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ABSTRACT
Multiagent social simulation provides a powerful mechanism
for policy makers to understand the potential outcomes of
their decisions before implementing them. However, the
value of such simulations depends on the accuracy of their
underlying agent models. In this work, we present a method
for automatically exploring a space of decision-theoretic mod-
els to arrive at a multiagent social simulation that is consis-
tent with human behavior data. We start with a factored
Partially Observable Markov Decision Process (POMDP)
whose states, actions, and reward capture the questions asked
in a survey from a disaster response scenario. Using input
from domain experts, we construct a set of hypothesized de-
pendencies that may or may not exist in the transition prob-
ability function. We present an algorithm to search through
each of these hypotheses, evaluate their accuracy with re-
spect to the data, and choose the models that best reflect
the observed behavior, including individual differences. The
result is a mechanism for constructing agent models that are
grounded in human behavior data, while still being able to
support hypothetical reasoning that is the main advantage
of multiagent social simulation.

General Terms
Algorithms
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1. INTRODUCTION
Understanding hypothetical outcomes is critical for mak-

ing good policy decisions. A city government trying to en-
sure its readiness to respond to a disaster does not have the
benefit of repeated practice. It must somehow make pol-
icy decisions that affect and are affected by thousands to
millions of people.

To understand the implications and impact of such pol-
icy decisions within a complex social environment, the stan-
dard approach is to have social scientists who are experts in
the domain gather human subject data, either from real or
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hypothetical disasters (e.g., [10]). Surveys ask questions of
survivors of real disasters or experimental participants faced
with a hypothetical one. The gathered data contains their
answers as to what they believed about the situation, what
they did (or would do), and what the important factors were
in that decision. Social scientists use statistical analyses of
these data to make policy recommendations. Unfortunately,
the gathering and analysis of such data is costly, and the
conclusions drawn are often applicable to only the specific
scenario studied. To understand a different situation, one
must gather more data, which is costly and labor-intensive,
when it is possible at all.

Multiagent social simulation takes an alternative approach
to answering the hypothetical questions asked by policy mak-
ers [2, 7, 11, 12, 18]. Such simulations instead represent
people with autonomous agents that reflect individuals’ or
groups’ decision-making perspectives and behavior. For ex-
ample, we can use decision-theoretic models to capture peo-
ple’s decision-making processes, in the form of beliefs, choices,
preferences, etc. [4, 5, 13, 15, 20]. By representing these
relatively persistent characteristics, the agent can make de-
cisions that are aligned with the corresponding real people
in hypothetical situations of interest.

Of course, social simulation relies on building an accu-
rate model. Manual construction of such models, even when
grounded in well-established social science theories, is a time-
consuming, labor-intensive process that often requires a great
deal of trial-and-error iterations. Multiagent researchers
have developed automated methods that are sometimes ca-
pable of learning such models from data. Unfortunately,
in rarely occurring scenarios like disasters, we do not have
observations of the transitions, as is typically required for
learning decision-theoretic models of human behavior [5].
Furthermore, from the decision-making perspective, the real-
world transition likelihoods are not as important as what
each person perceives them to be (e.g., the likelihood of find-
ing another job if s/he moves to a different city). Data on
such subjective perceptions of transitions are even harder to
find than data on the real transitions themselves.

In this work, we seek to exploit what subjective data we do
have, namely surveys of beliefs, preferences, and decisions in
response to hypothetical disasters (illustrated in Section 2).
We present a framework for modeling the decision-making
process as a Partially Observable Markov Decision Problem
(POMDP) in Section 3. We exploit a factored representation
and additional structural assumptions to arrive at a model-
ing language that is more restrictive than a general POMDP,
but is more amenable to input from domain experts. This



language allows us to elicit a hypothesized model from such
experts that we can potentially use within a multiagent so-
cial simulation.

However, manual model construction is no guarantee of
validity, regardless of the experts’ knowledge. We must in-
stead measure the model’s accuracy against human behavior
observed in our data. Section 4 describes how we can quan-
tify a model’s accuracy by identifying what subset of in-
dividuals behave consistently with the model’s predictions.
Comparing these predictions at the individual level allows
us to identify systematic errors in the model and suggest
improvements. We can elicit such improvements from do-
main experts, allowing us to generate a hypothesis space of
possible variations on our model. By identifying the individ-
uals consistent with each of these variations, we can quantify
their accuracy and make informed choices about which mod-
els to use in the eventual multiagent social simulation.

Importantly, we do not need to simply find a model that
covers the most people possible. We instead select multi-
ple models to cover the diverse decision-making perspec-
tives represented in the data. We are thus able to arrive
at multiple agent models that reflect the individual differ-
ences among our surveyed population. At the same time,
each model is consistent with a significant number of that
population, so we do not sacrifice generality to achieve this
diversity.

