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Ahstract-
Player models allow search algorithms to account for 
differences in agent behavior according to player's 
preferences and goals. However, it is often not until 
the first actions are taken that an agent can begin 
assessing which models are relevant to its current 
opponent. This paper investigates the integration of 
belief distributions over player models in the Monte­
Carlo Tree Search (MCTS) algorithm. We describe 
a method of updating belief distributions through 
leveraging information sampled during the MCTS. 
We then characterize the effect of tuning parameters 
of the MCTS to convergence of belief distributions. 
Evaluation of this approach is done in comparison 
with value iteration for an iterated version of the pris­
oner's dilemma problem. We show that for a sufficient 
quantity of iterations, our approach converges to the 
correct model faster than the same model under value 
iteration. 

I. INTRODUCTION 

Evaluating a player's actions and infering a strategy or 

player type are useful capabilities for an agent within a game. 

When human players interact in a virtual environment, they 

can quickly deduce, via their experience and expectations, 

both what another player is intending to do and the reasons 

behind such actions. This allows for quick reactions and 

counters in competitive games as well as cohesive teamwork 

in collaborative settings. It is natural, then, that AI in games 

can benefit from having similar reasoning ability. 

It is no surprise that humans can act in unexpected ways 

within a game, often in a manner considered sub-optimal from 

the perspective of an AI, given a relatively straightforward 

goal such as navigating to the end of a level, defeating an 

opponent, or maximizing a score. Players may have ulterior 

motives within a virtual environment based on their own 

preferences and goals. For games, the use of models with 

explicit representation of beliefs and preferences of agents 

can allow agents to predict such behavior. Player modeling 

is a common pursuit in artificial intelligence, one with many 

challenges such as how to learn, predict actions of, plan 

against, and adapt to changes in another agent's behavior. 

In this paper, we are primarily concerned with the capability 

of an agent to efficiently plan under the uncertainty of a 

player's model as well as converge to a correct player model 

based on the actions taken by the player. Considering many 
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potential opponent models can restrict game tree pruning, 

which in turn can impact performance [1]. Fast convergence 

to the correct model diminishes the uncertaintly, allowing the 

agent to plan more effectively. 

Model recognition in multi-agent domains exists as an 

alternative to building a model during play. Given a set of 

possible models, observations on actions taken by a target are 

used to inform an agent of the target's likely model. Model 

recognition can then be performed by using a classifier [2], [3] 

or by updating a probability distribution over models [4]-[6]. 

In the latter case, one must be able to evaluate the probabilities 

of observed actions given the candidate models. 

This paper investigates the application of player models to 

Monte-Carlo Tree Search, a sampling-based, anytime planning 

algorithm that been proposed as a promising technique for 

agent planning in board and video games [7]. We characterize 

how various parameters of MCTS affect the convergence of 

beliefs over models. Furthermore, we describe how informa­

tion used in MCTS can be leveraged for belief updates with 

modifications to the algorithm. This provides the benefit of 

inferring which model an agent may be using while simulta­

neously planning in the game's state space. 

For evaluation, we adapt an iterated form of the prisoner's 

dilemma (IPD) such that an agent can have hidden incentive to 

favor one of the two actions, collusion or betrayal. We test the 

ability of our MCTS adaptation to converge correctly and effi­

ciently to the appropriate model. We also compare the results 

against an established social simulation tool, PsychSim [8], 

which employs value iteration-a full-width search-for the 

same purpose. IPD provides an established, well-studied game 

with discrete actions, useful for anlayzing belief convergence, 

whereas a more complex domain may add confounding factors 

or noise to our results as well as limit the application of value 

iteration for comparison. 

II. POMDPs 

In the case where agent models are finite, static, and delib­

erate in action, the problem of uncertainty in an agent's true 

model can be conceptualized as a single-agent partially ob­

servable Markov decision process (POMDP) [9]. The POMDP 

representation has been applied in a wide variety of domains 

[10] and has frequenly been used for modeling players in 

games [11]-[14]. For convenience and consistency, we will 



adopt the representation of a POMDP while discussing belief 

distributions as applied to MCTS. 

