
The topic of software personal assis-
tants, particularly for office environ-
ments, is of continued and growing

research interest (Scerri, Pynadath, and
Tambe 2002; Maheswaran et al. 2004;
Modi and Veloso 2005; Pynadath and
Tambe 2003).1 The goal is to provide soft-
ware agent assistants for individuals in an
office as well as software agents that repre-
sent shared office resources. The resulting
set of agents coordinate as a team to facil-
itate routine office activities. This article
outlines some key lessons learned during
the successful deployment of a team of a
dozen agents, called Electric Elves (E-
Elves), which ran continually from June
2000 to December 2000 at the Informa-
tion Sciences Institute (ISI) at the Univer-
sity of Southern California (USC) (Scerri,
Pynadath, and Tambe 2002; Chalupsky et
al. 2002; Pynadath and Tambe 2003, 2001;
Pynadath et al. 2000). Each elf (agent) act-
ed as an assistant to one person and aided
in the daily activities of an actual office
environment. Originally, the E-Elves proj-
ect was designed to focus on team coordi-
nation among software agents. However,
while team coordination remained an
interesting challenge, several other unan-
ticipated research issues came to the fore.
Among these new issues were adjustable
autonomy (agents dynamically adjusting
their own level of autonomy), as well as
privacy and social norms in office envi-
ronments. Several earlier publications out-
line the primary technical contributions
of E-Elves and research inspired by E-Elves
in detail. However, the goal of this article

is to highlight some of what went wrong
in the E-Elves project and provide a broad
overview of technical advances in the
areas of concern without providing
specific technical details. 

Description of Electric Elves 
The Electric Elves project deployed an
agent organization at USC/ISI to support
daily activities in a human organization
(Pynadath and Tambe 2003, Chalupsky et
al. 2002). Dozens of routine tasks are
required to ensure coherence in a human
organization’s activities, for example,
monitoring the status of activities, gather-
ing information relevant to the organiza-
tion, and keeping everyone in the organi-
zation informed. Teams of software agents
can aid humans in accomplishing these
tasks, facilitating the organization’s coher-
ent functioning, while reducing the bur-
den on humans. 

The overall design of the E-Elves is
shown in figure 1. Each proxy is called Fri-
day (after Robinson Crusoe’s manservant
Friday) and acts on behalf of its user in the
agent team. The basic design of the Friday
proxies is discussed in detail in Pynadath
and Tambe (2003) and Tambe, Pynadath,
and Chauvat (2000) (where they are
referred to as TEAMCORE proxies). Friday
can perform a variety of tasks for its user.
If a user is delayed to a meeting, Friday
can reschedule the meeting, informing
other Fridays, who in turn inform their
users. If there is a research presentation
slot open, Friday may respond to the invi-
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tation to present on behalf of its user. Friday can
also order its user’s meals (see figure 2) and facili-
tate informal meetings by posting the user’s loca-
tion on a web page. Friday communicates with
users through user workstations and use of wireless
devices such as personal digital assistants (Palm

VIIs) and WAP-enabled mobile phones, which,
when connected to a global positioning service
(GPS) device, track users’ locations and enable
wireless communication between Friday and a
user. 

Each Friday’s team behavior is based on a team-
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work model called STEAM (Tambe 1997). STEAM
encodes and enforces the constraints among roles
that are required for the success of the joint activ-
ity. For example, meeting attendees should arrive
at a meeting simultaneously. When an important
role within the team (such as the role of a presen-
ter for a research meeting) opens up, the team
needs to find the best person to fill that role. To
achieve this, the team auctions off the role, taking
into consideration complex combinations of fac-
tors and assigning the best-suited agent or user. Fri-
day can bid on behalf of its user, indicating
whether its user is capable and/or willing to fill a
particular role. 

Adjustable Autonomy 
Adjustable autonomy (AA) is clearly important to
the E-Elves because, despite the range of sensing
devices, Friday has considerable uncertainty about
the user’s intentions and even location, hence Fri-
day will not always be capable of making good
decisions. On the other hand, while the user can
make good decisions, Friday cannot continually
ask the user for input, because it wastes the user’s
valuable time. We illustrate the AA problem by
focusing on the key example of meeting resched-
uling in E-Elves: A central task for the E-Elves is
ensuring the simultaneous arrival of attendees at a
meeting. If any attendee arrives late, or not at all,
the time of all the attendees is wasted. On the oth-
er hand, delaying a meeting is disruptive to users’
schedules. Friday acts as proxy for its user so its
responsibility is to ensure that its user arrives at the
meeting at the same time as other users. Clearly,
the user will often be better able to determine
whether he/she needs the meeting to be delayed.
However, if the agent transfers control to the user
for the decision, it must guard against miscoordi-
nation while waiting for the user’s response, espe-

cially if the response is not forthcoming, such as if
the user is in another meeting. Some decisions are
potentially costly (for example, rescheduling a
meeting to the following day), so an agent should
avoid taking them autonomously. To buy more
time for the user to make a decision, an agent has
the option of delaying the meeting (that is, chang-
ing coordination constraints). Overall the agent
has three options: make an autonomous decision,
transfer control, or change coordination con-
straints. The autonomy reasoning must select from
these actions while balancing the various compet-
ing influences. 

