From: AAAI Technical Report WS-02-06. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

Towards Computing Optimal Policies for Decentralized POMDPs

R. Nair, M. Tambe

M. Yokoo

D. Pynadath, S. Marsella

Computer Science Department Cooperative Computing Research Group Information Sciences Institute

University of Southern California
Los Angeles CA 90089
{nair,tambe}@usc.edu

Abstract

The problem of deriving joint policies for a group
of agents that maximze some joint reward function
can be modelled as a decentralized partially observ-
able Markov decision process (DEC-POMDP). Sig-
nificant algorithms have been developed for single
agent POMDPs however, with a few exceptions, ef-
fective algorithms for deriving policies for decentral-
ized POMDPS have not been developed. As a first
step, we present new algorithms for solving decentral-
ized POMDPs. In particular, we describe an exhaus-
tive search algorithm for a globally optimal solution
and analyze the complexity of this algorithm, which we
find to be doubly exponential in the number of agents
and time, highlighting the importance of more feasible
approximations. We define a class of algorithms which
we refer to as “Joint Equilibrium-based Search for Poli-
cies” (JESP) and describe an exhaustive algorithm and
a dynamic programming algorithm for JESP. Finaly,
we empirically compare the exhaustive JESP algorithm
with the globally optimal exhaustive algorithm.

Introduction

Multiagent systems have moved out of the research lab
into a wide range of applications areas. Systems are be-
ing developed that employ multiagent technology even
for highly critical applications such as multi-satellite
control. To meet the challenge of such bold applica-
tions, multiagent research will need to provide high-
performing, robust designs that are as nearly optimal
as feasible. Unfortunately, in practice, research on im-
plemented systems has often fallen short in assessing
the optimality of their proposed approaches.

To address this shortcoming, researchers have in-
creasingly resorted to decision-theoretic models as a
framework in which to formulate and evaluate multia-
gent designs. Given some group of agents, the problem
of deriving separate policies for them that maximize
some joint reward can be modeled as a decentralized
POMDP. In particular, the DEC-POMDP model (de-
centralized partially observable Markov decision pro-
cess) is a generalization of a POMDP to the case where
there are multiple, distributed agents basing their ac-
tions on their separate observations. (POMDP is in
turn a generalization of a single agent Markov decision
process, or MDP, whereby the agent may make deci-

NTT Communication Science Labs
Kyoto, Japan 619-0237
yokoo@cslab.kecl.ntt.co.jp

University of Southern California
Marina del Rey CA 90292
{pynadath, marsella}@isi.edu

sions on partial observations of the state.) The COM-
MTDP model (Pynadath & Tambe 2002) is a closely re-
lated framework that extends DEC-POMDP by explic-
itly modeling communication. We describe this frame-
work in detail here to provide a concrete illustration of
a decentralized POMDP model. These frameworks al-
low a variety of key issues to be posed and answered.
Of particular interest here, these frameworks allow us
to formulate what constitutes an optimal policy for a
multiagent system and in principle how to derive that
policy. (Nair et al 2002) demonstrate how a decentral-
ized POMDP framework can be applied to a complex
multiagent domain like RoboCupRescue (Kitano et al
1999).

However, with a few exceptions, effective algorithms
for deriving policies for such decentralized POMDPS
have not been developed. Significant progress has been
achieved in efficient single-agent POMDP policy gener-
ation algorithms (refs, Monahan, etc). However, it is
unlikely such research can be directly carried over to
the decentralized case. Finding an optimal policies for
decentralized POMDPs is NEXP-complete and there-
fore provably does not admit a polynomial time algo-
rithm (Bernstein et al 2000). In contrast, solving a
POMDP is PSPACE-complete (Papadimitriou & Tsit-
siklis 1987). As Bernstein et al. note(Bernstein et al
2000) , this suggests a fundamental difference in the
nature of the problems. Since the reward function is a
joint one, the decentralized problem can not be treated
as one of separate POMDPs in which individual poli-
cies can be generated for individual agents. (For any
one action of one agent, there may be many different
rewards possible, based on the actions that other agents
may take.) Another possibility for solving decentralized
POMDPs is to convert the decentralized problem into
a single agent problem by assuming free communica-
tion among all agents. Unfortunately, in the domains
of interest in this work, agents do not have such lux-
ury of communication. Yet another possibility is to
simplify the nature of the policies considered for each
of the agents. For example, Chades et al. (Chades
et al 1994) restrict the agent policies to be memory-
less (reactive) policies, thereby simplifying the problem
to solving multiple MDPs. Such simplifications reduce
the applicability of the approach and essentially side-
step the question of solving DEC-POMDPs. Peshkin

et al. (Peshkin et al. 2000) use finite-controllers to |

represent the partially observable state as an abstrac-
tion. However their model does not explicitly model
communication.

