

In Proceedings of the 2nd International Conference on Biologically Inspired Cognitive
Architectures (BICA), 2011.

Fusing Symbolic and Decision-Theoretic
Problem Solving + Perception in a
Graphical Cognitive Architecture

Junda CHEN,a Abram DEMSKI,a Teawon HAN,a Louis-Philippe MORENCY,a
David PYNADATH,a Nicole RAFIDIb and Paul ROSENBLOOM

a,1
a

 Department of Computer Science and/or Institute for Creative Technologies (ICT),
University of Southern California (USC), USA

b
 Department of Electrical Engineering, Princeton University and USC/ICT, USA

Abstract. A step is taken towards fusing symbolic and decision-theoretic problem
solving in a cognitive architecture by implementing the latter in an architecture
within which the former has already been demonstrated. The graphical models
upon which the architecture is based enable a uniform implementation of both
varieties of problem solving. They also enable a uniform combination with forms
of decision-relevant perception, highlighting a potential path towards a tight
coupling between central cognition and peripheral perception.

Keywords. cognitive architecture, decision making, graphical models, perception,
CRF, SLAM, POMDP

Introduction

A cognitive architecture embodies a hypothesis about the fixed structure underlying
intelligent behavior, whether in natural or artificial systems. Central to intelligent
behavior, and thus to any such architecture, is an approach to decision making; i.e., to
determining what actions should be performed as a function of what is perceived, what
is known and what is desired. In a typical symbolic architecture, such as Soar [1],
perception occurs via distinct perceptual modules interfaced to the architecture;
knowledge takes the form of rules, facts, cases/episodes or general logical statements;
and desires are encoded as goals. In a decision-theoretic architecture, knowledge takes
a probabilistic form, with desires encoded as numeric utilities [2,3]. Due to
uncertainty, many leading perception algorithms are likewise probabilistic, implying
that they may be more compatible with a decision-theoretic formalism for decision
making than a symbolic one; yet decision-theoretic architectures, to the extent that they
do perception, also typically interface to separate perceptual modules [4].

The ideal architecture would leverage the combined strengths of both symbolic and
decision-theoretic approaches while also tightly integrating perception into the overall
framework. This article reports on the early stages of exploring such a fusion, via an
architecture that leverages graphical models for hybrid (discrete and continuous) mixed

1 Corresponding Author: University of Southern California, 12015 Waterfront Dr., Playa Vista, CA

90094, USA; E-mail: rosenbloom@usc.edu.

(symbolic and probabilistic) behavior [5,6]. Earlier work showed how such a graphical
architecture could reproduce a standard form of symbolic decision making, based on
how the Soar architecture uses long-term memory to generate candidate operators
representing actions and evaluate them to yield preferences among them, and then
selects among them via a preference-based decision procedure [7]. Soar also has the
ability to interface with perceptual modules and to reflect when existing knowledge is
inadequate for generating or evaluating operators; e.g., when evaluation knowledge is
insufficient, it can engage in reflective search to determine which operators best reach
the goal. This form of reflective search, which is central to symbolic problem solving,
has also been demonstrated in the graphical architecture.

Here the focus is on incorporating into the same graphical models that underlie the
architecture’s memory and symbolic decision making: (1) a decision-theoretic
approach to operator evaluation that is based on partially observable Markov decision
problems (POMDPs); and (2) perception that probabilistically grounds decision making
in the uncertain external environment. Out of the wide space of probabilistic
perceptual algorithms, two are considered that combine state-of-the-art performance on
dynamic multi-step perceptual problems with natural mappings to graphical models:
conditional random fields (CRFs) [8] and simultaneous localization and mapping
(SLAM) [9]. Although some work has been done on the mapping aspect of SLAM
within the graphical architecture, the material here is limited to localization.