A POMDP is a generalization of an Markov decision 

process (MDP) where some aspect of the world state is not 

directly observable to an agent. In this paper, we restrict 

uncertainty to the model used by a deterministic agent in the 

game. In this framework, a POMDP can be represented as a 

tuple (S, A, fl, B, R), where 

• S is the set of world states, comprising of both the game 

state and the type of the agent in question. Due to the 

latter uncertainty, an agent cannot directly observe the 

full world state. 

• A is the set of actions available to the agents. 

• fl defines a set of observations on actions occuring in 

the game. In this case, we allow for all actions to be 

observable at all times. 

• B describes the set of belief states possible given an 

initial state and a set of observed actions. 

• R relates the COlmnon definition of a reward function in 

MDPs, where R : S x A -+ R 
In order to plan successfully in an POMDP, agents must 

utilize an observation history to update their beliefs over time. 

As we define observations to be derived from actions taken in 

the game, a history can be defined as ht = (al,a2, ... at). 
Beliefs are then described as a distribution over possible 

states given those histories, or bt = Pr (s I ht) I;j s E S. 
The goal of planning in a POMDP is to find a policy 7r 

maximizing the agent's expected reward, as given by j''' (bo) = 

L:oE[R(st,at)lbo,7r]. This can be done by searching 

through the belief space to identify the optimal value function, 

V*(bt) = maxaEA [R(bt,a) + LOEOfl(olbt,a)V*(bt+d], 
where fl is a probability distribution over observations. 

III.  MONTE-CARLO TREE SEARCH 

Monte-Carlo Tree Search is a search algorithm based on 

Monte-Carlo simulations within a sequential game. Through 

evaluating potential states by averaging simulation outcomes, 

MCTS holds several advantages over other search methods. 

By sampling, it bypasses the curse of dimensionality of large 

numbers of state transitions. Black box simulations can be 

used for problems too complex to represent fully, and it can 

be used effectively without prior domain knowledge [15]. In 

addition, it converges to an optimal policy in fully observable 

and partially observable problems, given an appropriate explo­

ration function [16], while also being an anytime approach. 

As previously mentioned, MCTS has been proposed as a 

promising approach for developing an action policy within 

the state spaces of board and video games [7] and has already 

seen successful application to games such as computer Go 

[17], General Game Playing [18], poker [19], and Ms. Pac­

Man [20]. In 2009 FUEGO, an MCTS Go program, beat a 

top human professional at 9x9 Go [21]. 

MCTS performs a large number of simulations of a game, 

from the current player state to the end of the game. As a 

new simulation begins searching through the game tree, MCTS 

considers information gathered from previous playthroughs. 

Selection -Expansion -Simulation-Backpropagation 
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Fig. 1: Outline of Monte-Carlo Tree Search 

Specifically, in each step of the game, MCTS selects the next 

action with a bias toward those with a higher success rate 

for the player. When an action is taken for the first time, the 

rest of the game is played out randomly. The resulting score 

or reward value is then back-propogated through the explored 

nodes. Over many simulations, the program focuses on better 

moves, leading to farther look-ahead without giving as much 

consideration to inferior moves. We will now describe this 

process in more detail. 

In an MCTS game tree, every node represents a state of the 

game. Each node aggregates statistics from the simulations 

that have previously passed through that particular node. 

Specifically, the nodes contain two pieces of information: 

• Value The value of the game state. Typically, this is the 

average of the cumulative rewards of all simulations that 

visited the node. 

• Visit Count The number of simulations that have reached 

the game state represented by the node. 

For MCTS, the root node represents the starting state of 

the game and is the only node present in the tree initially. 

By repeating four steps outlined in Figure 1, the tree is 

explored until a number of maximum simulations has been 

reached or there is no time remaining for exploration. We will 

describe these steps in detail as well as discuss some of the 

implementations we have chosen for this paper: 

• Selection Potential actions at each node are selected in 

a fashion that balances exploration and exploitation. The 

idea behind such a heuristic is to progress deeper into 

the game tree through actions with higher expected value 

(exploitation) while periodically trying less favorable 

moves that may have yet unseen value (exploration). We 

use Upper Confidence Bounds applied to Trees (UCT), 

a popular, efficient algorithm for guiding MCTS [15]. In 

this search technique, an action is selected according to 

the following criteria: 

{ {2llln;} a* = argmaxaEA(s) V(s,a) + Cv ----;:;:-

where a E A (s) represents an action within the set of 

available actions for state s, V(s, a) is the average value 

for action a stored in the tree node representing state s, 
np is the number of visits for the current node, and na 

is the visit count for the child node resulting from the 



action. C is a parameter to tune the search, where higher 

values encourage more exploration. 

