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Abstract. Simulation for team training has a long history of success in
medical care and emergency response. In fields where individuals work
together to make decisions and perform actions under extreme time pres-
sure and risk (as in military teams), simulations offer safe and repeat-
able environments for teams to learn and practice without real-world
consequences. In our team-based training simulation, we use intelligent
agents to represent individual learners and to autonomously generate
behavior while learning to perform a joint task. Our agents are built
upon PsychSim, a social-simulation framework that uses decision theory
to provide domain-independent, quantitative algorithms for represent-
ing and reasoning about uncertainty and conflicting goals. We present a
collaborative learning testbed in which two PsychSim agents performed
a joint “capture-the-flag” mission in the presence of an enemy agent.
The testbed supports a reinforcement-learning capability that enables
the agents to revise their decision-theoretic models based on their ex-
periences in performing the target task. We can “train” these agents by
having them repeatedly perform the task and refine their models through
reinforcement learning. We can then “test” the agents by measuring
their performance once their learning has converged to a final policy.
Repeating this train-and-test cycle across different parameter settings
(e.g., priority of individual vs. team goals) and learning configurations
(e.g., train with the same teammate vs. train with different teammates)
yields a reusable methodology for characterizing the learning outcomes
and measuring the impact of such variations on training effectiveness.

Keywords: collaborative learning, team-based training, intelligent agent, rein-
forcement learning, social simulation

1 Introduction

A good team is more than a collection of individuals. In an effective team, each
team member masters its individual role and coordinates with other team mem-
bers to accomplish complex tasks. Good teams do not happen by accident. Team
members train individually and together in order to do well as a team. Although



team tasks are ubiquitous in today’s society, team-based training, particularly
with the use of simulations, has a long history in medical care, emergency re-
sponses, and the military (e.g., [10], [17], and [25]). Realistic simulations can
offer safe and repeatable environments for teams to practice without the real-
world consequences. However, simulations alone are often not enough to ensure
learning. Instructional support is often needed to help the team and individuals
in case of mistakes and impasse, and guide the team on the path to success. In-
structional support in teams has its unique challenges, compared to such support
delivered in individual learning settings. Decisions on the target (individual vs.
team), channel (private vs. public), and timing of the feedback (immediate vs.
delayed) and many more issues can greatly impact how such support is received
by the team and the efficacy of the feedback [34]. The type of support and how
and when it should be delivered depends on the team structure (e.g., with lead-
ership or leaderless) and what the team is trying to learn (e.g., task-related vs.
teamwork related, for review, see [7] and [27]). Mismatch between the support
and the team needs can result in tutorial feedback being ignored at best and
interfering with the team learning at worst [35].

Instead of testing with human participants, a simulation of how teams train
together and how instructional feedback influences team members and a team
is desired. Inspired by the challenge in the design of instructional support for
team training, we have developed a testbed to simulate how team members
learn together. In the current implementation of the testbed, team members are
modeled as intelligent agents in a collaborative learning setting where they can
learn from experience to improve team performance. Collaborative learning is
often considered a type of team training, with emphasis on the team training how
to collaborate to improve as a whole [27]. It is different from cooperative learning
in that the agent does not try to maximize learning of other team members.
However, our simulation testbed is not limited to collaborative learning only—
each member of the team can learn to improve its own action, in addition to
learning to collaborate with others, to improve team performance.

Instructional support in team tutoring can take many forms and often de-
pends on the team structure. For example, tutorial feedback for a team with a
vertical leadership structure is more likely to differ based on members at differ-
ent levels. For a leaderless team, the feedback is likely to be structured more
for peers [1]. When a team is actively engaged in learning, team members com-
municate among themselves to discuss best actions, ask each other questions,
and explain their reasoning. In our simulation testbed, we build upon feedback
from peers. Instead of receiving instructional support from a tutor, the simulated
team members learn from their own experience and from each other.

In this paper, we present a reconfigurable testbed with three agents train-
ing in a joint capture-the-flag scenario. We propose a methodology by which
the agents train through repeated practice of the task and refine their models
through reinforcement learning. The agents then test their learning outcome by
measuring the efficacy of a final policy. Repeating this train-and-test cycle across
different parameter settings yields a reusable methodology for characterizing the



learning outcomes and measuring the impact of such variations on training effec-
tiveness. The testbed can thus serve as a sandbox to test instructional feedback
and other alternative strategies of value in team-tutoring research.