The result is a general human-in-the-loop methodology
for arriving at a set of representative agent models that are
usable in simulation. This methodology offers a great deal
of room for further refinement and extensions: in the space
of hypothesized models, their evaluation mechanism, their
selection for use in simulation, etc., as discussed in Section
5. We thus believe that this line of investigation provides a
promising direction for researchers to take in pursuing rich
agent-based models of human decision-making.

2. DISASTER RESPONSE SCENARIO
The scenario under investigation in this work is a hypo-

thetical anthrax attack in Seattle [16]. The original inves-
tigation of this scenario was motivated by an exercise ex-
ploring methods for urban recovery from such an attack. As
such, it was critical to understand how the public would re-
act both to the attack itself and to official announcements
and recommendations in its aftermath. Policy makers need
to understand how the public will assess such situations
and formulate plans of action in response. The investiga-
tors of this scenario were particularly desirous of insight into
whether residents would remain in the city, leave temporar-
ily, or leave permanently. Such behavior would have enor-
mous long-term implications for the viability of Seattle as
an urban center.

Understanding such behavior, as well as how to influence
it, requires an understanding of the public’s concerns in
that regard. What are their primary concerns: their per-
sonal health or safety, their long-term financial stability,
etc.? How deeply would the attack affect their feelings of
well-being, and how willing would they be to change their
behavior based on any long-term damage done to the city?
Answers to these questions would help guide the city gov-
ernment in choosing how to prioritize their preparations and
how to direct any needed post-disaster response.

It is unfortunately impossible to answer these questions
using real-world data, as there fortunately has not been

any such attack in Seattle. The investigation of these ques-
tions instead used a hypothetical simulation of such an at-
tack through a video simulation of local news reports which
immersed participants in an unfolding timeline of events.
There were five episodes, corresponding to different points
of time, from hours after the attack, to two years afterward.

After watching each of the five videos, respondents an-
swered a series of questions. Some of these questions per-
tained to demographic details, such as “What is your cur-
rent employment status (paid opportunities only)?” Others
asked respondents to indicate a level of agreement from 1
(Strongly Disagree) to 5 (Strongly Agree) with statements
like:

• “I believe the anthrax attack poses a serious risk to me.”

• “If I miss ONE paycheck, I would not have enough money
to buy food and pay bills.”

• “I believe the government will provide emergency response
and health services I might need, for example antibiotics.”

• “I would LEAVE the Seattle area for at least a short time
after watching the earlier news video.”

• “I would change my daily routine to avoid exposure to
anthrax.”

• “I would obtain the antibiotic and take it as directed.”

• “I would continue going to work or school if open.”

Another portion of the survey asked respondents to rank
personal objectives:

• “Personal safety (from crime)”

• “Financial stability (being financially stable/secure, gen-
eral affordability of necessities)”

• “Health safety and personal anthrax survival (effectiveness
and access to antibiotic)”

• “Family or friend anthrax survival”

• “Other”

3. AGENT MODELS
We wish to construct a social-simulation model of the res-

idents of Seattle within a multiagent framework like Psych-
Sim [15]. To do so, we must represent the decisions expressed
in the survey within a POMDP [8]. In precise terms, a
POMDP is a tuple, 〈S,A, P,Ω, O,R〉. This section presents
the components of the POMDP and how we model Section
2’s disaster response survey within them.

3.1 Actions, A
A is the set of actions available to the agent, so it cor-

responds to the possible decisions that an individual faces
in the scenario to be modeled. The behavior of interest in
the survey is whether and when residents would leave Seat-
tle, and if so, whether and when they would return. Both
options become possible actions for our agent:

LeaveSeattle: “LEAVE the Seattle area for at least a short
time after watching the earlier news video.”



ReturnSeattle: “RETURN to the Seattle area at this point
in time”

These two actions also imply a third option, which would be
to stay in the person’s current location:

Stay: Remain in current location, either in Seattle or be-
yond the Seattle area.

The survey also contains questions about behavioral choices
if staying in Seattle:

ChangeRoutine: “Change my daily routine to avoid ex-
posure to anthrax.”

ContWorkSch: “Continue going to work or school if open.”

OutdoorPrecaution: “Take necessary precautions to avoid
anthrax exposure when outside.”

TakeAntiBiotic: “Obtain the antibiotic and take it as di-
rected.”

A person can choose to perform any combination of these
four actions, so that these questions imply 16 possible ac-
tions,

The survey also contains questions about employment choices
upon leaving Seattle:

TempWork: “Look for temporary work.”

