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1 Introduction

A teacher deciding how to maintain discipline may find it useful to
keep track of which students (dis)like each other. In general, enrich-
ing the mental models that the teacher has of her students enables
her to make better decisions. On the other hand, it is harder for her to
maintain correct beliefs over the richer models. Intuitively, we expect
a diminishing return on enriching the mental models, where adding
more details offers less gain in accuracy in beliefs and less benefit
in decision-making quality, while incurring additional overhead in
maintaining those beliefs. For example, while the teacher could also
keep track of her students’ musical performances, she would expect
little benefit to doing so. In contrast a student may expect consider-
able benefit in keeping track of other student’s musical interests.

This basic issue of forming and maintaining models of others is
not unique to human social interaction. Agents in general face the
challenge of forming and updating their mental models of each other
in a wide range of multiagent domains. Research in plan recognition
has produced an array of techniques for modeling a planning agent
and forming a belief about what its goals and intentions are, so as to
predict its future actions [4, 6]. User modeling faces a similar prob-
lem in trying to understand and anticipate the needs of human users
interacting with a software system [2]. Agents working together as
teams must maintain beliefs about their teammates’ status [3]. So-
cial simulation of human social behavior may require agents with a
theory of mind about the other agents in their society [5]. In games
of incomplete information, each player faces uncertainty about the
payoffs that the other players will receive [1].

In these domains, forming mental models is typically treated as
a separate subproblem outside the decision-making context of the
agent. The modeling agent starts from an initial set of possible mod-
els for the other agents, whether in the form of plan libraries in
plan recognition, possible mental models in social simulation, pri-
vate types in games of incomplete information, etc. As the modeling
agent interacts with the other agents, it updates that belief based on
its observations of their behavior. The modeling agent then uses its
mental models of the other agents to make informed decisions based
on expectations of what they will do.

In this paper, we observe that we can quantify the tradeoff by tak-
ing the problem of modeling others out of its isolation and placing
it back within the overall decision-making context of the modeling
agent. Doing so allows the agent to automatically derive a space of
mental models according to an informed analysis of the cost-benefit
tradeoffs.

Our approach comprises three methods: Behavior equivalence,

where the modeling agent clusters models that lead to the same be-
haviors in its decision-making context; Utility equivalence, where
the modeling agent clusters models that may lead to different behav-
iors, but produce equally preferred outcomes with respect to its util-
ity; and Approximate Utility Equivalence, where the modeling agent
clusters models that lead to performance losses that are below a cer-
tain threshold, sacrificing a fixed amount of accuracy.

We envision several benefits from these approaches. In most multi-
agent domains, agents can expect that this analysis will allow them
to drastically reduce the original full mental model space, without
overly sacrificing performance. Additionally, in simulation research
on human social interaction, it establishes a normative baseline for
the simplifications and distortions in people’s mental models of oth-
ers or theory of mind.

2 Modeling Other Agents

Across the various multiagent domains already mentioned (and even
within each domain itself) researchers have applied a wide variety
of possible modeling frameworks. We present a methodology using
an abstract agent framework that is general enough to cover these
approaches, as well as other decision-making procedures in the lit-
erature. When applying our methodology to a specific domain, these
components would become specialized to the particular framework
used for the agents in that domain.

2.1 Agent Notation

In general, an agent consists of its beliefs (including those about
other agents), its actions, and its preferences. We use the same struc-
ture to represent both the actual agents and the mental models they
have of each other. Thus, we represent the multiagent system as a
set of real agents, {mi}Ni=1. Each such agent includes possible be-
liefs over mental models, Mij , that represent what agent i can think
of agent j. The modeling agent wishes to minimize this space, Mij .
In particular, we want an algorithm that computes the expected util-
ity derived by modeling agent i when using the set of mental model
spaces, {Mij}Nj=1, for all of the agents j in the system. We define the
behavior of an agent as a policy, π : B → A, out of a set of possi-
ble policies, Π. Any agent architecture will include an algorithm for
translating an agent into such a policy, π. We will abstract this pro-
cedure into a generic function SOLVE: M → Π, that takes an agent
model (whether real or subjective) and returns that model’s policy of
behavior.