A set of experiments in a simple 1D navigation task is included to verify that the
combined graph works as expected within the graphical architecture, and to begin
exploring some of its resulting properties. But the main result here is qualitative:
demonstrating the feasibility of fusing symbolic and decision-theoretic models of
problem solving, while also coupling tightly with a uniform implementation of
decision-relevant perception – to yield a secondary form of fusion between central
cognition and peripheral perception – within a theoretically elegant graphical cognitive
architecture. This pair of fusions contributes in two ways towards architectures capable
of broad yet uniformly implemented and tightly integrated functionality.

The overall focus in graphical models is computational – specifically on efficient
computation over complex multivariate functions by decomposing them into products
of simpler functions – rather than biological, but graphical models do share many of
the attributes of neural networks – performing limited forms of local computation on
numeric messages within a graph-structured long-term memory – and a number of
neural network algorithms map directly onto them [10]. There is thus an abstract form
of biological inspiration, plus potential applicablity to more directly inspired work.

1. The Graphical Models

The backbone of each of the three techniques to be integrated with symbolic problem
solving within the graphical architecture – POMDPs, CRFs and SLAM – consists of a
chain of state variables over a sequence of time steps (Figure 1). The links between
successive variables represent constraints over state transitions, which may encode
transition probabilities –
P(Xi | Xi-1) – or more
general potential functions
– fk(Xi-1, Xi) – whose
values convey information

Figure 1: Graphical model (Markov network) for state transitions.

about the relative likelihoods of the transitions. POMDPs and SLAM use conditional
probabilities while CRFs use potentials, but in either case the entire graph expresses a
joint distribution, or function, over its variables that decomposes into the product of the
individual distributions or functions. For POMDPs and SLAM, the graph computes

P(X0,…,XN) = P(Xi0

N
! | Xi"1) , where X-1 is null in P(X0 | X-1) to yield the prior on X0.

CRFs omit priors and use potentials, but with the actual functions used in the product
being weighted exponentials of the features, such as exp(!k • fk (Xi!1,Xi)) . The overall
equation for CRFs thus becomes F(X0,...,XN) = exp(!k • fk (Xi!1,Xi)") .	

Attached to the states in this backbone are variables that represent observations of
the world (Figure 2). The links connecting these observations to the states in which
they occur – the ribs, to continue the metaphor – represent joint constraints over
observations and states, expressed as further probabilities or potentials – P(Oi | Xi) or
gl(Oi, Xi) – that contribute to the overall product. This is how perception influences the
state variables. Both CRFs and SLAM depend critically on observations across a
sequence of states to jointly constrain the individual states. For example, in a CRF for
word recognition that is based on observations of a sequence of letters, perceptions of
all of the letters
jointly constrain
the identification
of each
individual letter.
In a POMDP
there is an
observation for
the initial state,
but the later
states in the chain are hypothetical during decision making, and thus do not involve
observations.

For POMDPs and SLAM, action variables – representing operations that produce
one state from another – are added to the transitions in this skeleton (Figure 3),
extending the transition probabilities to P(Xi | Xi-1, Ai-1). The graphs in Figures 1 and 2
are Markov networks (aka Markov random fields), undirected graphical models over
variable nodes, where there is a function implicitly defined over each pair of variables
on a link. Markov networks can express functions over more than two variables, but
this is awkward to display graphically. So we shift in Figure 3 to a more expressive
type of graphical model that is central to the graphical architecture, factor graphs,

Figure 3: Graphical model (factor graph) for state transitions with observations (connected to states via
mapping functions) and actions.

Figure 2: Graphical model (Markov network) for state transitions with observations.

which include explicit factor nodes for functions. Like Markov networks, factor graphs
are undirected, but factor nodes now explicitly represent the distributions or functions,
and each connects to all of its variables. In the figure, factor nodes are represented as
squares, with the Ti’s transition functions, the Mi’s map functions that relate objects to
locations, and Pr the prior distribution on the initial state. All of the Ti’s implement the
same function, as do the Mi’s.