• Expansion When a leaf node is reached, a new action is 

selected for expansion. The resulting state is added as a 

new node to the tree. In this way, the tree is expanded 

by one node for each simulation. 

• Simulation From a newly added node, the remainder of 

the game is performed by selecting actions according to a 

set policy until the game ends. For this paper, we simulate 

the remainder of the games by selecting actions randomly. 

• Back-propagation Once the end of the simulated game is 

reached, we update each node that was traversed during 

the simulated play through of the game. The visit count 

for each node is incremented, and the endgame values 

are incorporated into each node's cumulative average. 

When the maximum number of simulations has been 

reached, an action is returned. This can be the action with 

the highest expected value or that with the highest visit count. 

We choose the latter approach. 

IV. ALTERATIONS TO MCTS 

MCTS in its basic form does not account for partial ob­

servability in a world state of a game. Various adaptations 

of MCTS have been proposed to handle types of partial 

observability. Cowling et al. [22] apply MCTS to games with 

hidden information and uncertainty, but do not address belief 

convergence and inference. Silver and Veness [16] introduced 

a variation of UCT search for general application to POMDPs 

using a particle filter to update beliefs. The approach was 

empirically demonstrated on the games battleship and partially 

observable PacMan. A comprehensive survey of alterations to 

Monte-Carlo Tree Search for diverse application can be found 

in [23]. We outline our enhancements to the algorithm in this 

section. 

Reward Scaling 

In common applications of MCTS, a binary winlloss re­

sult is a sufficient value to track and maximize throughout 

the space exploration. However, as we intend to work with 

domains with continuous rewards, it is clear that a static 

exploration factor in MCTS may have reduced effectiveness 

over time with a cumulative, unbounded reward. To keep both 

exploration and exploitation in balance, it is necessary to either 

adjust the expected values within the game tree or devise a 

method of choosing an exploration factor dynamically. 

To solve this problem, before initiating MCTS, we sample 

the game with random moves a set number of times. This 

gives us a rough distribution of possible reward values. We 

scale expected values by the difference of the maximum 

and minimum values sampled beforehand. These scales are 

calculated per model, as each model may have reward values 

of an arbitrary magnitude. 

Node Information 

In MCTS, each node records the average value for the game 

state. For multi-agent problems, this value corresponds to the 

expected value for the agent who acted immediately prior to 

the current game state. The heuristic used to select an action 

can then maximize the expected value for each agent during 

their respective turns. Under the uncertainty of which model an 

agent is using, it is necessary to reason over the results of each 

action in the context of each potential model. Therefore, rather 

than retaining a single expected value for an agent, nodes keep 

a vector of values corresponding to the set of rewards achieved 

by each independent preference model of an agent. 

Node Selection 

Since each node now contains multiple values correspond­

ing to the multiple possible agent models, we must reconsider 

the method of selecting actions while exploring the game tree. 

It is desirable to retain the benefits provided by UCT, namely 

balancing exploitation of previously observed actions with 

exploration of potentially inferior moves. Yet, the agent must 

also consider such actions in the context of various models. In 

order to accomplish both objectives during the selection phase, 

we propose sampling a single model according to the current 

belief distribution, then performing the UCT selection over 

actions using expected values specific to the chosen model. 

Back-propagation 

Rather than propagating results of one model of an agent 

back through the game tree, each model's rewards are tracked 

through the simulation of the game. Each of these results 

is then propagated to the visited nodes for the purpose of 

updating their estimated values. 

Belief Update 

As in existing approaches to mental modeling [6], we 

employ a Bayesian approach to updating belief distributions 

over said models. Starting with an initial distribution of model 

probabilities, we update according to Bayes' Theorem, as seen 

in Equation 1 where m represents a model and a indicates an 

action. 

