfer-of-control actions.

The algorithm was implemented and run over random configu-
rations of entities and wait costs. There were between threeand six
entities, with one being the agent. The functions used were those
shown in the model instantiation in Section 3. The response prob-
ability parameter andEQde(t) of each of the entities was selected
at random at the start of each trial, as was the wait cost parame-
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ter. Figure 2 shows how the number of strategies checked increases
with K and shows the algorithm to be both efficient and scale well
asK is increased.

6. WHY WAS THE ELF AUTONOMOUS?
The instantiated functions given in Section 3 are a coarse ap-

proximation of a number of domains, including the Electric Elves.
Hence we can use the instantiated model to make predicationsabout
the AA reasoning required for Electric Elves. In particular, we
focus on the decision whether the user will attend a meeting on
time. A key feature of the Electric Elves is that the user is mo-
bile. As she moves around the environment, her probability of re-
sponding to requests for decisions changes drastically, e.g., she is
most likely to respond when at her workstation. When the agent
communicates via a workstation dialog box, the user will respond,
on average, in five minutes. However, when the agent communi-
cates via a Palm pilot the average user response time is an hour.
Users generally take longer to decide whether they want to present
at a research meeting, taking approximately two days on average.
So, the functionP>(t) should have an average value of 5 minutes
when the user in her office, an average of one hour when the user
is contacted via a Palm pilot and an average of two days when the
decision is whether to present at a research meeting. We assume
that the user’s decision-makingEQdU (t) is high with respect to the
agent’s,EQdA(t). When dealing with more important decisions,
the cost of the agent’s errors is higher and, hence, its decision qual-
ity lower. Thus, in some cases, the decision-making qualityof the
user and the agent will be similar, i.e.,EQUd (t) � EQAd (t); while
in other cases, there will be an order of magnitude difference, i.e.,EQUd (t) � 10 � EQAd (t). The wait cost function,W(t), will be
much larger when more other users are waiting for the decision
to be made. Finally, the cost of delays, i.e.,Dcost, can vary by
about an order of magnitude. For example, the cost of rescheduling
meetings varies greatly, e.g., the cost of rescheduling small infor-
mal meetings with colleagues is far less than rescheduling afull
lecture room at 3 PM Friday.

Above we have shown how the parameters vary from decision
to decision. For a specific decision, we can calculate exact EU
values for different strategies and draw the following conclusions
(Table 6.2 in Section 6.2 presents a quantitative illustration of these
predictions):� The strategye should not be used, since for all combinations

of user location and meeting importance the EU of this strat-
egy is very low.� Multiple strategies are required, since for different userloca-
tions and meeting importance different strategies are optimal.� Since quite different strategies are required when the useris
in different locations, the AA reasoning will need to change
strategies when the user changes location.



� No strategy has a reasonable EU for all possible parameter
instantiations, hence always using the same strategy will oc-
casionally cause dramatic failures.� For most decisions, strategies will end with the agent taking
a decision, since strategies ending with the user in control
generally have very low EU.

These predictions provide important guidance about a successful
solution for AA in the E-Elves. In the remainder of this section, we
use those predictions to explain the success and failure of the two
approaches used in the application.

6.1 Using C4.5 to Learn AA
The initial implementation of AA using C4.5 made some catas-

trophic mistakes. At the time we identified several reasons for the
mistakes including not having enough training data and not tak-
ing into account the uncertainty and potential costs involved in an
agent’s decision. While these reasons are correct the more inter-
esting questions are “Why is so much training data required?” and
“Why is uncertainty so important?” With the model we are in a
position to answer these more fundamental questions.

The C4.5 implementation learned one strategy and stuck with
that strategy, even when the situation’s parameters were quite dif-
ferent from those under which it learned the strategy. The model
predicts that such an approach would fail and this was precisely
what was observed. Enough of the training data fell into a par-
ticular an area of the!-� space that the learning focused on the
appropriate rule for that area of the space, ignoring other possible
strategies. The rule that caused the autonomous cancellation of a
meeting with the division director illustrates this point.The rule
said that on Mondays strategyA should be followed. This was
(likely) due to training data that showed the user was unlikely to
respond in a timely manner on Mondays. If the training data also
showed the expected quality of agent and user decision making to
be reasonably close then the strategyA is the correct strategy. How-
ever, in the unusual situation of a meeting with the divisiondirector
the high cost of error associated with cancelling an important meet-
ing lowers the expected quality of the agents decision. According
to the model this means a strategy which gives more opportunity for
user response should have been employed but the fixed C4.5 rule
could not reason about this and ended up making a serious error.

According to the model predictions, the C4.5 approach of timing
out after five minutes and returning control to the agent (either for
aD or a decision on attendance) might be reasonable in some sit-
uations, very suboptimal in others. This is another explanation for
C4.5’s enigmatic behavior.

