
A Prototype Infrastructure for Distributed
Robot-Agent-Person Teams

Paul Scerri, David Pynadath, Lewis Johnson, Paul Rosenbloom, Mei Si,
Nathan Schurr and Milind Tambe

Information Sciences Institute and Computer Science Department
University of Southern California

4676 Admiralty Way, Marina del Rey, CA 90292
fscerri,pynadath,johnson,rosenbloom,meisi,schurr,tambeg@isi.edu

ABSTRACT
Effective coordination of robots, agents and people promises to im-
prove the safety, robustness and quality with which shared goals are
achieved by harnessing the highly heterogeneous entities’ diverse
capabilities. Proxy-based integration architectures are emerging as
a standard method for coordinating teams of heterogeneous entities.
Such architectures are designed to meet imposing challenges such
as ensuring that the diverse capabilities of the group members are
effectively utilized, avoiding miscoordination in a noisy, uncertain
environment and reacting flexibly to changes in the environment.
However, we contend that previous architectures have gone too far
in taking coordination responsibility away from entities and giving
it to proxies. Our goal is to create a proxy-based integration infras-
tructure where there is a beneficial symbiotic relationship between
the proxies and the team members. By leveraging the coordination
abilities of both proxies and socially capable team members the
quality of the coordination can be improved. We present two key
new ideas to achieve this goal. First, coordination tasks are repre-
sented as explicitroles, hence the responsibilities not the actions
are specified, thus allowing the team to leverage the coordination
skills of the most capable team members. Second, building on the
first idea, we have developed a novel role allocation and realloca-
tion algorithm. These ideas have been realized in a prototype soft-
ware proxy architecture and used to create heterogeneous teams for
an urban disaster recovery domain. Using the rescue domain as a
testbed, we have experimented with the role allocation algorithm
and observed results to support the hypothesis that leveraging the
coordination capabilities of people can help the performance of the
team.

1. INTRODUCTION
Robots, agents and people have a diverse set of capabilities and

characteristics. Effectively harnessing these capabilities in joint ac-
tivity promises to improve the safety, quality and robustness with
which some goals can be achieved. For example, an agent’s abil-
ity to vigilently process large amounts of information, a person’s
ability to solve problems, and an “expendable” robot’s ability to
go where people cannot safely go, could be combined to make ur-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

ban disaster response safer and more effective. However, enabling
multiple hetrogenous entities to coordinate on real-world tasks is
difficult, especially due to challenges such as ensuring robust ex-
ecution in the face of a dynamic environment, providing abstract
task specifications without the low-level coordination details, and
assigning appropriate agents to specific tasks[16, 1].

The approach taken in this work is to provide each RAP1 with
a proxy and have the proxies act together in ateam. There is an
emerging consensus in the field that teamwork can enable flexible,
robust coordination among multiple heterogeneous entities and al-
low them to achieve their shared goals. Furthermore, previous work
has also illustrated the power of domain-independent team coordi-
nation algorithms to realize such flexible teamwork and of the idea
of proxies to enable diverse agents to work together in a team [7, 16,
18, 5]. Existing proxies were initially designed to enable a group of
“non-team-ready” software agents to work together in a team and
were later extended to allow humans to work together in the same
team. For example, in the Electric Elves project, proxies helped a
team of researchers with routine coordination activities[2].

However, previous approaches have two key limitations when
applied to RAP teams. First, the proxies performed allcoordination
tasks without the possibility of getting input from team members.
This precluded more socially capable RAPs from utilizing theirco-
ordination skills for the good of the team. For example, people
who may be able to quickly resolve resource conflicts could not
help proxies that found the problem difficult. A better approach
is an infrastructure that takes over routine coordination tasks and
aids RAPs without social capabilities, while still allowing socially
capable RAPs to freely provide their coordination preferences and
skills. The result will be an infrastructure that synergistically com-
bines the coordination capabilities of RAPs and proxies to the ben-
efit of the team.

In particular, in previous work, the RAPs were essentially con-
sidered to have expertise only in domain-level tasks. Thus, these
previous approaches treated domain tasks and coordination tasks
differently. The domain tasks, i.e., those for actually achieving the
team’s goals, are represented asroles and allocated to the RAPs
most capable of completing them. For these domain roles, the RAP
has wide flexibility in what decisions and actions are taken to fulfill
the role and can act in a way that best utilizes its particular capabil-
ities. Conversely, coordination tasks are performed exclusively by
proxies following some predefined rules, without any possibility of
input from RAPs.

A key idea in this work is to transform coordination tasks into ex-
plicit roles and to allow either proxies or RAPs to perform the roles.
A potential pitfall with making all coordination tasks into roles is

1We use the term RAP to refer to a Robot, Agent and/or Person.

that RAPs may get overloaded performing coordination tasks. We
avoid this pitfall by integratingadjustable autonomyreasoning into
the core of the proxy. The adjustable autonomy reasoning decides
whether the RAP or the proxy will perform a particular coordi-
nation role. Since proxies have the ability to perform all coordina-
tion roles, responsibility for performing the role need only be trans-
ferred to the RAP when the RAP’s special abilities can perform the
role better and the team will benefit from the improved role per-
formance. Tight integration of adjustable autonomy reasoning into
a proxy and its use for determining responsibility for coordination
tasks differentiates this work from previous adjustable autonomy
work[10].

A second limitation of previous approaches is that the role allo-
cation algorithms are typically designed for small teams with re-
liable, consistent communication [22, 20]. The algorithms are of-
ten not suited to highly dynamic, large scale RAP teams. Many
of the role allocation algorithms are designed to find optimal or
near-optimal role allocations and incur unreasonable computation
and communication overheads in RAP teams. For example, alloca-
tions of RAPs to roles found using contract networks [?], auctions
[?] or constraints [12] will be very good, but at the expense of
high communication overheads. Often, given large teams in dy-
namic and uncertain environments, the team will be better served
by quickly finding a reasonable allocation of RAPs to roles, while
severely limiting the time taken. Previous role allocation algo-
rithms have also typically relied on knowing available RAPs and
“neighbors” in advance and having an ability to communicate with
specific neighbors, e.g., algorithms based on constraint satisfaction
have this property [12]. We cannot rely upon such knowledge and
consistent communication networks in highly dynamic teams.