To support operator evaluation via POMDPs, the graph must also include utility
variables linked to future states, so that action distributions are based not only on the
current state but on what is to be achieved (Figure 4). Essentially, constraint from
localization flows forward in time while constraint from utility flows backwards. The
overall result is effectively a dynamic decision network (DDN), although one in which
decomposition of state variables – a significant feature generally in DDNs – has not so
far been considered. This graph supports a different form of lookahead search from
what is the norm in symbolic problem solving, and thus from what has been
implemented already in a Soar-like manner in the graphical architecture. In the
POMDP, the state variable at each time step represents a distribution over all possible
states of the system at that step, possibly including the full combinatoric set of states in
the problem space. The transition function represents a distribution over the states
resulting from applying each possible action to each possible previous state. A single
lookahead graph of a fixed length thus represents a probabilistic search to that depth.

Some years ago a distinction was introduced within Soar between problem space
search and knowledge search, which maps onto various forms of dual process theory in
psychology. Problem space search occurs across decisions. It is slow and serial, but
provides an open-ended, potentially combinatoric search over an implicitly defined
space, with the possibility of exploiting any available knowledge to help control the
search. Knowledge search occurs within a single decision. It is fast and parallel, but
can only search over a space that is explicitly defined by the existing memory
structures, with no ability to use additional knowledge to control this search. The
POMDP extends Soar’s original notion of knowledge search to probabilistic lookahead
that is combinatoric yet bounded by the memory structures. Still, as in Soar, when the
evaluation knowledge derived from this knowledge search is insufficient to make a
decision, there is a possibility of unbounded reflective problem space search.

The full graph that has been implemented (Figure 5) can be viewed as
decomposing into three modules – one each for CRF perception, SLAM localization,

Figure 4: Graphical model (factor graph) with utility functions added for states.

and POMDP action choice – that interact through shared variable nodes; although they
are all actually implemented in a uniform manner within a single factor graph. The
CRF and SLAM jointly concern the past and present, while the POMDP concerns the
future. The CRF computes a distribution over the possible objects (Oi) at the current
and previous locations (Xi) from sensations (Si), using perception functions (sensation-
object relations: Pi) and object-transition functions (object-adjacency relations: OTi).
Its backbone here is the perceived objects (Oi) rather than the locations (Xi), with the
ribs being the sensations (Si). There are three sensors (S1-S3), each with its own
perceptual function (P1-P3). SLAM yields a distribution over the current location (X0)
from the object distributions (Oi) produced by the CRF and evidence about actions
performed (Ai), while using map functions (object-location probabilities: Mi),
movement-transition functions (probabilities of new locations given a location and an
action: XTi) and the prior (Pr), which is uniform in our experiments. The POMDP
chooses an action (A0) that maximizes expected utility given the current-location
distribution (X0) provided by SLAM, using utility (Ui) and movement-transition (XTi)
functions. In addition to the shared variables, the one other source of interaction
among the modules occurs during the training of the CRF, which takes into account
SLAM’s map function (Mi) and SLAM/POMDP’s transition function (XTi).

Each module involves bidirectional connectivity internally, and thus bidirectional
sharing of information and uncertainty among variable nodes that are connected via
factor nodes. The unidirectional connectivity shown across modules shouldn’t be
confused with the directionality in Bayesian networks. Here it concerns the flow of
information – via messages passed by the summary product algorithm [11] – rather
than the direction of probabilistic conditionality. By enabling flow from SLAM to the
POMDP, but not in the reverse direction, the POMDP can exploit SLAM’s
localizations without the utilities used in POMDP’s lookahead affecting localization.

Figure 5: Complete graphical model (factor graph) for CRF+SLAM+POMDP. X0 is the current state and A0
is the action to be selected. Bold outlines indicate evidence nodes.

Similarly, unidirectional flow from the CRF to SLAM implies bottom up perception
without top-down feedback.