2.2 Example Domain
We have taken our example domain from a scenario in childhood
aggression, modeled within PsychSim, a multiagent social simula-
tion tool [5]. There are agents for three students: a bully, his victim
(i.e., the student he focuses his aggression on), and an onlooking stu-
dent to whom the bully looks for affirmation. There is also a teacher
who can deter the bully from picking on his victim by doling out
punishment. We focus on the problem facing the bully agent, whose
decision on whether or not to pick on his victim must consider the
possible punishment policy of the teacher.

2.2.1 Utility

PsychSim uses a decision-theoretic model of preferences, so the
bully agent decides whether to pick on his victim through maximiza-
tion of his utility, which has three components: (1) a desire to in-
crease his power, which decreases when he is punished; (2) a desire
for affirmation from the onlooking student, which increases when
the onlooker laughs along; and (3) a desire to decrease the victim’s
power, which decreases when the bully picks on him (as well as when
the onlooker laughs at him). The bully’s utility function is a linear
combination of these three components, so that we specify his type
as a triple of coefficients, each in [0, 1]. Thus, to simulate the behav-
ior of a bully whose aggression is intended to gain the approval of
his peers, we would use an agent with a higher weight for the second
component. On the other hand, to simulate a more sadistic bully, we
would use a higher weight for the third. The teacher’s utility also has
three components, corresponding to her desire to increase the power
of each of the three students. She thus has a disincentive for pun-
ishing anyone unless doing so will deter acts that would reduce the
victim’s power even more. A fair teacher would give equal weight to
the three students’ power. A bully feeling persecuted by the teacher
may think that she favors the victim’s power over his own. On the
other hand, a bully may feel that the teacher shares his dislike of the
victim, in which case he may model her as having a lower weight
for the victim. We focus on the bully’s modeling of the teacher, so
we fix the onlooker to value his power (i.e., he does not want to be
punished), while also wanting to decrease the victim’s power out of
dislike (i.e., he enjoys laughing at the victim when the bully picks on
him).

2.2.2 Actions

The teacher has 7 options in her action set, AT . She can do nothing;
she can scold the bully, onlooker, or the entire class; or she can punish
the bully, onlooker, or the entire class. Punishing a student causes a
more severe decrease in a student’s power than simply scolding. The
onlooking student has 2 options in his action set, AO: laugh at the
victim, or do nothing. The bully has 2 actions in his action set, AB :
pick on the victim or do nothing.

2.2.3 Policies

To reduce the domain to its most essential, the bully’s policy, πB :
MBO × MBT → AB , is a function of his mental model of the
onlooker and teacher. Given that the onlooker has only one pos-
sible mental model, the policy space for the bully, ΠB , contains
|AB ||MBT | distinct policies. Thus, the complexity of the bully’s
problem of choosing his correct policy is highly dependent on the
number of mental models that he must consider for the teacher. Sim-
ilarly, the onlooker’s policy, πO : MOB ×MOT → AO , depends

on only his mental model of the bully and the teacher. In this cur-
rent investigation, we focus on only one entry in πO , namely the one
where mOB = mB and mOT = mBT , where there are only two
possible values: laughing at the victim or not. We must also specify
what the bully expects the teacher to do, which depends on not only
her mental models of the students, but also on the prior actions of the
students (πT : MTB ×MTO × AB × AO → AT ). In other words,
the teacher may perform a different action when the bully picks on
the victim than when he does not. The bully assumes that the teacher
knows the correct model of him (i.e., mTB = mB) and shares his
mental model of the onlooker (i.e., mTO = mBO). Even with our
simplifications, there still remains a large space of possible behaviors
for the teacher: |ΠT | = |AT ||AB |·|AO| = 2401.