To overcome the limitations of previous role allocation algo-
rithms, we have developed a new algorithm that is distributed, has
low overheads and allows role allocation and execution to occur in
parallel. While the algorithm will not always result in near optimal
role allocations, it is a useful tool for the proxies in some domains.
The algorithm works by creating arole-allocation rolefor the coor-
dination task of assigning the role. When such a role is assigned to
a particular proxy and RAP, there must be one of two outcomes: the
role is accepted and eventually performed by the RAP or respon-
sibility for the role-allocation role is transferred to another proxy
and RAP. Since the proxy only considers transferring the role to
those RAPs that are potentially capable of performing a role, inca-
pable RAPs may never know anything about it. Because how the
role-allocation role is achieved is not specified, more socially capa-
ble RAPs can use exploit their sophisticated reasoning for deciding
whether to accept the role, while less capable RAPs can rely on the
relatively simple reasoning of their proxy to make a decision. For
example, if responsibility for allocating a role of going into a burn-
ing building is given to the proxy of a person, the proxy can ask the
person whether or not they wish to accept the role of going into the
building.

The proxies are implemented as lightweight Java processes and
can run on various devices, including handheld computers. The
proxies work with the whole spectrum of RAPs, from relatively
simple robots to expert human users. The design of the proxies
makes them easily configurable and reusable across domains, thus
providing the multiagent community with a useful piece of soft-
ware for future research. RAP teams, utilizing the proxy infras-
tructure, are being evaluated in an urban disaster rescue domain.
Current teams have up to 12 RAPs, coordinating on up to 500 roles
over a period of an hour in a simulation of an earthquake-struck
city. Agents control rescue vehicles, people play supervisory roles,
and people and robots search buildings for survivors. The team

is highly configurable, hence providing an interesting testbed for
RAP research. We have conducted experiments varying two di-
mensions (domain-level complexity and allocation of roles to peo-
ple) and examined the effects of those variations on domain-level
and role-allocation performance. Our results, while by no means
conclusive, indicate that allowing the proxies to leverage the coor-
dination abilities of people improves performance.

2. DOMAIN: DISASTER RESCUE
The concept of RAP teams is a relatively new one. Hence models

and theoretical frameworks for evaluating approaches are not avail-
able. The relevant algorithms need to be implemented and tested in
environments as close to real environments as possible. Our current
domain of interest is an urban disaster rescue, in particular provid-
ing emergency response to an earthquake. The aim is to have large
teams of humans, agents and robots performing the wide variety of
roles required for the response effort.

Our experimental platform is a combination of the RoboCup
Rescue simulation environment[9] and significant extensions that
enable human and robot interactions, (see Figure 1). Part of the
scenario exists in simulation, while the rest occurs in real buildings
with real robots. Simulated buildings burn, with fires spreading to
adjacent buildings if they are not quickly contained. Civilians can
be trapped in buildings, making the priority of fighting fire in those
buildings much higher. The team’s goal is to save as many trapped
and injured people as possible and stop fires from spreading. Fire
brigade agents act in a virtual city, while human and robot team
members act in the physical world. The fire brigades can search
the city soon after an earthquake has hit and can extinguish any
fires that are found. A human fire chief is given a high-level view
of the fire-fighting progress and can make role-allocation decisions
to better save civilians and limit damage. The robots can assist
by maneuvering through real buildings, with simulated earthquake
damage, looking for injured or trapped people. A human paramedic
will work with the robot to save the trapped civilians.

Figure 1 shows the RAP team that we are developing for the
earthquake domain. Fire brigades, controlled by agents, fight fires
that have broken out in the city. The agents try to allocate them-
selves to fires in a distributed manner (see Section 4), but can call
on the expertise of the human “fire chief” if required. The fire chief
can allocate trucks to fires easily both because he has a more global
view of the situation and because the spatial, high-level reasoning
required is well suited to human capabilities. However, requiring
that the Fire Chief make too many role allocation decisions can
overload him and degrade performance. When civilians are trapped
inside of damaged buildings, both robots and human paramedics
have capabilities that can assist in saving the people. Robots are
able to go into places unsafe for paramedics, while paramedics
have the medical skills to help the injured people that the robots
have discovered. Working together they can perform the rescue job
better than either can alone.

3. RAP TEAM ARCHITECTURE
Robots, agents and people distinctly have different strengths and

weaknesses. Creating teams of RAPs provides the possibility of
leveraging the diverse strengths of each RAP to overcome the lim-
itations of the others. Engaging in teamwork imposes certain con-
straints on the team members (e.g., informing other team members
when there are successes or failures), which lead to desirable prop-
erties of group behavior[22]. Since team members have a respon-
sibility towards each other, a team can achieve its goals robustly,
with team members covering for failed teammates, supplying key

Figure 1: A proxy-based RAP team with a human “fire chief”,
agents controlling fire brigades (left), and paramedics and
robots (right) rescuing civilians.

information to help each other, etc. Building on previous work, we
have developed an infrastructure for coordinating RAPs that cou-
ples RAPs with proxies. In addition to performing the tasks de-
scribed in previous work, such as initiating and terminating team
plans, aiding recovery from failures and communicating informa-
tion, our proxies have additional features that make them unique.
These new features include the incorporation of adjustable auton-
omy reasoning (see Section 3.2), a novel role allocation algorithm
(see Section 4) and the representation of coordination tasks as roles.