Thus, there remains a critical need for new effi-
cient algorithms for generating optimal policies in dis-
tributed POMDPs. In this paper, we take a first step,
by presenting new algorithms for solving decentralized
POMDPs, restricted to the case of discrete belief states.
First, we present an exact algorithm in the sense that
it derives the globally optimal policy via a full search
of the space of policies. This exact algorithm is of
course expensive to compute which limits its appli-
cability to problems where there is sufficient time to
off-line pre-compute such an exact solution. There-
fore, we also present two approximate algorithms that
search the space of policies incrementally. These algo-
rithms iterate through the agents, finding an optimal
policy for each agent assuming the policies of the other
agents are fixed. These algorithms, which we refer to as
Joint Equilibrium-based Search for Policies (JESP) al-
gorithms, terminate when no improvements to the joint
reward is achieved, thus achieving a local optimum sim-
ilar to a Nash Equilibrium. We conclude with an em-
pirical evaluation of the algorithms.

Background

The COM-MTDP model (Pynadath & Tambe 2002)
is a formal model based on multiple communicating
POMDPs with joint transition, observation and reward
functions. This model allows us to explicitly reason
about the cost of communication. This is especially
relevant in the search for an optimal solution to a de-
centralized POMDP because communicating enables
agents to synchronize their beliefs allowing for a more
optimal solution.

The COM-MTDP Model

Given a team of selfless agents, «, a COM-
MTDP (Pynadath & Tambe 2002) is a tuple,
(S, Au, B0, P,Q%4, 04, Ba, R). S is a set of world states.
A, = Hie(X A; is a set of combined domain-level ac-
tions, where A; is the set of actions for agent i. X, =
[Iico Zi is a set of combined messages, where ¥; is the
set of messages for agent i. P(sp,a,s.) = Pr(StTl=
S¢|St=sp, AL =a) governs the domain-level action’s ef-
fects. Qo = [];c, Q2 is a set of combined observations,
where (2; is the set of observations for agent i. Obser-
vation function, O, (s,a,w) = Pr(Q=w|S=s, Al 1=a)
specifies a probability distribution over the agents’ joint
observations and may be classified as:

Collective Partial Observability: No assumptions
are made about the observability of the world state.

Collective Observability: Team’s combined obser-
vations uniquely determines world state: Yw € €,
3s € S such that Vs’ # s, Pr(Q," = w|St = s') = 0.

| Ind. Obs. | Coll. Obs. | Coll. Part. Obs. |
No Comm. P-Comp. NEXP-Comp. NEXP-Comp.
Gen. Comm. P-Comp. NEXP-Comp. NEXP-Comp.
Free Comm. P-Comp. P-Comp. PSPACE-Comp.

Table 1: Computational Complexity

Individual Observability: Each individual’s obser-
vation uniquely determines the world state: Vw € €,
Js € S such that Vs’ # s, Pr(Q = w|St = ') = 0.

Agent i chooses its actions and communication based
on its belief state, bt € B;, derived from the observa-
tions and communication it has received through time
t. By, = Hiea B; is the set of possible combined belief
states. Like the Xuan-Lesser model(Xuan et al 2001),
each decision epoch t consists of two phases. In the first
phase, each agent ¢ updates its belief state on receiv-
ing its observation, w! € €;, and chooses a message to
send to its teammates. In the second phase, it updates
its beliefs based on communication received, 3, and
then chooses its action. The agents use separate state-
estimator functions to update their belief states: ini-
tial belief state, b? = SE?(); pre-communication belief
state, by, = SFiex(bist, w!); and post-communication
belief state, bly,y = SEixe(bles, L)

The COM-MTDP reward function represents the
team’s joint utility (shared by all members) over states
and actions, R:Sx X, x A, —R, and is the sum of two
rewards: a domain-action-level reward, R4:SxA,—R,
and a communication-level reward, Rs:5%.,—R. COM-
MTDP (and likewise R-COM-MTDP) domains can be
classified based on the allowed communication and its
reward:

General Communication: no assumptions on X,
nor Ry.

No Communication: %, = 0.
Free Communication: Vo € 3, Rx(o) = 0.