2 Related Work

While there is a vibrant research community on automatically-generated instruc-
tional support for learning in an individual setting (for review, see [3]), research
on such support in the context of team training is relatively scarce. Early re-
search in team-based simulation focused on creating an environment that allows
teams to practice together. The Advanced Embedded Training System (AETS)
is one such effort [40]. AETS is an intelligent tutoring system built for an Air
Defense Team on a ship’s Combat Information Center to learn how to utilize the
command and control system. While AETS enables multiple users to train as a
team, assessment and feedback were given on an individual basis. Such feedback
was then relayed to a human tutor, who offered team-based feedback. A similar
effort is the Steve agent-based training simulation for emergency response on a
military vessel [25]. In the training simulation, Steve agents can serve as a tutor
as well as an individual team member, thus allowing the simulation to support
a team of any combination of Steve agents and humans to train together. In the
training simulation, Steve agents and humans learn to complete tasks through
communication between team members.

More recently, there has been a resurgence of research into automated tu-
torial support for team training. One of the team training simulation testbeds
implements a Multiple Errands Test, where a team of three completes errands
following a shipping list in a virtual mall [35]. Using this testbed, a study on
the influence of privacy (Public vs.Private) and audience (Direct vs. Group) of
feedback showed no significant influences of such variables on team performance.
A more recent effort is the Recon testbed that was built with the Generalized In-
telligent Framework for Tutoring (GIFT) [7]. It supports the collaborative team
task of reconnaissance [2]. Using the Recon testbed, researchers again experi-
mented with variables in feedback to the teams, specifically target (individual
vs. team), within 2-person teams [14].

Our testbed is used not for training but to simulate the training process.
Agents learn to improve both their own and the team’s performance from their
own experience, by observing other agents, and by communicating with team-
mates. We draw upon the body of multiagent research on simulating teamwork
and learning. Existing formalisms represent team goals, plans, and organizations
that operationalize decision-making found in human teams [6, 9, 30]. Embedding
these mechanisms within intelligent agents has enabled the construction of high-
fidelity simulations of team behavior (e.g., simulated aircraft performing a joint
mission [31]). The uncertainty and conflicting goals that are ubiquitous in most
team settings led to decision-theoretic extensions of these models to incorpo-
rate quantitative probability and utility functions [32, 23]. More recently, agents
have incorporated reinforcement learning (among other methods) to derive these



models through experience and in a decentralized fashion, allowing individual
agents to arrive at a coordinated strategy through experience [28, 19, 5].

3 PsychSim

We have built our testbed using the multiagent social simulation framework, Psy-
chSim [15, 20]. PsychSim grew out of the prescriptive teamwork frameworks cited
in Section 2 (especially [23]), but with a different aim toward being a descriptive
model of human behavior. PsychSim represents people as autonomous agents
that integrate two multiagent technologies: recursive models [8] and decision-
theoretic reasoning [11]. Recursive modeling gives agents a Theory of Mind [39],
to form complex attributions about others and incorporate such beliefs into their
own behavior. Decision theory provides the agents with domain-independent al-
gorithms for making decisions under uncertainty and in the face of conflicting
objectives. We have used PsychSim to model a range of cognitive and affective
biases in human decision-making and social behavior (e.g., [21, 22]).

Another motivation behind the use of PsychSim is its successful application
within multiple simulation-based learning environments. The Tactical Language
Training System (TLTS) is an interactive narrative environment in which stu-
dents practice their language and culture skills by talking to non-player charac-
ters built upon PsychSim agents [26]. We also used PsychSim’s mental models
and quantitative decision-theoretic reasoning to model a spectrum of negotiation
styles within the ELECT BiLAT training system [12]. Additionally, UrbanSim
used a PsychSim-driven simulation to put trainees into the role of a battal-
ion commander undertaking an urban stabilization operation [16]. In SOLVE,
PsychSim agents populate a virtual social scene where people could practice
techniques for avoiding risky behavior [13, 18].