Teams of RAP-proxy pairs executeTeam-Oriented Programs(TOPs)
[25, 17], abstract team plans that provide high-level descriptions of
the activities to be performed. TOPs specify the team’s joint plans,
and the inter-dependencies between those plans, but do not contain
all of the details of coordination and communication required. Such
programs identify the domain capabilities required to perform each
role, which helps in determining how best to allocate tasks to team
members. The team plans are reactively instantiated in response to
events in the environment. The role allocation algorithms attempt
to assign RAPs to the roles that are required in the plan. The prox-
ies can make small changes to the plan and dynamically change as-
signments of tasks to RAPs to better achieve the goals. Since roles
are only specified abstractly, individual RAPs are free to carry out
their assigned tasks as they see fit, based upon their own capabil-
ities. In the current implementation, TOPs are specified in XML
and loaded by the proxies at runtime. Figure 2 shows a TOP, speci-
fying a partial team plan to fight a fire in a particular building. The
plan has a precondition that there is a fire at some location and a
post-condition that the fire has been extinguished. There are two
Fight Fire roles, labeled “Primary” and “Secondary”, that will be
filled by RAPs capable of fire fighting.

3.1 Proxies
The proxies are lightweight, domain-independent pieces of soft-

ware, capable of performing the activities required to work coop-
eratively on TOPs2. The proxies are implemented in Java and are

2The proxies are public domain software and can be downloaded

<TeamPlanTemplate Name="Fight Fire">
<Team><Id Name="Response Team"></Id></Team>

<Precondition>
<Key Name="location" Type="Input"></Key>
<Key Name="extinguished" Value="False"></Key>

</Precondition>

<Postcondition Type="achieved">
<Key Name="extinguished" Type="True"></Key>

</Postcondition>

<Role Name="FightFire" Label="Primary"></Role>
<Role Name="FightFire" Label="Secondary"></Role>

</TeamPlanTemplate>

Figure 2: Partial TOP for fire-fighting team plan.

Communication

Coordination State Adjustable
Autonomy

RAP Interface

O
ther Proxies

R
A

P

Figure 3: Proxy software architecture.

designed to run on a number of platforms including laptops and
handheld devices. A proxy’s software is made up of five compo-
nents (see Figure 3):
Communication: communication with other proxies
Coordination: reasoning about team plans and communication
State: the working memory of the proxy
Adjustable Autonomy: reasoning about whether to act autono-

mously or pass control to the RAP
RAP Interface: communication with the RAP

Each component abstracts away details allowing other compo-
nents to make its task easier. For example, the RAP interface com-
ponent is aware of what type of RAP it is connected to and the
methods of interacting with the RAP, while the adjustable auton-
omy component deals with the RAP as an abstract entity having
particular capabilities. Likewise, the communication component
will be tailored to the RAP communication abilities, e.g., wireless
or wired, but the coordination component will only be told available
bandwidth and cost of communication. The coordination, state and
adjustable autonomy modules are domain independant, while the
communication and RAP Interface modules are domain specific.

A critical component in deploying the proxies is the mechanism
by which they interact with their RAPs. The adjustable autonomy
component is responsible for deciding what interaction should hap-
pen with the RAP, but the RAP interface component manages that
interaction. The RAP interface component is the only part of the
proxy that needs to be designed for a specific type of RAP. These
components are very diverse, matching the diversity of the RAPs.
For example, the RAP interface for a person playing the role of
fire chief in the disaster rescue domain is a large graphical inter-
face, while for the fire brigades a simple socket communicating a
small, fixed set of messages is sufficient. Since the proxies inter-
act closely with their RAPs, it is desirable to have them in close
physical proximity. For mobile RAPs, the proxies can be run on
handheld devices that communicate wirelessly with robots or, in
the case of a person in the field, via a graphical interface on the
handheld device.

from http://www.isi.edu/teamcore/doc/Machinetta

3.2 Proxy Algorithms
The beliefs in the state constitute the proxy’s knowledge of the

status of the team and the environment. The state is a blackboard,
with components writing information to the blackboard and oth-
ers reacting to information posted on the blackboard. The proxy’s
overall execution is message driven. When a message comes in
from its RAP or from another proxy, a new belief is added to the
proxy’s state. Any change to the state triggers two reasoning al-
gorithms:CoordinationandAdjustable Autonomy. Either of these
algorithms may in turn change the belief state, which will once
again trigger the algorithms.

Algorithm 1 shows the Coordination algorithm, which instanti-
ates the theory ofjoint commitments[3] as operationalized by STEAM.
The functions,establishJointCommitmentandendJointCommitment
establish or terminate commitments by communicating with other
proxies when a new belief triggers the start or end of a team plan.
The functioncommunicate?returns true if the new information
about the RAPs changing capability (CapabilityInformation) or its
progress towards achieving its role(s) (RoleProgress) should be com-
municated to others. This function encapsulates previous work
on determining policies for communicating such information with
team members[15].

Algorithm 1: Coordination
COORDINATION(Bin)
(1) foreach b 2 Bin

(2) if b

is CapabilityInformationor RoleProgress
(3) if communicate?(b)
(4) sendToOthers(b)
(5) else ifstartTeamPlan �?(b)
(6) establishJointCommitment(�)
(7) ALLOCATEROLErole(�)
(8) else ifendTeamPlan �?(b)
(9) endJointCommitment(�)
(10) return Bout

The Adjustable Autonomy algorithm (Algorithm 2) is responsi-
ble for managing the interactions between the proxy and the RAP.
The if statement beginning on Line 2 shows the basic processing
that the proxy performs when its RAP is offered a role (role offer)
or is now responsible for a new role (new role), e.g., by the proxy
having autonomously accepted it. TheshouldRAPbeAsked? func-
tion is the “core” of adjustable autonomy reasoning and is responsi-
ble for deciding whether or not this particular coordination decision
should be handled autonomously by the proxy or by the RAP. In the
case of a role offer, it decides whether to act autonomously and, if
so, decides whether or not to accept the role on behalf of the RAP
(see next section for more detail).