2.2.4 Solution Mechanism

We use boundedly rational agents, so the bully’s SOLVE algorithm
performs a forward projection over his possible actions and chooses
the action with the highest expected utility. The forward projec-
tion includes the bully’s action, the onlooker’s subsequent response,
and the teacher’s resulting punishment decision. To determine the
teacher’s policy, the bully applies a SOLVE method from the teacher’s
perspective that exhaustively tries all policies in ΠT , computes the
best-response policies for the bully and onlooker, and then chooses
the best policy based on her expected utility. Given the teacher’s pol-
icy, the bully and onlooker can then choose their best-response poli-
cies. We can specify the bully’s mental model of the teacher in terms
of the three utility weights that the bully attributes to her. In other
words, our initial space of possible mental models, MBT , contains
one model for every vector of weights, ~w = [wB , wO, wV ]. For the
purposes of this paper we discretize this space to contain the vec-
tors [0.0, 0.0, 1.0], [0.0, 0.1, 0.9], [0.0, 0.2, 0.8], . . . , [1.0, 0.0, 0.0],
with a total size of 66 possible mental models that the bully can have
of the teacher (i.e., |MBT | = 66). The bully agent’s decisions are
highly dependent on what he expects the teacher to do. For example,
if he picks on the victim, he is more likely to be severely punished
by a teacher for whom the victim is a pet (i.e., for which wV is high),
but he would be more likely to escape punishment if he himself is
a favorite of the teacher (i.e., if wB is high). Thus, there is clearly
some value to be gained by maintaining differential mental models
of the teacher. However, from a psychological point of view, it is un-
likely that real-life bullies juggle 66 possible mental models of their
teachers in their heads, so the space is a good candidate for reduction.

This scenario is illustrative, and there are clearly many dimensions
along which we could enrich it. For example, we could introduce
state dependencies (e.g., the weaker the victim, the more damage
done by picking on him). However, while these additional wrinkles
would change the particular answers provided by our methodology,
they would not change the ability of the methods presented in the
following sections to provide such answers. Our core methodology
presents a very general approach to quantifying the value of different
mental model spaces even in the face of these additional complica-
tions. Therefore, we have removed as many extraneous domain fea-
tures as possible, so as to be able to provide the clearest illustration of
the methods and how they can be applied to any multiagent domain.

3 Behavior Equivalence
The modeling agent’s goal is to find a minimal set of mental models
that it needs to consider for the other agents. In looking for possible
bases for such minimization, we observe that the modeling agent’s



decisions often depend on only the behavior of the agents being mod-
eled. Agents model the hidden parameters of others so as to gener-
ate expectations of their resulting behavior, but given the behavior
of others, an agent’s decision making is conditionally independent
of the parameters behind it. For example, in agent teamwork, the
mental states of the individual members have no direct effect on per-
formance; only the decisions (actions, messages, etc.) derived from
those mental states matter. Similarly, in games, the payoffs received
by the agents depend on only the moves chosen by the players. In so-
cial simulations, the agents cannot read each others’ minds, so they
can base their decisions on only their observable behaviors. There-
fore, regardless of what underlying parameters govern the modeled
agent’s decision-making, its eventual behavior is what has an impact
on the modeling agent.

3.1 Behavior Equivalence Algorithm
This observation forms the basis for our first method for reducing
the space of mental models. If two mental models produce the same
behavior for the modeled agent, then making a distinction between
them does not help the modeling agent. Therefore, it can safely re-
move one of them from consideration. It can do so by computing the
policies corresponding to the possible mental models and clustering
all that generate the same policy. The modeling agent then chooses
one representative model from each cluster and removes all other
models in the cluster from the overall space.