2. Implementation of a Movement Task in the Graphical Architecture

A discrete 1D movement task has been implemented, where the goal is to reach a
specified location, and the actions move a step to the right or left, or do nothing (Figure
6). This is a simple task that was chosen primarily to demonstrate that the combined
graph works within the graphical architecture; however, it does include real world
complexity stemming from: ambiguity in what is perceived, such as which wall is seen
when a wall is perceived; errors in the perception functions that can lead to recognizing
the wrong object; and actions that do not always behave as they are specified. The
resulting uncertainty concerning both what is being perceived and where the agent is
located calls for the kind of evidence combination across steps provided by the CRF
and SLAM, and the probabilistic decision making provided by the POMDP.

The graph in Figure 5 is solved at each step to choose the action to perform given
the available evidence. The selected action is then performed in the world – an
environment simulator – where it usually behaves as specified, but may fail. The graph
acts as a sliding window that considers a fixed distance into the past (via the CRF and
SLAM) and the future (via the POMDP). After an action is performed, the existing
evidence is slid back a step (via extra-architectural code) and new observations arrive.
The CRF senses rectangles (doors and walls), circles (doorknobs), and colors (doors
have distinctive colors), usually correctly but occasionally in error. From the current
and (within window) past sensations, object distributions are created for each time step.
SLAM leverages these object distributions, along with evidence about previous actions,
to generate a distribution over the current location. The POMDP exploits this
distribution to initiate a probabilistic lookahead that yields a distribution over the action
to be chosen. The best action is then selected in working memory, and applied in the
world, enabling the whole process to repeat.

This task has been implemented within the graphical architecture without building
specialized CRF, SLAM, and POMDP algorithms into it. Instead, knowledge is added
to long-term memory (LTM) and evidence to working memory (WM). Since general
perception and learning mechanisms are not yet in place, external code is used to
initialize WM and LTM. LTM is encoded via conditionals built from conditions,
actions, condacts, and functions. Conditions, actions and condacts are specified as
patterns over named predicates with typed arguments. Conditions and actions behave
much as in rule systems, with conditions matching to working memory and actions

Figure 6: Task environment with two walls, three doors, an initial location (I) and a goal location (G).
The relative values of the utility function for this goal location can be seen in the square shading. From
the initial state, a lookahead of at least three is needed here before any discrimination is provided.

proposing changes to it. Condacts – a neologism for conditions and actions – meld
these functionalities, by passing messages both from and to WM, to yield the
bidirectional processing that is crucial in probabilistic graphical models. A conditional
function defines a constraint over a combination of variables in the conditional.

Working memory includes a function for each predicate, with each compiling to a
factor node to which variable nodes are attached. For each of the variable nodes in
Figure 5 there is thus also an unshown WM factor node. Each conditional in LTM
compiles to a factor subgraph, with across-conditional linkage based on common
predicates, via sharing of WM nodes. The graphical architecture’s compiler actually
generates a factor graph that differs in some details from this nominal graph, even
beyond the inclusion of WM factor nodes, but the two are logically equivalent. The
graph shown, with three steps of input for localization plus a lookahead of three steps
for action choice, compiles within the graphical architecture into 132 variable nodes
and 161 factor nodes (for
293 nodes total). The
largest graph with which
we’ve so far experimented
uses ten steps of input for
localization and five steps
of lookahead. It requires
376 variable nodes and
451 factor nodes (for 827
nodes total).

The bidirectional links in the figure arise from condacts, with the factor nodes
defined by functions. Figure 7, for example, shows the conditional for the transition
probabilities from location X1 to location X2 via action A1. Conditions specify the
unidirectional interface links among modules, as shown in Figure 8 for map M-1, and
are also used with
actions to form rules
that convert the
results of operator
evaluation into
preferences for the
next action, as shown
in Figure 9. Selection
in this context occurs via the same code that drives selection in declarative memory and
symbolic decision making [7]. Behavior then occurs over a sequence of graph cycles,
each of which involves passing messages within the factor graph – via a variant of the
summary product algorithm that uses a mixture of integration and maximization to
summarize out variables at factor nodes – until quiescence, and then selected changes
being made to working memory.