Algorithm 2: Adjustable Autonomy
ADJUSTABLEAUTONOMY(Bin)
(1) foreach b 2 Bin

(2) if b is role offer
(3) if RAP is capable of role
(4) if shouldRAPbeAsked?
(5) Ask RAP
(6) else ifaccept autonomously?
(7) Bout role accepted
(8) else
(9) Bout role rejected
(10) else ifb is new role
(11) Tell RAP it hasb
(12) return Bout

4. ROLE ALLOCATION

In this section, we focus on a central problem that motivates
RAP teamwork: applying diverse RAP capabilities to tasks that suit
those capabilities. To bring RAPs’ special capabilities to bear, it is
critical to make appropriate assignments of RAPs to roles within
a team. Previous role allocation algorithms have limitations that
make them inappropriate for RAP teams, especially as the teams
become larger and more roles are dynamically initiated and termi-
nated. In particular, we focus on three key weaknesses. First, pre-
vious work has not allowed RAPs with special abilities at role allo-
cation (or any other coordination tasks) to exercise those abilities.
Second, previous algorithms typically incur unacceptable compu-
tational overhead in striving for optimal allocations. For example,
role-allocation algorithms based on capability analysis [24], com-
binatorial auctions [6], and BDI theory [19] all have computational
requirements that can overly burden the team. Moreover, these al-
gorithms often maintain a strict separation between role-allocation
and role-execution phases, which is infeasible with the asynchrony
inherent in large, distributed teams. Finally, some role-allocation
algorithms rely on a reliable communication network and/or a con-
sistent set of “neighbors”. For example, an approach based on
constraint satisfaction [12] organizes the inter-RAP communica-
tion into a tree structure that is subject to failure if individual links
break down. Such algorithms typically include all the team mem-
bers in the negotiation, although, in many RAP teams, only a small
percentage will be able to fulfill a particular role.

We present a novel role-allocation algorithm that addresses these
limitations and is thus suitable for coordinating RAP teams in highly
dynamic domains. The algorithm relies on individual RAPs ei-
ther accepting offered roles or passing them on to another RAP
that may be able to perform the role. Notice that all roles are the
shared responsibility of the team, a concept we inherit from the the-
ory of joint intentions. The passing around of roles is done while
RAPs continue with their current roles thus avoiding having a sep-
arate allocation phase. A key to this algorithm, for the purposes
of RAP teams is the flexibility that a proxy has to handle a role
offer. The adjustable autonomy allows the proxy to take as much
or as little autonomy over coordination decisions as the situation
warrants. Thus, more socially capable RAPs can utilize their abili-
ties to make good choices about whether to accept a role and make
good choices about whom to pass the role onto. There is no preset
order in which roles must be passed on; thus, there is no reliance
on particular communications links or RAP availability. In fact, a
proxy’s and RAP’s knowledge of the other RAPs can be very lim-
ited, as they need only know the identity of some other RAP(s) that
may potentially be able to perform the role. If a RAP is currently
executing a role when offered a new role and it cannot perform both
in parallel, it can take the new role if it has higher preference, ca-
pability, priority, or whatever other factors it deems important for
choosing between the roles. The simple process of accepting or
rejecting a role and passing it on places only minimal computation
and communication requirements on the proxies and RAPs, mak-
ing the algorithm appropriate for large dynamic teams. Moreover,
roles need not be offered to RAPs clearly incapable of performing
the roles, potentially a considerable saving. Notice, however, that
this algorithm will generally not find optimal solutions.

4.1 Definition of Role Allocation Problem
In trying to allocate roles for a team of RAPs, we model each

RAP as being in a space of possible states,Si. The states of interest
in this case are those dynamic features of the RAP that influence
its capability to perform tasks. For example, fire brigade agenti’s
local state space,Si, could consist of all possible combinations of

brigade positions and water levels. We define the set of domain-
level and coordination-level roles,R, to be the set of all possible
task instances (e.g., extinguishing a fire, allocating a role) that can
arise during the RAP team’s execution. Each such role,r 2 R, has
its own set of possible states,Sr. For example, a role associated
with extinguishing the fire in a particular building would have state
information representing the severity of the fire.

4.1.1 RAP Capabilities
To match RAPs to roles, we require a representation of each

RAP’s ability to successfully execute each role. As a starting point,
we assume that the architecture has a quantitative representation
of each RAP’s dynamic capabilities. The heterogeneity of RAP
teams requires such a quantitative representation, because although
there may be many RAPs capable of filling a role, not all of these
RAPs will be equally capable. Therefore, we need a capability
specification that distinguishes among the different levels of ca-
pability among the RAPs, in addition to the different capabilities
themselves.

More precisely, we represent the capabilities of a RAPi as a
function,ci : Si � R ! [0; 1], that maps the RAP’s current state
and a possible role into a quantitative estimate of that RAP’s ability
to succeed at the given role. For example, for a fire brigadei, the
capability function would represent the fact that increased distance
from a building diminishes ability to put out a fire at that building in
a timely fashion (e.g.,ci(pos(i); extinguish(j)) = e�jjpos(i)�pos(j)jj).
For the architecture to exploit such capability information in allo-
cating roles, the proxies must have up-to-date knowledge of each
RAP’s current local state.

4.1.2 Role Priorities
Just as the heterogeneity of RAP teams means that not all RAPs

are equal, the complexity of RAP domains means that not allroles
are equal. For example, fires vary in severity, as well as in the value
of the building at stake (e.g., due to human lives being at risk). We
model the distinctions among roles by associating apriority with
each. The priority of a role,r, maps its state (e.g., severity of fire)
into a total ordering over roles:pr : Sr ! [0; 1]. Unlike capabil-
ities, priorities may be unknown to the RAPs and their proxies in
advance. The job of determining the priority of a role is a special-
ized coordination role that could be allocated to a RAP with special
skills for determining priorities of roles. For example, the fire chief
may be able to provide up-to-date prioritization information on the
fires, but the fire brigades themselves may not have that capabil-
ity. Just as with capabilities, we can also represent the imperfect
knowledge that the RAPs have with an approximation of the true
priority.