Algorithm 1 BEHAVIOREQUIVALENCE(M)

1: for all m1 ∈M do
2: for all m2 ∈M , m1 6= m2 do
3: if SOLVE(m1) = SOLVE(m2) then
4: remove m2 from M

For many domains, the repeated invocations of the SOLVE func-
tion can be computationally intensive, but there is plenty of oppor-
tunity for specialization of Algorithm 1. For example, if the mental
models correspond to points in a utility space (as in our social sim-
ulation domain), it should be possible to compare mental models to
only their immediate neighbors. Furthermore, even if specializing the
algorithm is insufficient, there are many opportunities for approxima-
tion as well. For example, one could easily re-write the loops in Lines
1 and 2 to implement a sampling algorithm that compares randomly
selected pairs for behavior equivalence.

3.2 Behavior Equivalence Results
The bully agent starts with 66 possible mental models for the teacher
in MBT . It can apply behavior equivalence to reduce the size of that
set, but the policy chosen by the teacher also depends on her model
of the bully. For example, different bullies may be more afraid of
a teacher punishing the whole class because of him than of being
punished by himself. We thus performed a behavior equivalence re-
duction of the mental model space across different types of bullies.
To do so, we discretized the space of possible (real) bullies in the
same way that we discretized the space of possible mental models
of the teacher. Thus, we represent different types of bullies by dif-
ferent vectors of utility weights, ~w = [wB , wO, wV ], and discretize
the set of possible types into 66 distinct such vectors, [0.0, 0.0, 1.0],
[0.0, 0.1, 0.9], [0.0, 0.2, 0.8], . . . , [1.0, 0.0, 0.0]. Each of the 66 pos-
sible bully types started with an initial space, MBT , of the 66 possi-
ble mental models for the teacher. We gave the teacher and onlooker

the correct model of the bully and of each other. 8 types of bullies
reduced the number of mental models of the teacher from 66 to 4.
The other 58 types of bullies reduced the number of mental models
of the teacher from 66 to 5. Behavior equivalence provides a clear
benefit to these bully agents. In particular, it is notable that, although
the 66 types of teachers had 2401 policies to choose from, a specific
bully could expect to come across only 4 or 5 distinguishable teacher
behaviors. In fact, looking across the results for all of the possible
bully types, there were only 8 policies that were ever selected by the
teacher in the 66 · 66 = 4356 bully-teacher combinations. The rea-
son that so much of the teacher’s policy space is undesirable for her
is that the bully’s behavior is constrained by his utility. For exam-
ple, regardless of where in our utility space he is, the bully always
prefers not being punished to being punished. Therefore, it would
never make sense for the teacher to adopt a policy of punishing the
bully if he does nothing to the victim and doing nothing to him if he
does.

4 Utility Equivalence
There are some multiagent domains where the modeling agent de-
rives some direct utility from the values of the intrinsic parameters.
For example, in our social simulation, the teacher may prefer being
liked by her students, rather than feared, even if both cases produce
complete obedience. In such cases, using behavior equivalence may
over-prune the mental model space. However, it is still safe to assume
that the modeled agent matters only in so far as it affects the model-
ing agent’s expected utility. The modeling agent is thus completely
indifferent between different mental models that produce the same
expected utility in its own execution.

4.1 Utility Equivalence Algorithm
This observation leads to our second method for reducing the mental
model space. If the modeling agent does not lose any expected util-
ity when using a particular mental model when the correct model is
actually another, then distinguishing between the two does not help.
Therefore, the modeling agent can compute its expected utility de-
rived based on the policies corresponding to each of the possible
mental models (of the modeled) and clustering all of the models that
generate the same value when mistaken for each other. It then again
chooses one representative model from each cluster.