We have also used PsychSim to build experimental testbeds for studying hu-
man teamwork. In one such testbed, we used a PsychSim agent to autonomously
generate behaviors for a simulated robot that teamed with a person, in a study of
trust within human-robot interaction [38, 36]. Another PsychSim-based testbed
gave four human participants a joint objective of defeating a common enemy,
but with individual scores that provided some impetus for competitive behavior
within the ostensible team setting [24]. We build upon PsychSim’s capability for
such experimental use in the expanded interaction of the current investigation.

4 Team-based Training Simulation

In our testbed, we implement a “capture-the-flag” scenario. In the scenario, a
team of trainees learn how to work together to attack a goal location being
defended by a team of enemies. Both the trainees and enemies are represented
as PsychSim agents. In the preliminary testing described here, the blue team
consists of three agents, while the red team consists of only one (denoted as
Enemy). The three blue agents are assigned to three distinct roles: the Attacker



tries to reach the goal location, the Decoy tries to lure the enemy away from the
Attacker, and the Base decides whether or not to deploy the Decoy.

Ideally, the Attacker should proceed to the goal while maintaining a safe
distance from the Enemy. If the Enemy detects the Attacker and approaches it,
the Base should deploy the Decoy. The Decoy should then approach the Enemy
to draw its attention away from the Attacker. Such a coordinated strategy will
maximize the chance that the team achieves its objective, while minimizing the
chance that the Enemy captures any team members (see Figure 1).

PsychSim represents the decision-making problem facing the agents as a Par-
tially Observable Markov Decision Process (POMDP) [11]. Partial observability
accounts for the fact that the agents cannot read each other’s minds and that
they may have incomplete or noisy observations of the environment. However,
in this presentation, we make the environment itself completely observable, re-
ducing the domain to a Markov Decision Process (MDP) instead. An MDP is
a tuple 〈S,A, P,R〉, with S being the set of states, A the set of actions, P the
transition probability representing the effects of the actions on the states, and
R the reward function that expresses the player’s preferences.

Fig. 1. A mid-mission screenshot of the “capture-the-flag” scenario. The Attacker, Base
and Decoy are located at [3,5], [1,1] and [3,1], while the Enemy and the goal are located
at [3,3] and [6,5].

The state of the world, S, represents the evolution of the game state over
time. We use a factored representation [4] that allows us to separate the overall
game state into orthogonal features that are easier to specify and model. The
locations of the agents and of the goal are specified by x and y coordinates on a
grid. The grid is 5× 8 in the specific configuration described here, but obviously
other grid sizes are possible. There is also a cost associated with deploying the



Decoy agent, as opposed to letting the other agent go solo. The actions, A,
available to the Attacker, Decoy, and Enemy agents are moves in one of the
four directions or waiting in their current location. The Base can either deploy
the Decoy agent or wait. The transition probability, P , represents the effect of
the agents’ movement decisions, which we specify here to succeed with 100%
reliability. In general, the P function can capture any desired stochastic error
(e.g., due to terrain or visual conditions).

The Attacker agent has two potentially conflicting objectives within its re-
ward function, R: minimizing its distance to the goal (i.e., to try and reach the
goal) and maximizing its distance from the Enemy (i.e., to avoid capture). More
precisely, the Attacker ’s reward function is a weighted sum of the difference be-
tween its x and y values and the goal’s and between its x and y values and
the Enemy ’s. The Decoy agent also has two potentially conflicting objectives:
minimizing its distance from Enemy and maximizing the distance between the
Attacker and Enemy. It thus tries to lure the Enemy toward itself and away from
the Attacker. The Base agent’s conflicting objectives consist of also minimizing
the distance between the Decoy and Enemy, while also minimizing the cost of
deploying the Decoy. Finally, the Enemy agent seeks to minimize its distance
to the Attacker and Decoy agents (i.e., to capture them if possible, or at least
drive them away). Thus, each agent has two conflicting objectives within its re-
ward function, and the weights assigned to each determine their relative priority.
Modifying these weights will change the incentives that each agent perceives.