4.2 Role Allocation Algorithm
Figure 3 shows pseudo-code for our new role allocation algo-

rithm. The rest of this section presents a high-level description of
the algorithm, as well as some of the intuitions that motivate its
designs and that underly its operations.

New domain level roles are created by the progression of team
plans. Initially, there is no RAP assigned to a newly created domain-
level role. The unassigned role triggers the creation of arole-
allocation-role, with the responsibility of assigning a RAP to the
domain-level role (Line 2). By default, the proxy that creates the
role-allocation role is initially responsible for performing that role3

(Line 3).

3This simply prevents a recursion of role creations and is reason-
able since, unlike the domain-level role, it is the proxy taking re-
sponsibility not the RAP.

After recursively calling the role-allocation algorithm for this
new role-allocation role (Line 4), the proxy attempts to find a RAP
capable of performing the domain-level role (Line 5). It first con-
siders whether it could allocate the role to its RAP by invoking its
adjustable-autonomy algorithm (Line 6). If its RAP is potentially
capable of performing the role, the proxy engages in adjustable au-
tonomy reasoning to decide whether it will autonomously decide
to reject or accept the role on behalf of the RAP or whether it will
ask the RAP to make the decision. If the role is accepted (either
autonomously or by the RAP itself), the role-allocation-role termi-
nates and the accepting RAP takes on responsibility for the domain-
level role (Line 9).

Algorithm 3: AllocateRole
ALLOCATEROLE(r)
(1) if no one is assigned tor
(2) create role-allocation role,r0, for r
(3) assign myself tor0

(4) ALLOCATEROLE(r0)
(5) else if I am assigned tor
(6) B ADJUSTABLEAUTONOMY(r)
(7) Append myself toasked(r)
(8) if role accepted2 B
(9) RAP executes roler
(10) else
(11) if jasked(r)j < maxAsked �

jcapable(r)j
(12) Assign select(capable(r) n

asked(r)) to r
(13) else
(14) De-assign myself fromr
(15) ALLOCATEROLE(r)
(16) else
(17) do nothing

On the other hand, if the RAP rejects the role (Line 10), the
proxy’s role-allocation-role requires that it attempt to find another
RAP. We use themaxAskedparameter to control how many of the
capable RAPs we will try before giving upare asked before the team
“gives up” (Line 11). Notice that a single proxy will only transfer
the role to one RAP, then that RAP may in turn pass it to another
RAP. Hence, themaxAskedparameter is equivilent to the number
of RAPs the role allocation role visits. Theselectprocedure in Line
12 of Figure 3 represents the proxy’s decision in choosing such a
RAP, based on some representation of the other RAPs in its team.
How much a proxy knows about other RAPs will vary. It will con-
sider passing a role to another RAP and proxy unless it has specific
knowledge that that RAP is incapable of performing the role. In-
stead of directly asking the other RAP itself, the proxy passes re-
sponsibility for the role-allocation-role to the other RAP’s proxy.
The newly responsible proxy then follows the same process as the
originally responsible RAP, with one key difference. By keeping
track of all of the past RAPs responsible for this role (in theasked
set, updated in Line 7), we guarantee that the newly assigned RAP
will not simply pass the role-allocation-role back to the original
proxy.

A proxy may not always be able to find an appropriate RAP to
which to pass a role-allocation-role or the role-allocation-role may
have been transferred to more thanmaxAskedRAPs (Line 13). In
such a situation, the proxy is failing at its role and attempts to re-
allocate the role-allocation role to a RAP who may be in a better
position to do the reallocation (Line 14). Through another recur-
sive call to our role-allocation algorithm (Line 15), we essentially
move up another meta-level away from the original domain-level
role. In other words, reallocating the role-allocation-role triggers
yet another role, this one to reallocate the role-allocation-role (i.e.,
a role-allocation role-allocation-role). By moving up a meta-level,

the algorithm eventually transfers responsibility to a RAP who is
especially capable at such role allocations.

To make the algorithm more concrete, consider the following
example. Fire brigadeA is fighting a fire in building 1, while
fire brigadeB is fighting a fire in building 2. A fire chief is at
headquarters collecting information from a variety of sources. Fire
brigadeA notices another fire in building 3. This observation trig-
gers a plan to fight the in building 3, which in turn triggers the
role fire fighter within that new plan. The proxy for fire brigade
A invokes the role-allocation algorithm for this new role. Follow-
ing our algorithm, it automatically creates a role-allocation-role for
the unassignedfire fighter role. The proxy decides that it should
autonomously accept/reject the role for its fire brigade agent. It de-
cides to reject the role, since the fire brigade is already engaged in
fighting another fire. It decides to pass the role-allocation role to
the proxy of fire brigadeB. Fire brigadeB’s proxy also decides
to act autonomously on behalf of the fire brigade in rejecting the
role. Fire brigadeB’s proxy has no other capable RAP to pass the
fire fighterrole onto. So a reallocation of the role allocaion role is
required. The fire chief is a specialist at role reallocation, so fire
brigadeB’s proxy passes the role to the chief’s proxy. The fire
chief’s proxy offers the role-allocation-role to the chief, who ac-
cepts it. The chief has information that building 3 contains young
children while building 1 is largely empty. The chief performs its
role by reassigning fire brigade A to building 3. The newly aban-
doned role for fighting the fire in building 1 cannot be allocated in a
distributed manner, so eventually a role to do the role-allocation is
created and sent to the chief, who will “hold” the role until either a
fire brigade becomes available or the plan becomes irrelevant (e.g.,
because the fire burns out).

Clearly, this algorithm will not always find optimal allocations
of RAPs to roles. We could improve the quality of the allocations
by improving the decision making underlying the proxies’ accep-
tance/rejection of roles and by improving the choice of RAP to
which to pass rejected roles. However, we can potentially achieve
more improvement by creating role-reallocation roles for several
roles and sending all the role-reallocation roles to a capable RAP
(or perhaps RAPs) for a more centralized role assignment. These
role-allocating expert RAPs can work on finding improved alloca-
tions while the RAPs continue to execute their own roles.