Lessons from Electric Elves 
Our first attempt to address AA in E-Elves was to
learn from user input; in particular by using deci-
sion tree learning based on C4.5. In training mode,
Friday recorded values of a dozen carefully select-
ed attributes and the user’s preferred action (iden-
tified by asking the user) whenever it had to make
a decision. Friday used the data to learn a decision
tree that encoded various rules. For example, it
learned a rule: 

IF two person meeting with important person AND
user not at department at meeting time THEN delay
the meeting 15 minutes. 

During training Friday also asked if the user want-
ed such decisions taken autonomously in the
future. From these responses, Friday used C4.5 to
learn a second decision tree, which encoded its AA
reasoning. Initial tests with the C4.5 approach
were promising (Pynadath and Tambe 2003), but a
key problem soon became apparent. When Friday
encountered a decision for which it had learned to
transfer control to the user, it would wait
indefinitely for the user to make the decision, even
though this inaction could lead to miscoordina-
tion with teammates if the user did not respond or
attend the meeting. To address this problem a fixed
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Figure 2: Friday Asking the User for Input. 



time limit (five minutes) was added, and if the user
did not respond within the time limit, Friday took
an autonomous action (the one it had learned to
be the user’s preferred action). This led to
improved performance, and the problem uncov-
ered in initial tests appeared to have been
addressed. Unfortunately, when the E-Elves were
first deployed 24/7, there were some dramatic fail-
ures. In example 1, Friday autonomously cancelled
a meeting with the division director because Friday
overgeneralized from training examples. In exam-
ple 2, Friday incorrectly cancelled the group’s
weekly research meeting when a timeout forced
the choice of an autonomous action when Pyna-
dath did not respond. In example 3, Friday delayed
a meeting almost 50 times, each time by 5 min-
utes. It was correctly applying a learned rule but
ignoring the nuisance to the rest of the meeting
participants. Finally, in example 4, Friday auto-
matically volunteered Tambe for a presentation,
but he was actually unwilling to participate. Again
Friday had overgeneralized from a few examples
and when a timeout occurred had taken an unde-
sirable autonomous action. 

From the growing list of failures, it became clear
that the C4.5 approach faced some significant
problems. Indeed, AA in a team context requires
more careful reasoning about the costs and
benefits of acting autonomously and transferring
control and needs to better deal with contingen-
cies. In particular, an agent needs to avoid taking
risky decisions (like example 1) by taking a lower
risk delaying action to buy the user more time to
respond; deal with failures of the user to quickly
respond (examples 2 and 4) ; and plan ahead to
avoid taking costly sequences of actions that could
be replaced by a single less costly action (example
3). In theory, using C4.5, Friday might have even-
tually been able to learn rules that would success-
fully balance costs, deal with uncertainty, and han-
dle all the special cases, but a very large amount of
training data would be required, even for this rela-
tively simple decision. Given our experience, we
decided to pursue an alternative approach that
explicitly considered costs and uncertainties. 

Ongoing Research 
To address the early failures in AA, we wanted a
mechanism that met three important require-
ments. First, it should allow us to explicitly repre-
sent and reason about different types of costs as
well as uncertainty, such as costs of miscoordina-
tion versus costs of taking an erroneous action.
Second, it should allow lookahead to plan a sys-
tematic transfer of decision-making control and
provide a response that is better in the longer term
(for situations such as a nonresponsive user). Final-
ly, it should allow us to encode significant quanti-
ties of initial domain knowledge, particularly costs

and uncertainty, so that the agent does not have to
learn everything from scratch (as was required
with C4.5). Markov decision processes (MDPs) fit
these requirements and so, in a second incarnation
of E-Elves, MDPs were invoked for each decision
that Friday made: rescheduling meetings, delaying
meetings, volunteering a user for presentation, or
ordering meals (Scerri, Pynadath, and Tambe
2002). Although MDPs were able to support
sequential decision making in the presence of tran-
sitional uncertainty (uncertainty in the outcomes
of actions), they were hampered by not being able
to handle observational uncertainty (uncertainty
in sensing). 