Having specified the game within the PsychSim language, we can apply ex-
isting algorithms to autonomously generate decisions for individual agents [11].
Such algorithms enable the agent to consider possible moves (both immediate
and future), generate expectations of the responses of the other agents, and com-
pute an expected reward gain (or potentially loss) for each such move. It then
chooses the move that maximizes this expected reward. Importantly, this algo-
rithm can autonomously generate behavior without any additional specification,
allowing us to observe differences in behavior that result from varying modeling
parameters (e.g., the relative priority between objectives).

5 Evaluation

To evaluate the testbed’s suitability for studying collaborative learning, we simu-
lated the scenario with alternate configurations of the Attacker agent to explore
the space of team behavior and outcomes. Our goal is to verify that varying the
agent’s model (especially its reward function) will lead to different individual
behaviors and team outcomes and uncover what and how the team should train
to improve. To quantify the team outcome, the blue team is given a score that
is a weighted sum of the distance between Attacker and the goal (0 means suc-
cess), distance between Attacker and Enemy (0 means capture and immediate
failure), the cost incurred from Decoy deployment, and the duration of the task
as a function of total number of turns. During the experiment, each mission has
a maximum duration of 20 turns, as that length was generally sufficient for a



specific configuration to succeed if it ever would. Missions where the Attacker
reached the goal in fewer than 10 turns were given a bonus score. Figure 2 shows
the overall team score (blue means better, red means worse) as a function of the
Attacker ’s reward weights. The X axis represents the weight of getting closer to
the goal, while the Y axis represents the weight of getting closer to the Enemy.
In other words, in the right (left) half of the graph, it wants to move toward
(away from) the goal, and in the bottom (top) half, it wants to move away from
(toward) the enemy.

Fig. 2. Blue team’s overall performance as a function of Attacker reward weights

Not surprisingly, the team’s top performance is in the bottom right, where
the Attacker minimizes its distance to the goal and maximizes its distance to
the Enemy—i.e., it tries to reach the goal while avoiding capture. The success at
point (-1,1) gives equal weight to the two objectives of team actions, but we can
see that the team can achieve similarly high performance at other weightings
along the diagonal in the bottom-right region. This balance is a function of our
scoring metric that gave equal weight (in magnitude) to those two outcomes.

We can also see where the blue team needs to improve by learning a better
balance (i.e. the reward weights) of its objectives. In particular, there is a large
light-blue region of positive results on the left of the graph, i.e., where Attacker
instead carries out actions to maximize distance from the goal. By staying away
from the goal, the agent also generally stays away from the Enemy, who starts off
near the goal. Thus, capture is very rare in this region, but mission success is also
rare. This region provides a challenge for the team’s training, which must ensure



that the Attacker agents who start off in this light-blue region move through the
intervening light-red regions (where they will achieve bad outcomes) to get to
the superior, but relatively hard-to-find, dark blue points in the bottom right.

6 Discussion

The existing testbed thus provides an interesting space of team behaviors, even
within this small-scale configuration. By representing this scenario on top of a
general multiagent framework, we gain access to a wide space of possible recon-
figuration dimensions that can be used for future investigations. In this section,
we propose a series of such reconfigurations that would be valuable for studying
collaborative learning and team training. For example, the testbed provides a
challenging environment for reinforcement learning, where individual trainees
learn from their own experience to balance their objectives. We can incorporate
reinforcement learning into our PsychSim agents to simulate how each teammate
can improve its behavior through its own experience [29]. Using model-based re-
inforcement learning, the agents can change the weights within their reward
function based on the outcomes of their decisions. For example, if the Attacker
gets captured, it will increase the weight associated with moving away from the
enemy. If it does not get captured, but fails to reach the goal, it will increase
the weight associated with nearing the goal. Such a procedure will allow the
Attacker to dynamically learn a reward function that is optimized with respect
to mission objectives.