PermanentMove: “Move out of the Seattle area (e.g. look
for permanent employment, school, housing).”

These two actions are mutually exclusive.
To structure the decision problem, we divide the person’s

decisions into two phases, “where”and“how”. In the“where”
phase, the person chooses between“LeaveSeattle”and“Stay”
if in Seattle and between “ReturnSeattle” and “Stay” if not.
In the “how” phase, the person chooses among the 16 be-
havioral options if in Seattle and between “TempWork” and
“PermanentMove” if not.

3.2 States, S
The state space, S, represents the key features of the

agent’s operating environment, both observable and hid-
den, both external and internal. These features can cap-
ture both objective facts and subjective perceptions about
a person’s decision-making context. We use the individ-
ual survey questions to constitute a factored state space,
S = S0 × S1 × · · · × Sn [1]. Demographic responses become
state features, where it is safe to assume that the person has
knowledge of the true values. The questions that begin “I
believe” become state features, where the person may have
only uncertain beliefs. There are 13 such features, of which
the following are a representative sample:

JobFulltime: “My current employment status is: full-time
(35 or more hours per week)”

RiskMe: “The anthrax attack poses a serious risk to me.”

MissPay1: “If I miss ONE paycheck, I would not have
enough money to buy food and pay bills.”

GovtProvides: “The government will provide emergency
response and health services I might need, for example
antibiotics.”

We define each such feature as a binary variable, valued as
1 if the statement is true, and 0 if it is false. We could treat
these features as more fine-grained (e.g., different levels of
risk). However, the survey asks the respondent’s to express
a degree of agreement with the statement, so we represent
that degree within the beliefs (see Section 3.5), rather than
within the true state of the world. There is no fundamental
obstacle to enriching the domains of these state features, but
in this case, there is little incentive to do so, as we do not
have more fine-grained information from the respondents.

We also need state features to represent the degree to
which the person’s objectives are satisfied. We ignore the
miscellaneous “Other” objective, leaving us with 4 new state
features.

PersonalSafety: “Personal safety (from crime)”

FinanceStable: “Financial stability (being financially sta-
ble/secure, general affordability of necessities)”

PersonalSurvival: “Health safety and personal anthrax sur-
vival (effectiveness and access to antibiotic)”

FriendSurvival: “Family or friend anthrax survival”

We define these features as binary variables as well, valued
as 1 if the objective is satisfied, and 0 otherwise. This is
obviously a gross oversimplification, in that “PersonalSur-
vival” cannot distinguish between dying from anthrax and
becoming infected with anthrax but surviving. We choose
to start with the simplest possible model here, but we can
always add additional levels to the domains of these state
features later without changing our methodology.

As described in Section 3.1, certain choices depend on
the person’s location and on the current phase of decision-
making. We therefore introduce additional state features to
keep track of these conditions:

location: Either “Seattle” or “beyond”, indicating whether
the person is within or beyond the Seattle area.

phase: Either “where” or “how”, depending on the current
phase of decision-making

These two features potentially eliminate certain actions from
consideration. For example, the action“LeaveSeattle”is con-
sidered only when “location” is “Seattle”. Likewise, “Perma-
nentMove” is considered only when “location” is “beyond”.

3.3 Reward, R
The agent’s reward, R, represents the objective function

that it is seeking to maximize, so it makes a natural mech-
anism for representing people’s preferences. As described
in Section 3.2, a subset of the state features in S represent
the objectives from the survey. We limit the reward func-
tion to concern only this subset of state features, and specify
it according to the priorities expressed in the respondent’s
ranking. In particular, we define the reward function as a
weighted sum of the values of the objective state features.
The survey asks people to rank the objectives from 1 to 5,
so we weigh each state feature by (6 − its rank) within R.
This translation allows us to treat people’s ranking of the
objectives as a direct expression of their reward function.

The ranking allows us to identify how important the sat-
isfaction of these objectives is to people, but it does not give
us any information about the degree to which they believe



them to be satisfied. We may get indirect information about
these beliefs from the other questions, but we make a sim-
plifying assumption that there is no such information. We
instead treat the initial value of the objective state features
as if everyone had responded with a 3 to questions about
their belief. This is not a critical assumption at this point,
as it is the change in objective satisfaction that drives be-
havior, and the starting value has less impact.

3.4 Transition Probability, P
The transition probability, P , represents the probabilistic

effects of actions on the state of the world. Representing
such effects allows us to capture the way in which people
can anticipate the expected outcomes of their possible de-
cisions. The transition probability for our non-survey state
features (“location” and “phase”) is straightforwardly deter-
ministic. If the person chooses, “Stay”, then “location” does
not change. If the person chooses“LeaveSeattle”, then“loca-
tion” becomes “beyond”. If the person chooses “ReturnSeat-
tle”, then “location” becomes “Seattle”. The transition prob-
ability for “phase” is similarly deterministic, in that when it
is “where”, it becomes “how” after performing the chosen
action, and vice versa.