P(mla) _ P(m) x P(alm) 
- Li P(mi) x P(almi) (1) 

The difficulty with this particular update strategy is deter­

mining P(alm), the probability of an action given a particular 

model. Several methods of calculating such probability can be 

found in [6]. For fairness of comparison with PsychSim in our 

test case, we adopt a distribution model given by: 

(2) 

V. EVALUATION 

To evaluate our implementation, we tested the approach 

on a sequential version of the iterated prisoner's dilelmna 

problem with full visibility only of actions taken, i.e. no direct 

observation of the other player's value model. The goal of an 

agent, then, is to infer the correct player model of the other 

agent and adapt its own strategy accordingly. 



In this setup, two players must complete the prisoner's 

dilemma scenario twenty times. Each player has two actions, 

defect or remain silent. If only one player betrays his part­

ner, he receives a high reward while his partner suffers a 

low reward. If both players betray the other, both receive a 

moderately low reward. If both players remain silent, they each 

receive a moderately high reward. The specific payoffs used 

in our tests are given in Table I. 

Agents 

TABLE I: Payoff matrices. 

Base game. 

Betray Silent 
Betray 

I 
2,2 

I 
4,1 

Silent 1--'1·,4-+-"'3",3,......, '----'-_ .l...---'----' 

Incentive for left player to betray. 

Betray Silent 
Betray 

I 
3,2 

I 
5,1 

Silent 1--"'0·,4-+-"'2",3,......, '----'-_.l...---'----' 

Incentive for left player to remain silent. 

Betray 
Silent 

Betray 
1,2 
2,4 

Silent 
3,1 
4,3 

The game is setup with two agents of heterogeneous ca­

pabilities. The uncertain agent, who always plays first in 

each scenario, must assess his opponent's model over the 

course of the game and predict his decisions effectively. 

The second agent only assesses the current scenario, but he 

also has a hidden additional reward either for betraying the 

first player or staying silent, depending on the corresponding 

assigned model. Furthermore, while each model's expected 

reward distribution results in a pure strategy from a game 

theoretic standpoint, we instead sample the second agent's 

action according to the distribution given by Equation 2. 

The stochastic sampling of actions allows for selection of 

suboptimal actions for the second agent, which will hinder 

the first agent's ability to surmise the second's true model. 

PsychSim 

We compare MCTS with an existing social simulation tool, 

PsychSim. PsychSim employs value iteration to solve for agent 

policies that maximize expected reward based on its goals [24]. 

At each time point, an agent, i, computes a value, Va(bt), 
of each action a, given its beliefs, bt. A transition function 

projects the effects of actions of other agents, 'iT ,i, in future 

states, and each state is evaluated against the agent's goals, g. 

Va(bD = gi' b! + L V(bt+l)P(bt+llb�+l,a,'iT'i(bt+l)) 
b'-+l 

The depth at which agents model the game state is bounded 

by a finite horizon, limiting their lookahead. As value iteration 

is a full width algorithm, the agents complete an exhaustive 

analysis of all reachable states within the limited horizon. 

Information Consideration 

It should be noted that MCTS has a distinct information 

advantage over value iteration by simulating the remainder of 

a game beyond the most recently expanded node. This benefit 

comes at the cost, as simulating the entire length of a game 

requires more time. The time requirements are linear in the 

number of passes through the tree and length of the game. 

The rollout process is fast, however, and can be halted at a 

finite horizon if runtime is a concern. Value iteration, on the 

other hand, has a complexity linear in the number of actions 

and quadratic in the number of states, which quickly becomes 

intractable for application beyond a small game. Furthermore, 

we show here that even if value iteration could incorporate 

information in the form of a random action simulation beyond 

its finite horizon, belief convergence would be unaffected. 

Lemma 1. For the game IPD and the Boltzmann distribution 

of action probabilities, the addition of a random action sim­

ulation phase beyond the finite horizon considered in value 

iteration does not affect the expected Bayesian belief update 

over models. 

Proof The value of an action can be decomposed into the 

cumulative, discounted reward accumulated up to the finite 

horizon and the reward achieved during the rollout phase. 