Algorithm 2 UTILITYEQUIVALENCE(m, M)

1: for all m1 ∈M do
2: for all m2 ∈M , m1 6= m2 do
3: π1 ← SOLVE(m1), π2 ← SOLVE(m2)
4: uright ← EU [SOLVE(m|m2)|π2]

5: uwrong ← EU [SOLVE(m|m2)|π1]
6: if uwrong − uright ≤ 0 then
7: remove m2 from M

While behavioral equivalence requires only the modeled agent’s
policy, utility equivalence requires the further computation of the
modeling agent’s own best response to that policy. Line 5 shows that
the modeling agent computes the expected utility (uwrong) it will
derive if it solves for its policy assuming that the modeled agent is
of type m2, when it is actually of type m1. Line 4 computes its ex-
pected utility (uright) when using that same policy when m2 is the
correct mental model. If the first is no lower than the second, then



the agent can feel free to use m1 in place of m2. Line 6 accounts for
the possibility that the utility loss might actually be negative when
the agent being modeled, in turn, has an incorrect model of the mod-
eling agent. Over time, if the agent being modeled updates its belief
about the modeling agent, then such a utility gain is unlikely, because
the modeled agent could eventually settle on a best response to the
modeling agent’s misconception. However, in the transient behav-
ior, the modeled and modeling agents may inadvertently act in ways
that improve the modeling agent’s utility, despite the error in mental
models.

Algorithm 2 adds another round of calls to the SOLVE function
beyond what behavioral equivalence requires. The additional cost
comes with the benefit of lossless reduction of the mental model
space that sacrifices no utility to do so.

4.2 Utility Equivalence Results

To cluster the bully’s mental models of the teacher according to util-
ity equivalence, we followed the same experimental setup as for be-
havior equivalence. The 66 types of bully agents ran Algorithm 2,
starting with the full space of mental models, MBT . For this sce-
nario, behavior equivalence implies utility equivalence, as the bully
derives no direct utility from the teacher’s intrinsic parameters. We
can thus cluster the utility equivalence results according to the fur-
ther reductions in mental model space achieved from Mb

BT . Of the
58 bully types with

∣∣Mb
BT

∣∣ = 5, 11 types of bullies reduced the
number of mental models of the teacher from 66 to 2, while the other
47 types reduced the number of mental models of the teacher from
66 to 4. Of the remaining 8 bully types with

∣∣Mb
BT

∣∣ = 4, all of
them reduced the number of mental models of the teacher from 66
to 3. Furthermore, for every type of bully, the mental model spaces
reduced by utility equivalence (denoted Mu

BT ) are all strict subsets
of those reduced by behavior equivalence.

Some of the clustering occurs for bullies with extreme utility
weights. For example, to a bully who cares about only hurting the
victim (i.e, ~w = [0.0, 0.0, 1.0]), mental models that differ on whether
he himself gets punished are equivalent, because he does not care
about the decrease in his own power. However, mental models that
differ on whether or not the onlooker gets punished are not equiva-
lent, because he desires the onlooker to laugh at the victim as well,
to maximize the damage inflicted on the victim’s power. Some of the
clustering in this experiment arises when using an incorrect mental
model of the teacher increases the bully’s expected utility. For exam-
ple, two mental models of the teacher may differ regarding whether
punishment of the onlooker. From the bully’s point of view, if the on-
looker laughs regardless of the teacher’s policy, then the bully does
not care whether the onlooker is punished. Thus, while these two
mental models produce different teacher behaviors, they produce the
same expected utility to the bully, who is then justified in ignoring
the distinction between them.

5 Approximate Utility Equivalence

The reduction of mental model spaces according to utility equiva-
lence is lossless with respect to the modeling agent’s decision mak-
ing. Any further clustering of mental models will cost the model-
ing agent utility. However, the modeling agent can reduce its cost of
maintaining beliefs over the mental model space by also clustering
those models together that sacrifice a small amount of utility.

5.1 Approximate Utility Equivalence Algorithm
This observation leads to our third method for reducing the space
of possible mental models. We can easily adapt Algorithm 2 to be
tolerant of any utility loss below some positive threshold.