The transition probability for the other state features in
Section 3.2 is not as simple. There is no a priori obvious
definition of the effects of (for example) “TakeAntiBiotic”
on “RiskMe” and “PersonalSurvival”. Likewise, there are
no explicit questions about these effects in the survey that
can inform such a definition. Therefore, we treat the spec-
ification of this transition probability as the heart of the
modeling task.

To both constrain the potential search space and to sim-
plify the elicitation of expert knowledge, we restrict the
structure of the transition probability function. We start
from the standard factored POMDP’s use of Dynamic Bayes-
ian Networks [9] and influence diagrams [6] to exploit con-
ditional independence in modeling the effects of actions [1].
We can thus express dependencies among our states and
actions as links among the nodes of a dynamic influence di-
agram [19], as in the example model visualized in Figure 1.
The ovals on the left represent the state values at time t, the
rectangles in the middle represent the possible action choices
at time t, and the ovals on the right represent the state val-
ues at time t + 1. The colored nodes represent states and
actions specific to the person, while the uncolored nodes rep-
resent global states (e.g., if the government provides health
care, it applies to every resident). The links from “location”
and “phase” to the action nodes indicate that the available
choices depend on those variables.

3.4.1 Action Effects
The other links represent dependencies encoded in this

particular model of the person’s decision-making. In this il-
lustrative model, “RiskMe” is affected by the possible “how”
actions in Seattle (e.g., “TakeAntiBiotic”). In general, the
dependency expressed on the links could be an arbitrary con-
ditional probability table across the combinations of parent
node values. To simplify the model specification, we instead
specify the dependency on each link independently.

For the links from action nodes to subsequent state fea-
tures, we specify a magnitude and direction of the depen-
dency for each possible prior value of the state feature (True
or False). We express the magnitude and direction by -1,

0, or 1, representing that the performance of the action has
a negative, neutral, or positive effect, respectively, on the
likelihood of the state feature being True afterward. For
example, we can specify a value of 1 for the effect of “Cont-
WorkSch” on “RiskMe” (whether starting at True or False)
to represent the increased risk incurred by continuing to go
to work or school. Likewise, we can specify a value of -1
for the effect of “LeaveSeattle” on “JobFulltime” (whether
True or False) to represent the challenge of finding another
full-time job after leaving Seattle. We do not currently al-
low these links to be contingent on other state features (e.g.,
going to work may have less impact on the anthrax risk if
“Decontaminated” is True). However, this is again a trivial
relaxation that would only change the search space, and not
any of the methods.

We translate the links from actions to a state by aggre-
gating the -1 and 1 values on those links. We first com-
pute the minimum and maximum possible incoming weights
by looking at the possible combinations of actions (e.g., all
of the “how” actions simultaneously) and counting the -1
and 1 values separately. For our initial model, a person
choosing “ContWorkSch” would incur a maximum value of
1 over “RiskMe”’s incoming links, while a person choosing
“ChangeRoutine”, “OutdoorPrecaution”, and “TakeAntiBi-
otic” would incur a minimum value of -3. We then normal-
ize the total values for each possible action choice across
this range (in this example, [-3,1]) and map it to a Likert
scale of 1–5. We then translate the result into a probability
of the state feature being True using a table of our design:
1→ 10%, 2→ 25%, 3→ 50%, 4→ 75%, and 5→ 90%.

3.4.2 Interdependency among States
We make a similar simplifying assumption for links in-

coming to objective nodes. We label each link from a state
node to an objective node with two numbers on a 1–5 scale,
with the two values representing the conditions where the
parent node is True or False. A value of 1 (5) indicates
that the parent node’s being True/False strongly decreases
(increases) the likelihood of the objective node being True.
For example, our initial model has a link from “RiskMe” to
“PersonalSurvival”. This link is 1 for True, indicating that
if there is a risk to the person, then the survival chances
go down. This link is 5 for False, indicating that survival
chances increase if there is little to no risk.

We fill in the conditional probability table over all of the
incoming links at an objective node using a noisy OR. Based
on the True/False values of the parents, we translate the
corresponding link values into probabilities, pi, using the
same mapping as in Section 3.5. We then use a standard
noisy OR formula, Pr(child|parents) = 1−

∏
i(1−pi). As in

the action dependencies, we are making a strong assumption
of independence among these effects on the objectives. Re-
laxing this assumption is also trivial, in that it only reduces
the space of possible dependency definitions, and does not
affect any of the algorithms.