Under this observation, Equation 2 becomes 

eE[V" (m)]+E[Vr(m)] 
P( aim) = '" eE[Vh, (m)]+E[Vri (m)] 

L...-a,EA 
eE[Vh (m)] eE[Vr(m)] 

'" eE[V" (m)] eE[Vr (m)] 
L...."aiEA t t 

Furthermore, we observe that for each round of IPD, the 

agent is in a world state independent of the actions taken 

up until that point. Additionally, given that during the rollout 

procedure, actions are sampled uniformly, we know that the 

expected reward for rollouts of equivalent length (in rounds) 

is identical. This leads to the following reduction: 

E[Vri(m)] = E[Vrj(m)] where ITil = ITjl therefore, 

eE[Vri (m)] 
= eE[Vrj (m)] 

eE[Vh(m)]eE[Vr(m)] 
P( aim) - ------==,.---,--....,.,. - eE[Vr(m)] '" eE[Vhi (m)] 

L...-aiEA 
eE[Vdm)] 

P(alm) = '" eE[Vh,(m)] 
L...-a.,EA 

With P(alm) shown to be unchanged by a random simu­

lation phase in value iteration, it is trivial to show that the 

updated P(mla) given by Equation 1 is similarly unaffected. 



Horizon (VI) - Nodes Searched (MCTS) 

Model Approach 1-4 2-S 3 -16 4 -32 5 -64 
Loyal MCTS 13.14(±O.S6) 12.S7(±O.79) 13.12(±O.63) 13.4S(±O.4S) 12.62(±O.3S) 
Loyal VI 13.2(±O.64) 13.19(±O.60) 13.16(±O.65) 13.03(±O.62) 13.07(±O.66) 
Betray MCTS 12.95(±O.7) 12.92(±O.S2) 12.05(±O.SS) 12.9S(±O.92) 12.56(±O.39) 
Betray VI 12.33(±O.71) 12.1S(±O.7S) 12.5(±O.79) 12.53(±O.61) 12.49(±O.S7) 

TABLE II: Cumulative reward (and standard deviation) at the end of the game by opponent model, approach, and states 

explored. 

Experimental Setup 

In this section, the MCTS implementation with belief up­

dates over models is evaluated alongside a value iteration 

implementation provided by PsychSim. For comparison, the 

MCTS variant was restricted to expanding a number of nodes 

equal to the number of reachable game states within a set 

finite horizon used by PsychSim. The results of each test were 

compiled over fifty games. 

In our first experiment, we vary the number of expanded 

nodes used by MCTS before returning a decision. MCTS 

is a technique which improves with an increasing number 

of iterations, though at the cost of time. Given the binary 

decisions-betray or remain silent-at each stage, we restrict 

the number of possible nodes to powers of 2. These values 

then correspond to the horizon used by PsychSim, in that 32 

nodes would be comparable to value iteration exploring all 

states up to a horizon of 4. Two scenarios are tested, one for 

each possible model of the second player. 

The second parameter tested in this work is the effect 

of the exploration factor on the updated belief distributions. 

Lesser values of the exploration factor diminish its impact in 

affecting which nodes are explored, resulting in a more greedy 

search. Similarly, a large exploration factor would emphasize 

exploration, expanding nodes higher in the game tree, though 

at the cost of accuracy for longterm play. As before, tests 

were completed for each of the models of the second player. 

Since value iteration is a full-width planning algorithm, no 

corresponding parameter exists, and therefore PsychSim is 

omitted from these tests. 

V I. RESULTS 

End game results for MCTS and value iteration are dis­

played in Table II. As value iteration finds optimal policies 

for discounted reward, finite horizon POMDPs, the simulated 

games with PsychSim provide an approximation of the highest 

score we can expect any approach to achieve given both the 

uncertainty of model and stochastic selection of action by the 

opponent. The results serve simply to illustrate that the MCTS 

agent achieves a comparable score. 