Algorithm 3 UTILITYAPPROX(m, M, θ)

1: for all m1 ∈M do
2: for all m2 ∈M , m1 6= m2 do
3: π1 ← SOLVE(m1), π2 ← SOLVE(m2)
4: uright ← EU [SOLVE(m|m2)|π2]

5: uwrong ← EU [SOLVE(m|m2)|π1]
6: if uwrong − uright ≤ θ then
7: remove m2 from M

This approximate algorithm is no more complex than that for util-
ity equivalence. In fact, we can perform a reduction using utility
equivalence by passing in a threshold θ = 0 to Algorithm 3.

The pseudocode in Algorithm 3 is written to support execution
with a fixed threshold in mind. Alternatively, one could perform
Lines 1–5 and then choose an appropriate threshold, θ, to reduce
the space to an appropriate size. In other words, one would first pro-
file the possible errors that would be derived from incorrect mental
models before choosing a clustering. One could also easily vary the
computation to use error measures other than expected utility. For
example, one might be interested in worst-case utility loss instead
of expected-case. Simply replacing the expectation in Lines 4 and 5
with a maximization would make the desired adjustment. There are
any number of variations that would similarly modify the optimality
criterion used in weighing the utility lost from the mistaken mental
model.

5.2 Approximate Utility Equivalence Results
Figure 1 shows the results across our three methods for mental model
space reduction. Each path from left to right represents the size of
the mental model space for at least one possible type of bully as
we raise its tolerance for utility loss. At the y-axis, all of the bully
agents have the original mental model space of size 66. Then we see
that these agents can reduce that size to either 4 or 5 models, using
only the behavior equivalence method. The next point shows that
the bully agents have spaces of 3–5 mental models when using only
the utility equivalence method. Continuing along a path to the right
represents the further reduction in the mental model space that comes
with clustering mental models that cost less than the given threshold
of expected utility.

As another example, there are 7 bully types that follow a path that
leads to a mental model space of size one with only 10% loss of
expected utility. If bully agents of this type are willing to tolerate a
small utility loss, they can do away with modeling the teacher alto-
gether! At the opposite end of the spectrum, there is one bully type
that follows the upper envelope of the graph. For this bully type, util-
ity equivalence allows for a mental model space of size 4, down from
the size 5 of the space using only behavior equivalence. However, we
see that even if the bully is willing to tolerate a loss of 25% of its ex-
pected utility, it still needs this full space of 4 models. If it wants to
reduce its mental model space by even only one element, it can incur
an up to 50% loss in expected utility if it is wrong. This bully type is
also one of 14 in our sample space for which even tolerating 100%
utility loss is not sufficient to warrant eliminating mental modeling
together. In these cases, using the wrong mental model will lead to



Figure 1. Size of model spaces vs. increasing leniency for utility loss,
across all types of bully agents.

negative utility, so the bully has a strong incentive to do at least bi-
nary modeling of the teacher.

6 Discussion
While the exact graph in Figure 1 is specific to our example domain,
it provides a concrete demonstration of our general ability to quantify
the value of mental models to the modeling agent. To make the final
decision, the agent must consider the computed value of the men-
tal model space along with the cost of performing the actual model
update and decision making during execution. As already described,
the policy space of a modeling agent can grow exponentially with the
number of mental models to consider. Furthermore, although we did
not include the model update subproblem in our experiments, in most
real-world domains, its complexity is highly dependent on the size
of the mental model space. For example, probabilistic approaches,
which compute a distribution over the possible mental models, can
have a time complexity that is exponential in the size of the space. By
finding minimal mental model spaces, an agent can apply more accu-
rate belief update techniques that would have been computationally
infeasible on larger spaces.

This methodology can also potentially create more psycholog-
ically plausible social simulations. In our experiments, the bully
agents who were more attention-seeking (i.e., higher wO) derived
less value from the more complete mental model spaces for the
teacher. Our characterization of bully types is consistent with the
psychological literature that one can characterize different types of
childhood aggression by the different goals that bullies have [7].
Thus, we can use our algorithms to explore the mental model spaces
that we derive from those different goals and validate them against
experimental data. Having validated the agents against such data, we
can generate more confidence in the realism of the simulation.