3.4.3 Initial Model
The examples in this section are drawn from the transition

probability function used in our initial model. We elicited
the links in this initial model from the social scientists who
conducted the survey and had performed some preliminary
statistical analyses of the data. The resulting transition
probability function included 6 non-zero links from actions



Figure 1: Influence diagram visualization of P .

to “RiskMe” and 1 to “JobFulltime”. It also included 3 links
from states to “PersonalSurvival”, 3 to “PersonalSafety”, 4
to “FinanceStable”, and 5 to “FriendSurvival”.

3.5 Observations, Ω and O

Ω is a set of possible observations that the agent may
receive, while the function, O, represents the likelihood of
receiving specific observations as a function of the current
state of the world. We can use the combination of Ω and O
to capture the information (possibly incomplete and noisy)
that people receive about the state of the world, especially in
terms of how that information shapes their subjective per-
ceptions. Within our disaster-response scenario, we take two
state features, “location” and “phase”, to be fully observable.
Therefore, these components of Ω have the same domain as
their corresponding state variables in S. We do not model
any other observations in the current investigation.

In general, we can define Ω just as we do state features,
and the observation function, O, just as we do the transition
probability, P . For example, if we did not limit ourselves to
only the first decision stage, we could expand Ω to include
observations like the number of deaths mentioned in a video
broadcast. We could then add potential links from state
features (e.g., “RiskMe”) to these observation variables, with
the same coarse positive/negative influence labelings we use
within P . We likewise use the same noisy OR function to
combine the incoming influences into a single probability of
a given observation in O.

The current investigation does not explore this observa-
tion space, because we do not model the belief update that
will occur due to future videos, nor the expectations of

the decisions that will be made after those videos. We do
still account for such partial observability, but we take the
person’s starting beliefs directly from the survey responses.
The responses range from 1–5, where 1 (5) indicates strong
disagreement (agreement) with the statement. We there-
fore translate the responses into probabilities of the state-
ment being True using the same mapping from Section 3.4.1:
1 → 10%, 2 → 25%, 3 → 50%, 4 → 75%, and 5 → 90%.
This translation allows us to treat people’s responses as a
direct expression of their subjective belief state.

4. DATA-DRIVEN MODELING
Our initial model provides a good starting hypothesis, par-

tially informed by both domain knowledge and data analy-
sis. However, we need to make fuller use of the data to
both validate and refine the model. Even after all of our
restrictive assumptions made on the transition probability
in Section 3.4, there is still an enormous space of possible
models. There are 21× 13 = 273 possible links from actions
to states, with 9 possible specifications each (“increase”, “de-
crease” or “stay the same” for True or False values of the
original state). Similarly, there are 13 × 4 = 52 possible
links from state features not related to objectives to state
features that are tied to objectives, with 25 possible speci-
fications each (1–5 Likert scale for True or False values of
the original state). There are thus 9273 + 2552 = 3.2× 10260

possible models. This space of models would get only larger
if we expand the domain of our variables beyond our current
binary values. It is therefore infeasible to perform anywhere
near an exhaustive search of this space.



4.1 Executing an Agent Model
Regardless of how we search the space of possible models,

we first need a method to evaluate a candidate model. The
POMDP represents a decision model that can compute the
expected reward, E[R], of each candidate action in A. We
start from a belief state, b, to be provided from the survey
responses, and consider each possible “where” action, aW .
We then apply the transition probability function to pro-
ceed to the “how” phase. At this point, we could also use the
POMDP to generate “how” decisions, but we instead use the
survey responses, translating the 1–5 responses into a prob-
ability of action choice, πH(aH), using the same mapping
from Section 3.5. We again apply the transition probabil-
ity function to arrive at a final state. We apply the reward
function to the states to arrive at a final value, as expressed
in Equation 1:

V (b, aW ) =
∑
s∈S

b[s]
∑
s′∈S

(
P (s, aW , s′)R(s′)

+
∑
aH

πH(aH)
∑
s′′∈S

P (s′, aH , s
′′)R(s′′)

(1)

Rather than optimize this POMDP and choose the action,
aW , for which V is the highest, we instead use a softmax,
which uses a Boltzmann-like distribution to make the likeli-
hood of an action choice dependent on its relative value:

πW (b)[aw] =
er·V (b,aw)∑
a′ er·V (b,a′)

(2)

where r is the reciprocal of the temperature constant in a
Boltzmann distribution. In this case, r controls a degree of
certainty or rationality by which the agent follows its value
function. The higher this value, the more likely the agent is
to choose the optimal action. We start with r = 10 based
on experience with prior agent modeling in PsychSim.