However, the Decoy and Base agents receive less direct feedback for their
decisions. We can instead allow them to learn by observing the outcomes for
their Attacker teammate. For example, if the goal is not achieved even after
avoiding capture, the Decoy could give a higher weight to drawing the Enemy
to itself. Alternatively, it could introduce a new objective of minimizing the
distance between the Attacker and goal, giving the Decoy an explicit model of
the goal objective. By updating these three weights, we can explore the ability
for the Attacker ’s teammates to learn from its direct feedback. We can thus
vary the feedback (i.e., the reinforcement learning signal) received by the agents
in terms of the credit and blame for outcomes. Alternatively, we can broadcast
the feedback to the entire team, causing the agents to update their models of
their teammates as well using PsychSim’s Theory of Mind capability. In general,
this mechanism allows us to experiment with different feedback signals to give
individual team members based on mission outcomes and team learning.

One key advantage of using an agent framework like PsychSim is that we
have many dimensions along which we can enrich the reasoning of our learners.
For example, in the current configuration, all of the agents know each others’
objectives. This is not a realistic model of human teamwork, where people rarely
know exactly how important team vs. individual objectives are to their team-
mates. Fortunately, PsychSim’s Theory of Mind reasoning allows us to easily
give the agents uncertainty about the reward function of other agents. We can



thus expand our agents’ learned behaviors to consider not just the locations of
their teammates, but also their subjective perspectives.

Introducing uncertainty also necessitates communication among teammates.
Successful teamwork uses communication to maintain shared situational aware-
ness about task progress, teammate status, etc. [6, 9, 30]. We can leverage our
underlying agent architecture’s existing algorithms for belief update [11] and
communication [15] to explore alternate communication strategies to establish
coherent joint beliefs among team members. In other words, our learning agents
would expand their action space to include possible messages, such as “There is
a 90% chance that the Enemy is at (3,3)”. They would subsequently arrive at
a learned behavior that specifies the best conditions under which to send such
messages (e.g., if no one has found the enemy yet, then report your estimated
location of the Enemy when your confidence is > 75%).

We can reuse this mechanism to explore the effect of post-mission communi-
cation as well. Upon learning to maximize their individual performance, agents
can communicate their learned policy to other team members, particularly those
still performing suboptimally. Such communication would simulate a form of peer
tutoring [33] commonly seen in collaborative learning. We could also enrich this
communication to include an agent’s explanation of its optimal policy (e.g., us-
ing [37]) to justify its choice to its teammates. We can also investigate alternate
channels for this team communication, for example, allowing messages addressed
to an individual agent vs. messages broadcast to the whole team.

Once our agents are learning about teammates, we can use our testbed to
study different team training configurations. For example, we could let a team
of agents “train” by repeating missions until they learn a good coordination
policy. Then, we could “test” the team by replacing a team member with an
agent that had not performed any learning. Alternatively, we could have each
agent train separately with continually changing team members, and then test
test a team of agents that have trained in such a fashion. By quantifying the
performance outcomes of these different training methods under different task
and environment configurations, we can gain potential insight into the conditions
under which each can be expected to improve team performance. For example,
we could measure the benefit of introducing an “experienced” team member (an
agent who has learned about the domain in prior iterations) into an “inexperi-
enced” team (agents who have never operated in the domain before). Simulating
the performance of such a team might (for example) show that the experienced
agent provides a “tutoring” benefit when post-mission communication is allowed
to support learning, but can actually hinder performance (because of expectation
mismatches) without such communication.

While the work discussed here focuses on simulations of how team trains
together with virtual agents, it can help inform the design of intelligent team
tutoring systems for real human teams. For example, one of the decisions an
intelligent tutor needs to make is when to provide the feedback. Immediate feed-
back may help the team on the task at hand but interfere with team building.
Delayed feedback may result in frustration after the team exhausts options and



fails. Outcomes from simulations of tutorial feedback given at different times
(immediate vs. delayed vs. a combination of the two) can help the designers of
such intelligent tutors weigh the trade-offs between the choices of timing. Addi-
tionally, using PsychSim agents, we can simulate teams made up of members of
varied characteristics, e.g., prior knowledge and motivation, and experiment with
how decisions on tutorial feedback, such as target, channel and timing, impact
the team’s learning. In conclusion, the multiagent testbed we have constructed
uses a relatively simple coordination scenario as a jumping-off point for a wide
variety of potential simulations of collaborative learning and team training that
can have implications for intelligent tutoring systems for real-human teams.
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