6.2 MDPs for AA
Figure 3 shows a frequency distribution of the number of ac-

tions taken per meeting. The number of actions taken for a meet-
ing corresponds to the length of the strategy followed. The graph
shows both that the MDP followed complex strategies in the real
world and that it followeddifferentstrategies at different times. The
model predicted this would be required in a successful solution, it
was not present in C4.5 which failed and is present here, for the
successful solution.

Using the instantiated model from Section 3 and the specific pa-
rameters given above we can calculate the EU of various strate-
gies and compare them with the strategies given by the MDP. In
its current form, the model cannot directly deal with parameters
that change during strategy execution. In order to do a meaningful
comparison between the model and the MDP’s results, we focus
on only those cases when the user’s location does not change (i.e.,

Location A e eA eDeA MDP

Small meeting, active participant
office 14.8 -277 41.9 42.05 DDeDA

not @ dept. 14.8 -6E7 31.4 28.0 DDeA
@ meet loc. 14.8 -2E5 39.2 39.1 eA

Large meeting, passive participant
office 14.6 -7E12 30.74 30.65 DDeA

not @ dept. 14.6 -2E17 14.6 7.7 DDeA
@ meet loc. 14.5 -7E14 25.1 23.5 eA

Table 3: EU values for the simple strategies as calculated from
the model. The last column shows the strategy actually followed
by the MDP.
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Figure 3: Graph showing the frequency distribution of the
number of steps taken in an AA strategy for the meeting sce-
nario.

where the probability of response stays constant). The EU values
computed by the model and the strategy selected by the MDP are
shown in Table 6.2. We ignore anyD’s that the MDP performs
before the user is asked they are not currently represented in the
model. Except for a slight discrepency in the first case the match is
exact. Notice, that the strategye should never be used and is never
chosen by the MDP. Thus, despite the model being a considerable
simplification of the MDP the correspondence between the results
is very close. The particular parameters are not unique in providing
a matching model; in fact, many other parameter sets with roughly
the same relative values led to matches as well. Moreover, general
properties of the policies that were predicted by the model were
borne out exactly. In particular, recall that the model predicted dif-
ferent strategies would be required, that strategye would not be
used, and that generally strategies ending inA would be best — all
properties of the MDP policies.

6.3 Auction Closing MDP
The model predicts that if parameters do not vary greatly from

instance to instance of a particular decision then it is sufficient to
find a single optimal strategy and simply follow that strategy every
time the decision is encountered. The auction closing AA is an in-
stance of this for the Electric Elves. From a team perspective, the
behavior of the team when auctioning off an open role, is similiar
for every auction, i.e., the wait cost is the same and the pattern of
incoming bids is reasonably consistent, hence from the teamper-
spective the probability of response is constant (average response
time was two days). Using the algorithm described in Section5 we
determined that the strategyeA was optimal and that the transfer-
of-control time should vary according to the expected quality of the
agent’s decision (which is based on the percentage of bids received
so far). We replaced the very complex, computationally expeni-
sive MDP code, that originally made the decision, with very simple



code implementing the fixed strategy. Using log files recorded dur-
ing the actual auctions reported in [11], we experimentallyverified
that both the MDP and theeA strategy produced the same result.
Table 6.3 shows the percentage of available auction time remaining
(e.g., if the auction was opened four days before the role should be
performed, closing the auction one day before would correspond to
25%) when the MDP version and theeA version of the code closed
the auction. The number of bids is used to estimate the agent’s ex-
pected decision quality. The times at which the MDP would close
the auction and the times at which theeA strategy would close the
auction are very similar, certainly within a few hours. However, the
result is not precisely the same for the MDP and strategy imple-
mentations, because the MDP implementation was more reactive
to incoming bids.

Date No. Bids MDP eA
7/20/00 9 25% 26%
7/27/00 7 14% 20%
8/3/00 8 29% 23%

Table 4: Auction results. The “MDP” column shows the per-
centage of available auction time remaining when the MDP
closed the auction. The “eA” column shows the percentage of
available auction time remaining when the strategyeAwould
have closed the auction.

7. EXPLAINING EARLIER WORK
Goodrich et al.[5] report on tele-operated teams of robots,where

both the user’s high-level reasoning and the robots’ low-level skills
are required to achieve some task. Within this domain, they have
examined the effect ofuser neglecton robot performance. Four
control systems were tested on the robot, each giving a different
amount of autonomy to the robot, and the performance was mea-
sured as user neglect was varied. Figure 4 shows the performance
(y-axis) of the four control policies as the amount of user neglect
was increased (x-axis). The experiments showed that higherrobot
autonomy allowed the operator to “neglect” the robot more without
as serious an impact on its performance. The idea of user neglect
is similar to our idea of entities taking time to make decisions; in
this case, if the user “neglects” the robot, the joint task takes longer
to perform. Thus, the work can be straightforwardly mapped to our
model and the notion of transfer-of-control strategies canbe used to
qualitatively predict the same behavior as was observed in practice,
even though Goodrich et al. did not use the notion of strategies.