4.2 Evaluating an Agent Model
A candidate POMDP model thus generates a policy of

“where” behaviors that we can now compare against the
data. We focus here on the “where” decisions made in the
first stage of the survey, when everyone’s “location” is “Seat-
tle”. We examine each individual response in the survey
data, extract the person’s beliefs, b, and “how” behaviors,
πH , and plug them into Equations 1 and 2 to generate a
probability of “LeaveSeattle”. We then map this probabil-
ity to our 1–5 scale (inverting the mapping from Section
3.4.1) and compare it against the person’s actual response
for “LeaveSeattle”.

Our initial model generates the correct “LeaveSeattle” re-
sponse for 127 of the 433 people in the survey. This is not
bad, considering the minimal dependencies included in our
initial model. However, there is obviously much room for
improvement. We can compute a confusion matrix for our
model, looking more closely at the specific mistakes it is
making. Figure 2 shows the counts of individuals under all
combinations of actual and predicted responses. The bold
entries along the diagonal indicate the numbers of individu-
als for whom the model makes an accurate prediction.

4.3 Model Search
By comparing our model’s predictions against individual

responses, we can more easily see systematic flaws in the

Survey Model Prediction
Response 1 2 3 4 5

1 0 0 9 3 0
2 0 0 43 24 0
3 0 0 92 32 1
4 0 0 85 33 0
5 0 0 68 15 1

Figure 2: Prediction matrix from initial model.

model. In particular, we observe that our initial agent model
predicts a much greater willingness to leave Seattle (higher
values are stronger agreement with leaving). There are many
possible disincentives for leaving that we could add to the
model. Adding such disincentives would lead to models that
are able to capture the individuals who are less willing to
leave—in other words, those that responded with 1 or 2, all
completely missed by our initial model in Table 2.

For example, upon leaving, the agent can choose a “how”
behavior of “PermanentMove”, which, in our initial model,
increases the likelihood of achieving “JobFulltime” (value of
1) which in turns increases the likelihood of satisfying “Fi-
nanceStable” (value of 5). However, many people may be
less optimistic about their chances of finding a full-time job
upon moving, which we could capture by making the value
on the former link 0. The resulting agent model would see
less expected reward from choosing “PermanentMove” than
our initial model, which would in turn lower the expected
reward of “LeaveSeattle”.

We can formulate other such hypotheses as well. Trying
to leave Seattle may be dangerous, due to crowds of other
people doing the same. We can represent this possible effect
with a link from “LeaveSeattle” to “PersonalSafety” with a
value of -1 for True and 0 for False. In other words, people
who start off being safe would feel that leaving Seattle would
slightly endanger their safety, while those who start off being
unsafe would not have their safety affected by leaving.

By considering all possible combinations of these link mod-
ifications, we accumulate a set of possible variations on our
initial model. We can then execute each of these new mod-
els across all of the individual survey responses, following
the behavior generation procedure of Section 4.2. In this
investigation, we generated a set of 10 possible variations,
leading to 1024 possible models for consideration.

Comparing the output of these models against the survey
responses allows us to clearly see the accuracy of potential
hypotheses with respect to the data. For example, although
leaving Seattle had an implied negative impact on finan-
cial stability (due to potential unemployment), we also hy-
pothesized that perhaps adding a direct negative link from
“LeaveSeattle” to “FinanceStable” might be more accurate.
However, introducing this link did not change the predic-
tions, and comparison against the survey responses provided
concrete evidence of its redundancy.

4.4 Model Choices
Having compared the behavior generated by all 1024 mod-

els across the individuals in the survey, it turns out that our
initial model’s match of 127 respondents is the highest match
count achieved. There are three other models that match an
equal number of people, and, in fact, they match the same
127 individuals. These four models are identical except for



the absence or presence of two links. We can therefore treat
them as equivalent, and we use a bias toward fewer links to
choose the model that has both links absent.

While having a model that matches 127 out of 433 people
may not be very impressive, it is important to note that we
are not done. Our goal is a multiagent social simulation,
with multiple agents representing the population of interest.
Therefore, there is no requirement that all of the agents in
the simulation use the same model. We instead seek to find
a set of agent models that covers the range of behaviors
observed in the data.

The freedom to choose multiple models gives us an ability
to capture individual differences within our data. The sur-
vey does capture those differences in beliefs and preferences,
but there are likely to also be differences in each person’s
view of cause and effect. In other words, it is unreasonable
to expect that everybody is going to forecast the effects of
leaving in exactly the same way. By allowing ourselves to
choose multiple agent models, we can arrive at a population
of agents that share the same diversity of perspective as the
people they are representing.

We have a variety of options in how to choose the set of
models. In this work, we take a greedy approach, where
we first choose the model that covers the largest number
of people. We then add the model that covers the largest
number of the people not covered by the first model. We
proceed until we have either covered everybody, or have no
models that match the remaining people.