Three experiments have been run to
verify that the combined graph works
and to begin exploring its behavior.
These vary: (1) the initial and goal
locations, each from 0 to 11; (2) the
localization length, from 1 to 10; and (3) the lookahead length, from 1 to 5. When
parameters are not varying as part of an experiment, they are set to: the initial and goal
locations, and the utility function shown in Figure 6; localization of 5 steps; and

CONDITIONAL 'Map_X-1_O-1
 Conditions: (O-1 object:o-1)
 Condacts: (X-1 location:x-1)
 Function: .8<0,W>, .2<0,∧>, 0<0,{D1,D2,D3}>,

 .1<1,W>, .9<1,∧>, 0<1,{D1,D2,D3}>,
 ...

Figure 8: Map conditional for objects and locations (∧ denotes no object).

CONDITIONAL Acceptable
 Conditions: (A0 action:a0)
 Actions: (Selected operator:a0)

Figure 9: Action-selection conditional.

CONDITIONAL 'Transition_X1_X2_A1
 Condacts: (X1 location:x1)
 (X2 location:x2)
 (A1 action:a1)
 Function: 1<0,0,∧>, 1<0,0,L>, .2<0,0,R>,
 0<0,1,∧>, 0<0,1,L>, .8<0,1,R>,
 0<1,0,∧>, .8<1,0,L>, 0<1,0,R>,
 ...
 Figure 7: Location-transition conditional (∧ denotes no-move action).

lookahead of 3 steps. The localization subgraph is initialized with evidence for all
prior steps that corresponds to what is sensed at the initial location, modulo noise, and
the action of doing nothing.

The first experiment examined how the full graph worked across the space of
problems, yielding overview data on its performance. The graph solved 78% of the 144
distinct problems within 30 cycles, with failures primarily due to the localization
ambiguity resulting from empty starting locations, which all look alike. The solved
problems required an average of 7802 messages/cycle and 14 seconds/cycle,2 with an
average ratio of 1.7 between the number of cycles to solve a problem and the minimum
number of moves possible to solve it. Although the uncertainties and errors can thus
lead to non-optimal moves, it usually recovers and solves the problem within 30 steps.

The second experiment evaluated the impact of varying the SLAM localization
length from 1 (requiring 794 messages and 1 second per cycle) up to 10 (26447
messages and 34 seconds per cycle). Localization improved as the graph went from 1
to 6 steps, but then decreased from there. As the localization window got large, faulty
observations and failed actions contaminated the localization process for too long (an
issue that should be addressable by an incremental learning approach). The third
experiment explored lookahead via the POMDP. Given the utility function plus the
initial and final locations, a lookahead of 1 yielded random decisions, but anything
more enabled it to head towards the goal. The strength of the correct action increased
with lookahead length, as did the computational cost in terms of both messages per
cycle (from 6621 to 9426) and time per cycle (from 11 to 20 seconds).

 The key result here is that the architecture yields behavior corresponding to a
combination of CRF, SLAM, and POMDP from knowledge-driven activities on top of
the architecture’s theoretically elegant, hybrid mixed model of memory and processing
– based on factor graphs and the summary product algorithm – rather than from
extensions to the architecture. The same memory and decision-making capabilities
earlier shown to support things like semantic and rule-based memories, as well as
symbolic problem solving, also yield decision theoretic problem solving and perception.
The main issue in these experiments is the cost of processing the graph. A cognitive
architecture must achieve ~50 msec per cycle to model real-time human-like results.
The timings here are off by two to three orders of magnitude. However, further
optimizations plus parallelizing message passing do look to provide a promising route.

3. Summary and Future

By investigating decision-theoretic problem solving (via a POMDP) in a graphical
architecture that has already been shown capable of classical symbolic problem solving,
a step has been taking towards fusing these distinct approaches. The uniform
integration of perception (via a CRF), plus the localization it supports (via SLAM) for
the POMDP, also demonstrates the additional potential for unification provided by this
architectural approach, particularly between central cognition and peripheral perception.