Specifically, Friday’s “sensing” was very coarse,
and while Friday might follow an appropriate
course of action when its observations were cor-
rect, when they were incorrect its actions were very
poor. In a project inspired by E-Elves, we took the
natural next step to address this issue by using par-
tially observable MDPs (or POMDPs) to model
observational uncertainty and find appropriate
courses of action with respect to this observation-
al uncertainty. However, existing techniques for
solving POMDPs either provide loose quality guar-
antees on solutions (approximate algorithms) or
are computationally very expensive (exact algo-
rithms). Our recent research has developed effi-
cient exact algorithms for POMDPs, deployed in
service of adjustable autonomy, by exploiting the
notions of progress or physical limitations in the
environment. The key insight was that given an
initial (possibly uncertain) set of starting states, the
agent needs to be prepared to act only in a limited
range of belief states; most other belief states are
simply unreachable given the dynamics of the
monitored process, so no action needs to be gen-
erated for such belief states. These bounds on the
belief probabilities are obtained using Lagrangian
techniques in polynomial time (Varakantham et
al. 2007; Varakantham, Maheswaran, and Tambe
2005). 

We tested this enhanced algorithm against two
of the fastest exact algorithms: generalized incre-
mental pruning (GIP) and region-based incremen-
tal pruning (RBIP). Our enhancements in fact pro-
vide orders of magnitude speedup over RBIP and
GIP in problems taken from the meeting resched-
uling of Electric Elves, as illustrated in figure 3. In
the figure, the x-axis shows four separate problem
instances, and the y-axis shows the run time in sec-
onds (the problem runs were cut off at 20,000 sec-
onds). DSGIP is our enhanced algorithm, and it is
seen to be at least an order of magnitude faster
than the other algorithms. Another issue that arose
during the MDP implementation of E-Elves is pos-
sibly of special relevance to personalization in soft-
ware assistants, above and beyond E-Elves. In par-
ticular, both MDPs and POMDPs rely on knowing
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the probability of events occurring in the environ-
ment. Clearly, these probabilities varied from user
to user, and hence it was natural to apply learning
to adjust these parameters. While the learning
itself was effective, the fact that Friday did not nec-
essarily behave the same way each day could be
disconcerting to users—even if the new behavior
might actually be “better.” The problem was that
Friday would change its behavior without warning,
after users had adjusted to its (imperfect) behavior.
Later work (Pynadath and Tambe 2001) addressed
this by allowing users to add hand-constructed
inviolable constraints. 

Privacy 
Just as with adjustable autonomy, privacy was
another area of research that was not initially con-
sidered important in Electric Elves. Unfortunately,
while several privacy-related problems became
apparent, no systematic solutions were developed
during the course of the project. We will describe
some of the problematic instances of privacy loss
and then some recent steps to quantitatively meas-
ure privacy loss that have been inspired by the E-
Elves insights. 

Lessons from Electric Elves 
We begin with a few arenas where privacy issues

were immediately brought to the forefront. First, a
key part of E-Elves was to assist users in locating
other users to facilitate collaborative activities,
such as knowing that a user is in his or her office,
which would help determine if it is worth walking
down to that person’s office to engage in discus-
sions. This was especially relevant in our domain
because ISI and the main USC campus are across
town from each other. Unfortunately, making a
user’s GPS location available to other project mem-
bers at all times, even if GPS capabilities were
switched off outside work hours, was a very sig-
nificant invasion of privacy. This led to a too trans-
parent tracking of people’s locations. For instance,
when user Tambe had an early morning 8:30 a.m.
meeting, and he was delayed, he blamed it on the
Los Angeles freeway traffic. However, one of the
meeting attendees had access to Tambe’s GPS data.
So he could remark that the delay in this meeting
was not because of traffic as was suggested but
rather because Tambe was eating breakfast at a
small cafe next to ISI. 

Second, even when such obviously intrusive
location monitoring was switched off and the E-
Elves only indicated whether or not a user was in
his or her office, privacy loss still occurred. For
instance, one standard technique for Tambe to
avoid getting interrupted was to hide in the office
and simulate being away. While finishing a partic-
ularly important proposal, he simulated being
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away by switching off his office lights, locking the
door and not responding to knocks on the door or
telephone calls from colleagues. However, to his
surprise, a colleague sent him an e-mail, saying
that the colleague knew Tambe was in the office
because his elf was still transmitting that fact to
others.