5. TESTBED AND EXPERIMENTS
The role-allocation procedure is not a single algorithm, but rather

represents a space of possible algorithms that are easily realizable
through variation of its parameters. The resulting implementation
of this procedure within our proxy architecture provides us with
an invaluable testbed for empirical analysis of the space of role-
allocation algorithms. This section presents the results of our ex-
ploration of parts of this space and the implications for RAP teams.

5.1 Role Allocation Testbed
There are a number of decision points and parameters in the

role-allocation algorithm of Figure 3 that offer a system designer
a dimension of control over the coordination reasoning. For ex-
ample, themaxAskedparameter controls the number of other RAPs
that should be tried before creating a role-allocation-role-allocation
role. If maxAsked= 0%, a proxy whose RAP cannot (or will
not) take on the role will give up and immediately create a role-
allocation-role-allocation role. IfmaxAsked= 100%, the algorithm
ensures that all capable RAPs are offered the role once before giv-
ing up. At the extreme, a special setting ofmaxAsked= 1 means
that the capable RAPs repeatedly pass the role amongst themselves
(with each getting offered the role multiple times) without ever giv-

ing up. VaryingmaxAskedthroughout this range produces distinct
algorithms that produce different loads on role-allocation expert
RAPs (e.g., a fire chief).

Furthermore, our role-allocation algorithm can take its input on
RAP capabilities and role priorities in different forms, as described
in Section 4.1. When a proxy autonomously decides whether to ac-
cept a role or not (as modeled by the “accept autonomously?” deci-
sion in Algorithm 2), it weighs its current role against the newly
offered one (e.g., is the new fire higher priority?). Information
required to make such a determination (e.g., priority information)
may generate new roles that undergo this same role-allocation pro-
cess (e.g., by triggering a “determine priority” role).

Regarding RAP capabilities, if our role-allocation uses the exact
dynamic, quantitative capabilities,ci, then the proxies can perhaps
make high-quality allocations on their own, without appeal to an al-
location expert RAP. We would expect that use of an approximate
ci would lead to lower-quality autonomous allocations, but would
reduce the number of messages sent to update each RAP’s local
state. This distinction also affects theselectprocedure in the AL-
LOCATEROLE algorithm. Accurate capability knowledge allows
the proxy’s to pass the role on to the most able RAP available,
rather than simply passing it on to the first one found.

Regarding role priorities, again, if our role-allocation uses the
exact, quantitative information,pr, for each roler, then the prox-
ies can make high-quality autonomous allocations. However, to
acquire this precise priority information, the proxies must typi-
cally appeal to a role-prioritization expert RAP (e.g., a fire analyst).
Thus, there is a tradeoff between the amount of effort the exact in-
formation saves the allocation expert and the additional effort now
burdening the prioritization expert. If the role-allocation uses the
approximate, binary priority information, then the tradeoff swings
to the opposite direction.

5.2 Experimental Setup
Our purpose in designing this testbed is to explore different styles

of coordination among RAPs and their effects on team performance.
We have presented several dimensions along which our proxy ar-
chitecture can vary its coordination behavior, but given the time re-
quired for experimentation (a single run requires45 minutes), we
have performed an exploration over a subset of these dimensions,
rather than a shallower breadth-first approach. In particular, we fo-
cus on two factors: the complexity of the environment and the point
at which roles were allocated to people. Our aim is to gain insight
into the benefits (and potential drawbacks) of giving people the op-
portunity to make coordination decisions. To isolate these benefits,
we used a RAP team consisting of a single person (as fire chief)
and a number of agent-controlled fire brigades. We have omitted
robots from the team for the purposes of this particular experiment.

Along the dimension of domain complexity, we varied the num-
ber of fire brigades, with one configuration using 3 and another
using 10. Along the dimension of allocating roles to people, we
used three extreme parameter settings to vary the degree of control
that the person has over role allocations: (i) the agents give up con-
trol as soon as the first agent rejects the role (maxAsked= 0%), (ii)
the agents give up control only afterall of the agents have rejected
the role once (maxAsked= 100%), and (iii) the agentsnevergive
up control (maxAsked= 1). We fixed every other aspect of the
initial state, i.e., the fire brigades had fixed starting positions, and
there were two predetermined fire ignition locations.

The fire chief interface consists of two frames. One frame shows
a map of the city, displaying labeled markers for all of the fires that
have been found, the positions of each fire brigade, and the location
of the role each fire brigade is assigned to. The fire chief does not

Brigades maxAsked= 0% maxAsked= 100% maxAsked=1
3 58(3.56) 73(16.97) 74(0.71)

10 52(19.09) 42(14.00) 73(4.24)

Table 1: Domain-level performance scores.

have direct access to the simulation state through the simulator it-
self, but is instead updated according to only the messages received
by the fire chief’s proxy. Therefore, the fire chief may be viewing
a delayed picture of the simulation’s progress. The other frame
displays a list of all of the role-allocation tasks that have been allo-
cated to the fire chief. By clicking on a task, the relevant capability
information about each fire brigade is shown. The right-side win-
dow lists the fire brigades’ distances to the fire, their water levels,
and the roles they are currently performing. The fire chief can then
view this data and find an appropriate agent to fulfill the role.

We conducted tests with three different fire chiefs. Each com-
pleted several practice runs with the simulation prior to experiments
in order minimize any learning effects. Each scenario was run for
100 time steps, with each step taking 30 seconds. The total data
presented here represents 20 hours of run-time with a human in the
loop.

5.3 Experimental Results
Table 1 shows the team’s domain-level performance across each

experimental configuration. The scoring function measures how
much of the city was destroyed by fire, with higher scores rep-
resenting worse performance. The table shows the mean scores
achieved, with the standard deviations in parentheses. Examining
our two dimensions of interest, we can first compare the two rows
to examine the effect of increasing the complexity of the coordina-
tion problem. In this case, increasing the number of fire brigades
improves performance, as one might expect when adding resources
while keeping the number of initial tasks fixed.