We can also apply our algorithms to larger and more complicated
domains. For example, our experiments have so far investigated the
case of one agent choosing a space of mental models for only one
other. Most multiagent domains will have multiple agents creating
mental models of all of the others in the system. While our general
methodology still applies in such cases, the additional interdepen-
dencies may lead to instabilities (e.g., an agent may be able to use a
reduced space of mental models of another without utility loss only
if the other uses a reduced space of mental models of him in return).

Equilibrium concepts would provide one possible solution, but it may
also be possible to re-cast our algorithms to simultaneously consider
mental model spaces over the entire multiagent system, rather than
over one modeling agent at a time.

While we deliberately designed this paper’s domain to be simple
enough to support a clear exposition and demonstration, we hope
to learn more about the impact of design choices in mental mod-
eling spaces and algorithms when we extend the analysis to richer
domains. To support such domains, we will most likely have to im-
plement some of the specialization and approximation techniques
suggested in this paper. Once in place, we would be able to draw
additional general conclusions about the impact of mental modeling
choices as a function of fundamental properties of the multiagent sys-
tem, and we expect that such general relationships may emerge on a
richer class of domains.

7 Conclusion
At a higher level, the result of this investigation provides a key in-
sight into the impact of social interaction on the design of multiagent
systems. As designers, our immediate reaction is to view such inter-
actions as complicating the problem of deriving appropriate multia-
gent behavior. However, as our results show, the interplay between
the decision-making and modeling efforts of the individual agents is
also highly constraining on that behavior. For example, out of the
2401 possible policies for the teacher, only 8 were ever desirable
when interacting with our 66 types of bullies. When we view the
problem of modeling other agents through the subjective lens of the
modeling agent’s own decision-making, we gain a utility metric that
we can use both to restrict the scope of the modeling problem and to
derive algorithms to solve it.

We used this metric to design algorithms that can quantify the
value of distinctions made within the space of possible mental model
space, and that then reduce that space accordingly. An agent can also
use this same metric to derive a mental model space from scratch,
simply by quantifying the value of adding mental models to the space
of consideration. In this manner, our metric allows an agent designer
to isolate those aspects of the mental models that are most relevant
to the agent. We expect the algorithms to give such designers novel
insight into the nature of their domains and to minimize the computa-
tional complexity of modeling other agents in all multiagent domains
where such modeling is beneficial.

REFERENCES
[1] D. Fudenberg and J. Tirole, Game Theory, MIT Press, 1991.
[2] Anthony Jameson, ‘Numerical uncertainty management in user and stu-

dent modeling: An overview of systems and issues’, User Modeling and
User-Adapted Interaction, 5(3-4), 193–251, (1995).

[3] Gal Kaminka, David V. Pynadath, and Milind Tambe, ‘Monitoring teams
by overhearing: A multi-agent plan-recognition approach’, Journal of
Artificial Intelligence Research, 17, 83–135, (2002).

[4] Henry A. Kautz and James F. Allen, ‘Generalized plan recognition’, in
Proceedings of the National Conference on Artificial Intelligence, pp.
32–37, (1986).

[5] David V. Pynadath and Stacy C. Marsella, ‘PsychSim: Modeling the-
ory of mind with decision-theoretic agents’, in Proceedings of the In-
ternational Joint Conference on Artificial Intelligence, pp. 1181–1186,
(2005).

[6] C.F. Schmidt, N.S. Sridharan, and J.L. Goodson, ‘The plan recognition
problem: An intersection of psychology and artificial intelligence’, Arti-
ficial Intelligence, 11, 45–83, (1978).

[7] David Schwartz, ‘Subtypes of victims and aggressors in children’s peer
groups’, Journal of Abnormal Child Psychology, 28, 181–192, (2000).