Third, E-Elves monitored users’ patterns of daily
activities, including statistics on users’ actions
related to various meetings, such as whether a user
was delayed to a meeting, whether he or she
attended a meeting, and whether the user can-
celled the meetings. These detailed statistics were
another source of privacy loss when they were
made available to other users—in this case, to a
student who was interested in running machine
learning on the data. The student noticed and
pointed out to a senior researcher that, when his
meetings were with students, he was always late by
5 minutes, while, on the other hand, he was punc-
tual for his meetings with other senior researchers. 

Fourth, one of the parameters used in determin-
ing meeting importance was the importance
attached to each of the people in the meeting. An
agent used this information to determine the
actions to take with respect to a meeting; for exam-
ple, canceling a meeting with someone very
important in the organization was to be avoided.
Such information about user importance was sup-
posed to be private but was not considered partic-
ularly controversial. Unfortunately, when infor-
mation about meeting importance from someone
else’s elf was accidentally leaked to Ph.D. students,
a minor controversy ensued. Were Ph.D. students
less important than other researchers at ISI? Part of
the complicated explanation provided was not
that meetings with Ph.D. students were any less
important, but rather the fact that meeting impor-
tance rolled multiple factors into one factor: not
only the importance of the meeting but also the
difficulty of scheduling a meeting and the urgency
of the meeting. 
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Moving Walls

Marcel Schoppers 

In the early 1980s, I used Stan Rosenschein’s functional language REX to servo Flakey’s two wheels to set
points of speed and direction that were functions of sonar readings. This let Flakey drive along hallways with
no dead reckoning or planning whatsoever. It seemed miraculous at the time; a situated automaton that

knew things without needing any models. However, I thought of it as (sensor-driven) feedback control, versus
(plan driven, eyes shut) feed-forward control. 

I then used Mike Georgeff’s procedural reasoning system (PRS) to make Flakey not only drive but navigate an
office building. In some respects this project succeeded: the robot’s “domain knowledge” was nothing more than
a static connection graph—no distances to drive, no widths of halls or doorways, no a priori obstacles—such
information was acquired en route from sensory input. In other respects, however, progress was unsatisfying.
The robot would frequently get stuck facing a wall, interpret it as an obstacle, ask it to move, and then wait for-
ever.  The robot was just as helpless as if it had made a dead-reckoning error. 

The fault was that the robot expected a doorway where none existed and perceived the wall as a (presumably)
movable obstacle on its path. I soon saw that my program worked well only where it employed sensory feed-
back and that the PRS procedures were another form of feed-forward control, with built-in (though branching)
expectations overruling sensing. 

This realization led to the conception of universal plans: feedback control through Boolean state-spaces, view-
ing plans as control laws, and planners as reaction-choosers based on a weak model of action effects. From there,
what actually happens is up to Nature, and yet “reaction plans” reliably achieve their goals because of their
robustness and persistence. 

Marcel Schoppers is a senior flight software engineer working at the NASA Jet Propulsion Laboratory, Section 316, in Pasade-
na, California.



Ongoing Research 
Our subsequent research on privacy has focused
primarily on the last issue, that of private informa-
tion being leaked during negotiations between
team members. These negotiations often took the
form of distributed constraint optimization prob-
lems (DCOP) (Modi et al. 2005, Mailler and Lesser
2004), in which cooperative agents exchanged
messages in order to optimize a global objective
function to which each agent contributes. For
example, agents may try to optimize a global

schedule of meetings by setting their individual
schedules. 

Many algorithms exist for solving such prob-
lems. However, it was not clear which algorithms
preserved more privacy than others, or more fun-
damentally, what metrics should be used for meas-
uring the privacy loss of each algorithm. While
researchers had begun to propose metrics for
analysis of privacy loss in multiagent algorithms
for distributed optimization problems, a general
quantitative framework to compare these existing
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metrics for privacy loss or to identify dimensions
along which to construct new metrics was lacking.
To address this question, we introduced valuations
of possible states (VPS) (Maheswaran et al. 2006), a
general quantitative framework to express, ana-
lyze, and compare existing metrics of privacy loss.
With VPS, we quantify an agent’s privacy loss to
others in a multiagent system using as a basis the
possible states the agent can be in. In particular,
this quantification is based on an agent’s valuation
on the other agents’ estimates about (a probability
distribution over) its own possible states. For exam-
ple, the agent may value poorly the fact that other
agents are almost certain about the agent’s possible
state.