However, we can dig a little deeper and examine the effect of
increasing complexity on the fire chief’s performance. In the sim-
pler configuration, asking the fire chief earlier (i.e.,maxAsked= 0)
improves performance, as the team gets a head start on exploiting
the person’s capabilities. On the other hand, in the more complex
configuration, asking the fire chief earlier has the opposite effect.
To better understand the effect of varying the point at which we
assign roles to people, Table 2 presents some of the other statistics
we gathered from these runs (mean values, with standard deviations
in parentheses). With 3 brigades, if we count the mean number of
roles taken on by the fire chief, we see that it stays roughly the
same (401 vs. 407) across the twomaxAskedsettings. In this case,
asking the fire chief sooner, allows the team to exploit the person’s
capabilities earlier, without much increase in his/her workload. On
the other hand, with 10 brigades, the fire chief’s mean role count
increases from 563 to 716, so although the proxies ask the fire chief
sooner, they are imposing a significant increase in the person’s
workload. Judging by the decreased average score in the bottom
row of Table 1, the increased workload more than offsets the ear-
lier exploitation of the person’s capabilities. Thus, our experiments
provide some evidence that increasing domain-level scale has sig-
nificant consequences on the appropriate style of interaction with
human team members.

Regardless of the variation of human behavior across scale, the
data demonstrates that exploiting human capabilities does, in fact,
improve overall team performance. We see this most clearly by
examining the rightmost column of Table 1, which represents the
results when the agents make all of the decisions. These scores are
significantly worse than the leftmost data column, where the per-

max Domain Fire Chief Tasks % Tasks
Brigs. Asked Roles Roles Performed Performed

3 0% 116 (7.12) 401 (51.81) 27 (6.55) 23.29 (6.51)
100% 146 (33.94)407 (54.45) 24 (6.36) 16.02 (0.63)

10 0% 103 (38.18)864 (79.90) 67 (2.83) 14.49 (2.13)
100% 98 (42.40) 563 (182.95)41 (8.38) 48.06 (19.32)

Table 2: Role and fire-chief task metrics.

Fire Chief Score Tasks Performed % Performed
A 0.61 25 28%
B 0.59 40 56%
C 0.31 42 32%

Table 3: Statistics for each Fire Chief.

son is handed role-allocation roles immediately. Thus, the ability
of our role-allocation algorithm to exploit the special coordination
capabilities of people has provided a dramatic improvement in the
performance of our RAP team.

We can observe the heterogeneity introduced by people by clus-
tering our statistics by person rather than by configuration. Each
row in Table 3 represents the mean statistics of one of our three dif-
ferent fire chiefs. The “Tasks Performed” column counts the num-
ber of firefighting allocations performed by the fire chief, while the
“% Performed” column measures that count against the number of
total firefighting allocations assigned to the fire chief by the proxy
architecture. Given the small sample size, we cannot draw any con-
clusions about a person’s expected behavior. On the other hand, it
is clear that we can expect a great deal of variance in behavior.
For example, although fire chiefsA andB achieve roughly similar
mean scores, they do so in very different ways. In fact, our proxies
can expect fire chiefA to be half as likely as fire chiefB to respond
to a task request. On the other hand, fire chiefC is about equally
likely asA to respond, andC performs roughly the same number
of tasks asB, yetC achieves only half the score as the other two.
Thus, it appears unlikely that we can easily classify people’s ca-
pabilities, since, for even the relatively few dimensions measured
here, our human fire chiefs show no generalizable characteristics.

6. RELATED WORK
Proxy-based integration architectures are not a new concept, how-

ever no previous architecture has been explicitly designed to have
robots, agents and people in the same team. Furthermore, all pre-
vious arhitectures aspire to give all coordination responsibilities to
the system, thus preventing humans from making coordination de-
cisions. Jennings’s GRATE* [7] uses a teamwork module, imple-
menting a model of cooperation based on the joint intentions frame-
work. Each agent has its owncooperation levelmodule that nego-
tiates involvement in a joint task and maintains information about
its own and other agents’ involvement in joint goals. Jones [8],
Fong [21], Kortenkamp[11] and others have worked on improving
collaboration between groups of robots and a single person, though
these approaches to robotics teams have not explicitly used prox-
ies. The Electric Elves project was the first human-agent collab-
oration architecture to include both proxies and adjustable auton-
omy[2]. COLLAGEN [18] uses a proxy architecture for collabora-
tion between a single agent and user. Payne et al[23] illustrate how
variance in an agent’s interaction style with humans affects perfor-
mance in domain tasks. Tidhar [25] used the term “team-oriented
programming” to describe a conceptual framework for specifying
team behaviors based on mutual beliefs and joint plans, coupled
with organizational structures. The framework also addressed the

issue of team selection [24] by matching “skills” required for exe-
cuting a team plan against agents that have those skills.

Role allocation has been considered by a number of authors us-
ing a range of different techniques. For example, there are role
allocation approaches for doing an allocation of RAPs to a static
set of roles based on capability analysis [24], combinatorial auc-
tions [6] and Beliefs Desires and Intentions [19]. Role reallocation
has also been considered, e.g., team reorganization based onin-
tends.thatin the SharedPlans approach[5] orcritical role failures
in STEAM [22]. Role allocation for teams of robots has been con-
sidered by several authors including Gerkey [4], Parker [14] and
Ostergaard[13]. However, there has been no work that allows both
a distributed algorithm and a person to participate in the role allo-
cation.