The lowest autonomy control policy used by Goodrich et al. was
a pure tele-operation one. Since the robot cannot resort to its own
decision making, we represent this control policy with a strategyU
(whereU denotes the user). The second control policy allows the
user to specifywaypointsand on-board intelligence works out the
details of getting to the waypoints. Since the robot has no high-
level decision-making ability, we again use a strategyU to model
its behavior. However, since the coordination between the robot
and user is more abstract, the wait cost function is less severe. Also
the human is giving less detailed guidance than in the fully tele-
operated case (which is not as good according to [5]), hence we
use a lower value for the expected quality of the user decision. The
next control policy allows the robot to choose its own waypoints
given that the user inputsregions of interest. The robot can also
accept waypoints from the user. The ability for the robot to cal-
culate waypoints is modeled as aD, since it effectively delays the
need for the user to provide input. We model this control policy as
the strategyUDU . The final control policy is full autonomy, i.e.,A. Robot decision making is inferior to that of the user, hencethe
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Figure 4: Goodrich at al’s various control strategies plotted
against neglect. (a) Experimental results. Thinner lines rep-
resent control systems with more intelligence and autonomy.
(b) Results theoretically derived from model of strategiespre-
sented in this article.

robot’s decision quality is less than the user’s. The graphsof the
four strategies, plotted against the probability of response parame-
ter (getting smaller to the right, to match “neglect” in the Goodrich
et al graph) is shown in Figure 4. Notice that the shape of the graph
theoretically derived from our model (Figure 4(b)) is qualitatively
the same as the shape of the experimentally derived graph (Fig-
ure 4(a)). Hence, the model qualitatively predictedfrom theorythe
same performance as was found from experimentation.

A common assumption in earlier AA work has been that if any
entity is asked for a decision it will make that decision promptly,
hence strategies handling the contingency of a lack of response
have not been required. For example, Hortvitz’s[7] work using de-
cision theory is aimed at developing general, theoretical models
for AA reasoning for a user at a workstation. A prototype system,
called LookOut, for helping users manage their calendars has been
implemented to test these ideas[7]. In the typical case for Look-
Out, the agent has three options: to take some action, not to take
the action, or to engage in dialog. The central factor influencing
the decision is whether the user has a particular goal that the action
would aid, i.e., if the user has the goal, then the action is useful, but
if he/she does not have the goal, the action is disruptive. Choosing
to act or not to act corresponds to pursuing strategyA.1 Choosing
to seek user input corresponds to strategyU . Figure 5(a) shows
a graph of the different options plotted against the probability the
user has the goal (corresponds to Figure 6 in [7]). The agent’s ex-
pected decision quality,EQdA(t) is derived from Equation 2 in [7].
(In other words, Lookout performs more detailed calculations of
expected decision quality.) Our model then predicts the same selec-
tion of strategies as LookOut does, i.e., choosing strategyA when1We consider choosing not to act an autonomous decision, hence
categorize it in the same way as autonomous action
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Figure 5: EU of different agent options. The solid (darkest)
line shows the EU taking an autonomous action, the dashed
(medium dark) line shows the EU of autonomously deciding not
to act and the dotted line shows the EU of transferring control
to the user. (a) Plotted against the probability of user having
goal, no wait cost. (b) plotted against wait cost, fixed probabil-
ity of user having goal.EQdA(t) is low,U otherwise (assuming that only those two strate-
gies are available). However, our model further predicts something
that LookOut did not consider, i.e., that if the rate at whichwait
costs accrue becomes non-negligible then the choice is not as sim-
ple. Figure 5(b) shows how the EU of the two strategies changes
as the rate of wait costs accrue is increased. The fact that the op-
timal strategy varies with wait cost suggests that LookOut’s ap-
proach would not immediately be appropriate for a domain where
wait costs were non-negligible, e.g., it would need to be modified
in many multi-agent settings.

8. SUMMARY AND RELATED WORK
In this paper we have introduced the idea of transfer-of-control

strategies for AA. We presented a decision theoretic model of trans-
fer of control strategies which allowed us to explain reported results
and can also guide the design of algorithms for AA reasoning.We
presented an algorithm which can quickly find optimal strategies.
The algorithm, leveraging the model, enabled us to dramatically
simplify the complexity of an existing implementation.

Other work has addressed the effect of timeliness on the per-
formance of a system. Hexmoor has looked at how an agent can
reason about autonomy when time is limited[6]. Since the agent
must select some actions under more time pressure than others, the
complexity of the AA reasoning must vary. The agent selects its
method of reasoning (ranging from following built-in dispositions,
to careful expected-utility analysis) to determine its level of auton-
omy based on the amount of time available. However, Hexmoor
does not address possible transfer of control strategies.

Research in more general AI areas, such asanytime algorithms[12],

meta-reasoning[10], and contingency planning[8], addresses issues
similar to those addressed by this work. AA can be viewed in the
same framework as meta-reasoning by viewing entities at computa-
tions. To our knowledge an analogy of multiple transfers-of-control
has not been dealt with in these related areas, primarily because
they make different assumptions than are made here.
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