When we hit the last case, it gives us an opportunity to re-
examine our hypothesized model variations. Beyond looking
at just the incorrect predictions, we can also examine the be-
liefs expressed by the individuals for whom our models are
inaccurate. For example, our models failed to match the
subset of respondents who expressed a strong willingness to
perform all of the safe “how” behaviors (e.g., take antibi-
otics), but still wanted to leave, despite the diminished risk
entailed. One hypothesis is that these people had a lower be-
lief in the efficacy of these methods, when compared against
the dependencies in our models. By varying our model so
that these methods were not effective (i.e., had 0 effect on
“RiskMe”), we arrive at a new hypothesis model that gener-
ates the correct staying behavior.

At the other end of the spectrum were people who re-
sponded in ways consistent with wanting to leave (e.g., high
belief in “RiskMe”, high rank for “PersonalSurvival”) but
were strongly against leaving. Some of these respondents
also expressed a strong willingness to adopt the safe “how”
behaviors. We therefore hypothesized that they may have a
stronger belief in the efficacy of such behaviors, even stronger
than in our initial models. We relaxed our restriction on the
values of links from these actions to states, so that we used
a value of -3 instead of -1. This variation was able to explain
most of these people, who appeared as outliers with respect
to our original models.

We have focused so far on variations that modify only
the links within our transition probability function. This
restriction is self-imposed, because we are free to consider
any variation on our models that still supports the execution
of the underlying POMDP. For example, we observed that
there were cases when our models would be correct with
respect to whether a person was favoring leaving or stay-
ing, but would be overly strong in that sentiment. In such
cases, the model might be correctly capturing the tradeoffs

being considered, but incorrectly capturing the confidence
the person has in the resulting valuation. We can poten-
tially represent such a lack of confidence by modifying our
softmax parameter, r. We tried lower values for r, both 5
and 2, instead of 10.

4.5 Results
Our greedy search begins by making the following se-

quence of model choices:
Model variation Matches
Original 127
“LeaveSeattle” decreases “PersonalSafety” 77
“PermanentMove” no effect on “JobFulltime” 44
Both of the previous two variations 43

The next selections include too many variations to list ex-
plicitly, but they add the following numbers of individuals
to the covered set: 35, 23, 15, 13, 9, 5, 4, 3, 2, 2, 2, 2, 1.
We can therefore cover 407 of the 433 people (94%) using 17
different agent models. There is an obvious diminishing of
returns for the later models added, and it is not clear how
generally useful a model that covers only one or two people
might be. However, there is still a good deal of generality
with the most “useful” models. With the first 10 models, we
cover 391 of the 433 people (90%), and with just the first 5
models, we cover 326 people (75%).

Of the 26 people who remain unmatched by any of the
models, 19 of them favor staying. We are therefore still miss-
ing a disincentive for leaving. For example, many people are
likely to have an emotional attachment to their homes, an
attachment that would not show up in the survey itself, let
alone in our current POMDP expected reward calculation.
Again, while we would prefer being able to find models that
cover all of the people, even such mismatches are informa-
tive when we examine the unmatched responses within a
POMDP decision-making framework.

While the selected models demonstrate a certain degree
of accuracy with respect to the surveyed Seattle residents,
one might question how well these models will generalize to
other scenarios. A subsequent survey placed 466 residents
of the San Francisco area in a similar hypothetical anthrax
scenario [17]. The variables in our models map to a sub-
set of questions asked in this more recent survey, so it is
straightforward to apply our agent model to the new data.
Encouragingly, our initial model, which captured 127 (29%)
of our Seattle residents, also captures 139 (30%) of our San
Francisco residents. However, our secondary model choices
do not generalize as well, as the first 5 models cover only
306 (66%, instead of 75%) of our San Francisco residents.
By examining differences in the modeling features in more
depth, both within and across scenarios, we can potentially
gain further insight into the different dependencies that are
guiding the thinking of different subpopulations.

5. DISCUSSION
In this investigation, we made several restrictive assump-

tions in developing a proof-of-concept for our general method-
ology. In this initial attempt, we were able to follow a
human-in-the-loop search method to arrive at agent mod-
els (in POMDP form) that accurately represent our human
behavior data. There are a wide number of possible exten-



sions that can build upon this methodology and expand its
power in useful and interesting ways.

Within the modeling assumptions made, there are many
candidates for relaxation. It would be obviously easy to ex-
tend the potential dependency hypotheses to be more fine-
grained, as we did in our one case of using -3 instead of -1
on a link from “how” actions to “RiskMe”. As already men-
tioned, we could also allow links to be contingent on other
state features. The domains of the variables themselves are
also subject to expansion, as nothing in our method requires
our current choice of binary domains.