7. LESSONS LEARNED
While the goal of building completely autonomous agents is an

admirable one, we believe that the pendulum has swung too far to-
wards autonomy. The ability to leverage the skills of humans via
adjustable autonomy is not the result of immature agent technol-
ogy but a fundamental requirement for any agent that is to cohabit
an environment with people. Without adjustable autonomy agents
miss out on the possibility that willing and able people can provide
valuable input that improves the performance of the system. In
the specific case of proxy-based integration architectures for RAP
teams, architectures where proxies have all responsibility for per-
forming coordination precludes the possibility that willing and able
RAPs can provide input that will improve the team’s coordination.
We have developed a novel proxy-based integration architecture
where coordination is performed by both RAPs and proxies, syn-
ergistically utilzing their respective strengths for the benefit of the
team. The key idea is to treat coordination tasks the same way as
domain level tasks, that is by representing them explicitly as roles
that can be allocated to any willing and able entity. Through the
use of adjustable autonomy, the proxies flexibly share coordination
responsibility with their RAPs to the benefit of the team. Experi-
ments with the new proxies in an urban disaster recovery domain
showed that giving people the opportunity to assist in the coordina-
tion did improve the performance of the team.

Acknowledgments
This research was supported by DARPA award no.F30602-01-2-0583. We
would like to thank Dylan Schmorrow at DARPA and Allen Sears at CNRI.
We also thank our colleagues Guarav Sukhatme, Sameera Poduri and Den-
nis Wolf for their robotics expertise and Praveen Paruchuri for testing.

8. REFERENCES
[1] J. Casper and R. Murphy. Workflow study on human-robot

interaction in usar. InInternational Conference on Robotics and
Automation, pages 1997–2003, 2002.

[2] Hans Chalupsky, Yolanda Gil, Craig A. Knoblock, Kristina Lerman,
Jean Oh, David V. Pynadath, Thomas A. Russ, and Milind Tambe.
Electric Elves: Agent technology for supporting human
organizations.AI Magazine, 23(2):11–24, 2002.

[3] Philip R. Cohen and Hector J. Levesque. Teamwork.Nous,
25(4):487–512, 1991.

[4] Brian P. Gerkey and Maja J Mataric. Sold!: Auction methods for
multi-robot coordination.IEEE Transactions on Robotics and
Automation, Special Issue on Multi-robot Systems, 2002.

[5] B. Grosz and S. Kraus. Collaborative plans for complex group
actions.Artificial Intelligence, 86:269–358, 1996.

[6] Luke Huhnsberger and Barbara Grosz. A combinatorial auction for
collaborative planning. InProceedings of the International
Conference on MultiAgent Systems, 2000.

[7] N. Jennings. Controlling cooperative problem solving in industrial
multi-agent systems using joint intentions.Artificial Intelligence, 75,
1995.

[8] Henry L. Jones, Stephen M. Rock, Dennis Burns, and Steve Morris.
Autonomous robots in swat applications: Research, design, and
operations challenges. InAUVSI ’02, 2002.

[9] Hiroaki Kitano, Satoshi Tadokoro, Itsuki Noda, Hitoshi Matsubara,
Tomoichi Takahashi, Atsushi Shinjoh, and Susumu Shimada.
Robocup rescue: Searh and rescue in large-scale disasters as a
domain for autonomous agents research. InProc. 1999 IEEE Intl.
Conf. on Systems, Man and Cybernetics, volume VI, pages 739–743,
Tokyo, October 1999.

[10] D. Kortenkamp, G. Dorias, and K. Myers, editors.Proceedings of
IJCAI99 Workshop on Adjustable Autonomy Systems, August 1999.

[11] D. Kortenkamp, D. Schreckenghost, and C. Martin. User interaction
with multi-robot systems. InProceedings of Workshop on
Multi-Robot Systems, 2002.

[12] P. J. Modi, H. Jung, W. Shen, M. Tambe, and S. Kulkarni. A dynamic
distributed constraint satisfaction approach to resource allocation. In
Proc of Constraint Programming, 2001.

[13] E. Ostergaard, M. Mataric, and G. Sukhatme. Multi-robot task
allocation in the light of uncertainty. InIEEE International
Conference on Robotics and Automation, pages 3002–3007, 2002.

[14] Lynne E. Parker. Alliance: An architecture for fault tolerant
multi-robot cooperation.IEEE Transactions on Robotics and
Automation, 14(2):220–240, 1998.

[15] David Pynadath and Milind Tambe. Multiagent teamwork:
Analyzing the optimality and complexity of key theories and models.
In First International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS’02), 2002.

[16] David V. Pynadath and Milind Tambe. An automated teamwork
infrastructure for heterogeneous software agents and humans.
Journal of Autonomous Agents and Multi-Agent Systems, Special
Issue on Infrastructure and Requirements for Building Research
Grade Multi-Agent Systems, page to appear, 2002.

[17] D.V. Pynadath, M. Tambe, N. Chauvat, and L. Cavedon. Toward
team-oriented programming. InIntelligent Agents VI: Agent
Theories, Architectures, and Languages, pages 233–247, 1999.

[18] C. Rich and C. Sidner. COLLAGEN: When agents collaborate with
people. InProceedings of the International Conference on
Autonomous Agents (Agents’97), 1997.

[19] K. Seow and K. How. Collaborative assignment: A multiagent
negotiation approach using bdi concepts. InProceedings of
AAMAS’02, pages 256–263, 2002.

[20] P. Stone and M. Veloso. Task decomposition, dynamic role
assignment, and low bandwidth communication for real-time stategic
teamwork.Artificial Intelligence, 110(2):241–273, June 1999.

[21] C. Thorpe T. Fong and C. Baur. Advanced interfaces for vehicle
teleoperation: collaborative control, sensor fusion displays, and
web-based tools. InVehicle Teleoperation Interfaces Workshop, IEEE
International Conference on Robotics and Automation, San
Fransisco, CA, April 2000.

[22] M. Tambe. Towards flexible teamwork.Journal of Artificial
Intelligence Research, 7:83–124, 1997.

[23] Katia Sycara Terry Payne and Michael Lewis. Varying the user
interaction within multiagent systems. InAgents’00, pages 412–418,
2000.

[24] G. Tidhar, A.S. Rao, and E.A. Sonenberg. Guided team selection. In
Proceedings of the Second International Conference on Multi-Agent
Systems, 1996.

[25] Gil Tidhar. Team-oriented programming: Preliminary report.
Technical Report 41, Australian Artificial Intelligence Institute, 1993.