In both tested models, where the second agent either has 

added incentive to be loyal to or betray the first agent, we ob­

serve similar belief convergence patterns. The number of nodes 

used to search the game's state space has a direct impact on 

the rate of belief convergence. As increased sampling provides 

more accurate expected values for actions, the belief update 

strategy is able to converge more readily. In comparison, as 

the calculations for PsychSim's value iteration end at a finite 

horizon, no information regarding the remainder of the game 

is included. As each iteration of MCTS samples the entire 

duration of the game, the disparity between resulting scores 

of the two simulated models is likely larger than that calculated 

by the shorter horizon of value iteration. This, in turn, is 

reflected in the estimated probability of an action given a 

model (Equation 2), which is used to calculate the new belief 

distribution. We see this effect in this sharp convergence of 

more highly sampled games (nodes � 16). 
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When the exploration value is varied, belief convergence is 



directly affected. With large exploration factors, more nodes 

are added earlier in the game tree. This has two main effects. 

First, MCTS expends more resources examining branches that 

are irrelevant in the course of the game. Inflating the likelihood 

of these branches directly affects the resulting values for the 

agents and, in turn, the probabilities used to update the belief 

distribution. Second, exploration of nodes earlier in the game 

inflates the proportion of randomly selected moves for the 

simulation phase of MCTS. This shift produces more noise 

in resulting outcomes, again affecting the probabilities used 

to calculate the belief update. These factors force MCTS to 

converge more slowly when exploration of actions is empha­

sized. 
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� 

0> 

� 
0 

:c <Xl il 0 

� .... � 0 
W 
aJ '" >-
� 0 " 
aJ '" 

0 

... 
0 

.. ... ... ... '" '------ ... 
- c=O.1 

--- c= 1 

c=2 

--- c=5 

c= 10 

. . . . . . . . . . . 

--.-, " :JY.' 
- /" -'" .... ,- ...... 

" .... - '" ......... ... ,,--
... ... ...... ' ... -- ... ' ..... _ --

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Round 

Fig. 5: Average convergence of beliefs with various explore 

factor values when exposed to betrayal behavior. 

V II. DISCUSSION 

It is important to note the potential pitfall of fast con­

vergence to a single model. The caveat in this setup is that 

once the distribution aligns to a model, the probabilities for 

opposing models converge to zero (with numeric round-off). 

Under our Bayesian update scheme, it would be difficult to re­

cover if the belief distribution converged to an incorrect model. 

However, in addition to tuning the number of nodes searched 

and the exploration factor, a potential implementation could 

also adopt a more conservative estimation of the probability 

of an action given a model, P(alm). Alternative estimations 

can be found in [6]. Similarly, one could adjust the update 

mechanism to incorporate polynomial weights. This process 

has been shown to be near optimal in [25]. 

Future Work 

Fast identification of a player model is a rich problem full 

of areas for exploration. We have shown here how adapting 

information present within MCTS can be leveraged to identify 

a player's model given his or her actions. But how well 

can an agent perform in cases where the set of models is 

incomplete or when the models considered are themselves 

imperfect descriptors of behavior? As previously noted, game 

designers and AI researchers alike must take precautions to 

avoid prematurely converging to an incorrect model given a 

potentially noisy set of actions or observations. 

Additionally, we can consider relaxing various assumptions 

present in this work. How does this analysis change under a set 

of models that are not static over time? How do the specifics 

of a domain relate to choice of formulation for P(alm)? 
Furthermore, we envision the eventual necessity to support 

fully recursive mental modeling, allowing application to do­

mains involving Theory of Mind. An agent may someday need 

to consider not simply what a player might do according to 

his or her own preferences, but also how the player's beliefs 

on the agent's behavior affect his or her planning. This line 

of reason extends to an arbitrary depth of recursive belief 

modeling. Adding support for this type of reasoning is non­

trivial, however, as it significantly increases the complexity of 

the problem [26] and, therefore, may limit its potential for 

application in games. 

V III. CONCLUSION 

This paper adapts Monte-Carlo Tree Search to the task 

of planning under uncertainty of a player's model, as well 

as characterizes how the exploration/exploitation parameter 

and number of simulations affects belief convergence. We 

demonstrate how information already tracked in MCTS can be 

used for updating such belief distributions, given a sufficient 

number of passes. The results show that asymmetric tree 

growth allows for more informative inference over full-width 

approaches. Moreover, further tuning of the convergence rate 

is made possible by the parameters specific to MCTS. 
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