We could also relax other aspects of the POMDP model,
just as we did for the rationality parameter, r. For exam-
ple, we could allow for an expanded horizon, rather than
restricting all of the expected reward calculations to con-
sider only two time steps. In general, every aspect of the
POMDP model is subject to variation to generate novel hy-
potheses to consider. The evaluation of the hypotheses is
even more general, in that the comparison against individ-
ual data and choices of model coverings would apply to non-
POMDP agent models as well.

The current evaluation of our models is limited to the
responses from the first stage of the survey, but the survey
includes additional questions at four subsequent stages, after
watching additional news broadcasts that reflect the further
passage of time. These “longitudinal” questions would pro-
vide a more stringent validation of our models. However,
the subsequent surveys do not have all the same questions,
so we cannot extract the same belief states at those stages.
However, in future work, we can incorporate a belief update
stage that would allow us to include hypotheses about those
missing future beliefs, as well as the ensuing decisions. This
would greatly expand the hypothesis space, but structural
assumptions related to the observation function should be
able to keep this expansion within feasible and descriptive
limits. The additional cost might be worth incurring, be-
cause agent models that correctly capture an individual’s
decisions over these multiple stages would have passed a
higher bar of validation and would engender even more con-
fidence in their accuracy.

In this investigation, we consider a relatively small num-
ber of modeling hypotheses, 10 possible variations, which
allows us to exhaustively evaluate all possible combinations
of them. With larger hypothesis spaces, we will not have
that luxury, in which case search control over these com-
binations arises as a new challenge. One possibility is to
consider one variation at a time to perform a local search
through the model space, along the lines of gradient descent
or evolutionary search. Such a search would be directed to-
ward models that cover more and more people, although we
would of course lose the guarantees of finding the models
with the largest coverage.

In this work, we also had the luxury of domain experts
to suggest variations to explore. It is easy to envision a
completely automated approach to hypothesis generation
instead. However, it is less clear how best to generate in-
formed hypotheses. One possibility is to exploit piecewise
linear representations, which have shown to provide some
degree of invertibility within decision-theoretic models like
Bayesian networks [3] and PsychSim itself [14]. Exploiting
such representations would potentially allow one to identify
and modify the links that are contributing the most error in
the value function.

Having arrived at an evaluation of a satisfactory set of hy-
pothesized models, there still remains the question of how to
choose an appropriate subset of them to use in simulation.
We use a greedy algorithm as a first approach, but there are
undoubtedly better methods. An exhaustive search of all
possible coverings may be intractable, but, even if it were
feasible, it is not clear what optimality criterion we would
use to make our choice. One possibility is to choose the cov-
ering that uses the fewest number of models. Another pos-
sibility is to minimize the overlap among the models chosen,
so that the models essentially partition the population. It is
an open research question as to what scoring function leads
to modeling choices that provide the highest fidelity in social
simulation.

Finally, we apply our simulation methodology here to a
survey data set that was never intended for such a purpose.
While we were regardless able to gain considerable modeling
leverage from this data set, this exercise also informs us as
to potentially valuable refinements to the survey instrument
for future iterations. For example, even within our limited
hypothesis space, there is considerable overlap where an in-
dividual’s behavior is consistent with multiple models. By
examining the points at which these models differ, we can
potentially arrive at questions to ask in future surveys to
disambiguate such cases. Thus, in addition to survey data
informing our modeling, we return the favor by using our
modeling to inform future data gathering.

6. CONCLUSION
By leveraging a structured POMDP representation, we ar-

rive at a reduced space of possible modeling hypotheses. By
comparing the predictions of candidate models against the
responses of individual people, we get more detailed feed-
back on the accuracy of those models than we would from
an aggregate statistical analysis. Finally, by choosing mul-
tiple agent models, rather than a single best model, we are
able to capture individual differences, while still generalizing
enough that each model can capture a significant number of
people.

The overall impact of this methodology is that we leverage
the POMDP’s general decision-making framework to cap-
ture persistent and shared components of human decision-
making (in particular, the cause-and-effect model within the
transition probability). However, because our goal is not a
single general claim about human behavior, but rather a
multiagent simulation of a population, we are free to con-
sider sets of models. We are thus able to include sufficient
diversity within our agent models to better cover the whole
population. This is especially important in social simulation,
where understanding the “atypical” behaviors (e.g., looters
after a disaster) is just as critical, if not more so, as un-
derstanding the typical ones. Thus, this work demonstrates
a path toward enabling researchers, both in computer and
social science, to more easily build and validate decision-
theoretic multiagent models of human behavior.
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