Much additional progress is required beyond the step taken here. The POMDP
work in isolation has shown that the graphical architecture enables a generic
representation of time steps with a step variable – avoiding the need to replicate the

2 The timings for the three experiments are from different machines. The exact values aren’t critical; it

is the orders of magnitude that are significant.

subgraph for each step – but this remains to be exploited for the entire joint graph. We
are also looking to extend SLAM to mapping, the POMDP to multiagent reasoning and
Theory of Mind [12], and the CRF to latent dynamic conditional random fields
(LDCRF) [13]. It is further crucial to investigate how these graphs can scale efficiently,
be learned, and integrate with other capabilities, such as: mental imagery, as a general
intermediary between perception and cognition [14]; episodic learning and memory, or
some other incremental approach, to utilize past observations in SLAM; and reflection,
to cope with insufficient decision theoretic knowledge.

Acknowledgments

This work has been sponsored by the U.S. Army Research, Development, and
Engineering Command (RDECOM) and the Air Force Office of Scientific Research,
Asian Office of Aerospace Research and Development (AFOSR/AOARD). Statements
and opinions expressed do not necessarily reflect the position or the policy of the
United States Government, and no official endorsement should be inferred.

References

[1] J. E. Laird. Extending the Soar cognitive architecture. In Artificial General Intelligence 2008:
Proceedings of the First AGI Conference, Memphis, Tennessee, March 2008. IOS Press.

[2] G. H. Ogasawara. RALPH-MEA: A Real-Time, Decision-Theoretic Agent Architecture. Technical
Report No. UCB/CSD-93-777, EECS Department, University of California, Berkeley, 1993.

[3] R. C. Murray, K. Vanlehn, and J. Mostow. A decision-theoretic architecture for selecting tutorial
discourse actions. In Proceedings of the AI-ED 2001 Workshop on Tutorial Dialogue Systems, 2001.

[4] T. Huang, D. Koller, J. Malik, G. Ogasawara, B. Rao, S. Russell, and J. Weber. Automatic symbolic
traffic scene analysis using belief networks. In Proceedings of the 12th National Conference on
Artificial Intelligence, pages 966-972, 1994

[5] P. S. Rosenbloom. Combining procedural and declarative knowledge in a graphical architecture. In
Proceedings of the 10th International Conference on Cognitive Modeling, Manchester, United
Kingdom, August 2010.

[6] P. S. Rosenbloom. Rethinking cognitive architecture via graphical models. Cognitive Systems
Research, 12(2), 2011.

[7] P. S. Rosenbloom. From memory to problem solving: Mechanism reuse in a graphical cognitive
architecture. In Proceedings of the 4th Conference on Artificial General Intelligence, Mountain View,
California, August 2011.

[8] J. Lafferty, A. McCallum, F. Pereira. Conditional random fields: Probabilistic models for segmenting
and labeling sequence data. In Proceedings of the 18th International Conference on Machine
Learning, pages 282–289, 2001.

[9] T. Bailey and H. Durrant-Whyte. Simultaneous localisation and mapping (SLAM): Part II State of the
art. Robotics and Automation Magazine, 13:108–117, 2006.

[10] M. I. Jordan and T. J. Sejnowski. Graphical Models: Foundations of Neural Computation. MIT Press,
Cambridge, Massachusetts, 2001.

[11] F. R. Kschischang, B. J. Frey, and H-A. Loeliger. Factor graphs and the sum-product algorithm. IEEE
Transactions on Information Theory, 47(2): 498-519, February 2001.

[12] D. V. Pynadath and S. C. Marsella. PsychSim: Modeling theory of mind with decision-theoretic
agents. In Proceedings of the International Joint Conference on Artificial Intelligence, 2005.

[13] L.-P. Morency, A. Quattoni and T. Darrell. Latent-Dynamic Discriminative Models for Continuous
Gesture Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2007.

[14] P. S. Rosenbloom. Mental imagery in a graphical cognitive architecture. In Proceedings of the 2nd
International Conference on Biologically Inspired Cognitive Architectures, Arlington, Virginia,
November 2011. In press.