VPS was shown to capture various existing meas-
ures of privacy created for specific domains of dis-
tributed constraint satisfaction and optimization
problems. Using VPS, we were able to analyze the
privacy loss of several algorithms in a simulated
meeting-scheduling domain according to many
different metrics. Figure 4 from Maheswaran et al.
(2006) shows an analysis of privacy loss for the
SynchBB algorithm across six different VPS metrics
(ProportionalS, ProportionalTS, GuessS, GuessTS,
EntropyS, and EntropyTS) for a particular meeting
scheduling scenario of three agents, averaged over
25 experimental runs in which agents’ personal
time-slot preferences were randomly generated.
Also shown on the graph is the privacy loss for the
OptAPO algorithm (Mailler and Lesser 2004) and
for a centralized solver; both of these were shown
to have the same privacy loss regardless of the VPS
metric used. The x-axis shows the number of time
slots when meetings could be scheduled in the
overall problem, and the y-axis shows the sys-
temwide privacy loss, expressed as the mean of the
privacy losses of each agent in the system, where 0
means an agent has lost no privacy to any other
agent and 1 means an agent has lost all privacy to
all other agents. The graph shows that, according
to four of the six metrics, SynchBB’s privacy loss
lies in between that of centralized and OptAPO,
and, interestingly, the effect of increasing the
number of time slots in the system causes privacy
loss to increase according to one metric, but
decrease according to another. 

The key result illustrated in Figure 4 is that dis-
tribution in DCOPs does not automatically guar-
antee improved privacy when compared to a cen-
tralized approach, at least as seen from the
algorithms tested here—an important result given
that privacy is a key motivation for deploying
DCOP algorithms in software personal assistants.
Later work (Greenstadt, Pearce, and Tambe 2006)
showed that several other DCOP algorithms (for
example, Adopt [Modi et al. 2005]) did perform
better than the centralized approach with respect
to privacy. However, it is clear that algorithms for

DCOP must address privacy concerns carefully and
cannot assume that distribution alone provides
privacy. 

Social Norms 
Another area that provided unexpected research
issues was social norms. Day-to-day operation with
E-Elves exposed several important research issues
that we have not yet specifically pursued. In par-
ticular, agents in office environments must follow
the social norms of the human society within
which the agents function. For example, agents
may need to politely lie on behalf of their users in
order to protect their privacy. If the user is avail-
able but does not wish to meet with a colleague,
the agent should not transmit the user’s location
and thus indirectly indicate that the user is unwill-
ing to meet with colleagues. Even more crucially,
the agent should not indicate to the colleague that
meeting with that colleague is considered unim-
portant—indicating that the user is unavailable for
other reasons is preferable. 

Another interesting phenomenon was that
users would manipulate the E-Elves to allow them-
selves to violate social norms without risking
being seen to violate norms. The most illustrative
example of this was the auction for presenter at
regular group meetings. This was a role that users
typically did not want to perform, because it
required preparing a presentation, but also did not
want to appear to refuse. Several users manipulat-
ed the E-Elves role allocation auction to allow
themselves to meet both of these conflicting goals.
One method that was actually used was to let Fri-
day respond to the auction autonomously, know-
ing that the controlling MDP was conservative
and assigned a very high cost to incorrectly
accepting the role on the user’s behalf. A more
subtle technique that was used was to fill up one’s
calander with many meetings because Friday
would take into account how busy the person was.
Unfortunately, Friday was not sophisticated
enough to distinguish between a “project meet-
ing” and “lunch” or “basketball.” In all these cas-
es, the refusal would be attributed to the agent,
rather than directly to the user. Another source of
manipulation came in when a user had recently
presented, since the auction would not assign the
user the role again immediately. Thus shortly after
presenting, users could manually submit affirma-
tive bids safe in the knowledge that their bid
would not be accepted while they would still get
credit from the rest of the team for their enthusi-
asm. (These techniques came to light only after
the project ended!) 

One important lesson here is that personal assis-
tants must not violate norms. However, another is
that personal assistants in this case were designed
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for group efficiency and, as such, face an incentive
compatibility problem: users may have their own
personal aims as a result of which they work
around the personal assistants. Rather than insist-
ing on group efficiency, it may be more useful to
allow users to manage this incompatibility in a
more socially acceptable manner. 

Summary 
This article outlined some of the important lessons
learned from a successfully-deployed team of per-
sonal assistant agents (Electric Elves) in an office
environment. The Electric Elves project led to sev-
eral important observations about privacy,
adjustable autonomy, and social norms for agents
deployed in office environments. This article out-
lines some of the key lessons learned and, more
importantly, outlines our continued research to
address some of the concerns raised. These lessons
have important implications for similar ongoing
research projects. 

Note
1. Another example is CALO: Cognitive Agent that
Learns and Organizes (calo.sri.com).
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