Analyzing the extreme cases, like free communication
(and others in this paper) helps to understand the com-
putational impact of the extremes. Table 1 from (Py-
nadath & Tambe 2002) shows the worst case computa-
tional complexities for various classes of COM-MTDP
domains. In the case of general communication and
partially observable states, the decision problem of de-
termining if there exists a joint policy with expected
reward at least k is NEXP-Complete. The following
sections illustrate algorithms that find a joint policy
for this case.

Optimal Joint Policy

When agents do not fully communicate, they must coor-
dinate instead by selecting policies that depend on their
entire histories of observations. Thus, each agent, i, fol-
lows a deterministic policy of behavior, m; : Qf — A,
that maps a sequence of its individual observations into
an action. We define a joint policy, 7y, for a team, «,

as a combination of such individual policies for each
member of a. The problem facing the team is find-
ing the optimal joint policy—i.e., the joint policy that
maximizes the team’s expected reward.

One sure-fire method for finding the optimal joint
policy is to simply search the entire space of possible
joint policies, evaluate the expected reward of each, and
select the policy with the highest such value. To per-
form such a search, we must first be able to determine
the expected reward of a joint policy. In computing this
expectation, we must consider all of the branches, for
both different world states and different observations,
that occur at each time step. In general, for a team
a={1,...,n} and for a horizon T, we can compute its
expected reward when following a joint policy, 7., by
expanding all possible paths of execution. In the ini-
tial time step, we can express the value of the policy as
follows:

Vﬂ-a ZZP(, ‘Y 80) . Z . Z OQ(SQ7 ‘ <u)10, e ,wn0>)

sp€ES W10€N1 Wno €Ny
“[R(s0, (m1({w10)), - - - s T ((wno))))
+Va (50, ((w10) 5 - - » {wno)))] (1)

This expression represents the expected immediate re-
ward earned at time 0 and the future value of executing
policy, 7, from time 1 onward. We represent the latter
as Vi, which is a function of the current state of the
world and the individual agents’ observations. For all
times t < T, we can express this function as:

V;a (Stfla <<CU10, s awl(t71)> PR <wn07 cee

:E (stfh <7Tl (<OJ10, “e 7w1(t71)>) P
st€S
\Wn(t-1)))) » 5t)

Z . Z O, (St; <7T1 (<w10, C

w1t €21 wigQn

\Wn(t-1))))

Tn (<(,<)n07 .

7w1(t—1)>) PRI

. T (<wn0, - ,wn(t_1)>)> TR ,wnt>)
'[R(St, <7T1(<(4)107 N ,w1t>), e ,7Tn(<wn0, e ,wm>)>)
+ V.,ﬁ':l(st, {10y« s W1t) 5 -+ vy {Wn0y « -+ s Wit)]

(2)

We terminate this recursion at the end of the finite
horizon, where:

ngl(sﬂ (W10 -+ s W1T) 5+« o5 (Wnoy -+ -+, WRT)))
- 3)

At each time step, the computation of V,ﬁa per-
forms a summation over all possible world states and
agent observations, so the time complexity of this algo-
rithm is O ((|S] - [Q2a]"")). The overall search per-
forms this computation for each and every possible

joint policy. Since each policy specifies different ac-
tions over possible histories of observations, the num-
ber of possible policies for an individual agent ¢ is

12,17 —1
0] (|A,| €, 1=1) The number of possible joint policies

(271

lex|
is thus O <(|A*| T2 T-1)), if we take |A.| and |2,

to be the largest such state sizes over all the agent team
members. The time complexity for finding the optimal
joint policy by searching this space is thus:

Q.T—1 | T
0<(|A*|'Q*1) (5] 192a1))

Thus, the time complexity of this exhaustive method
for finding an optimal joint policy is exponential in the
number of possible observations, [€.|, exponential in
the number of agents, |a|, and doubly exponential in
the time horizon, T.

Approximate Algorithms

Given the complexity of exhaustively searching for the
optimal joint policy, it is clear that such methods will
not be successful when the amount to time to gener-
ate the policy is restricted. In this section, we will
present any-time approximation algorithms that are
guaranteed to find a locally optimal joint policy. We
refer to this category of algorithms as “Joint ESP”
(Joint Equilibrium-Based Search for Policies). The so-
lution obtained is closely related to (i) PBP(Person-
by-Person) in team theory; (ii) Nash equilibrium from
cooperative and non-cooperative game theory. The key
idea is to find the policy for one agent at a time, keeping
the policies of all the other agents fixed, that maximizes
the joint expected reward. This process is repeated un-
til an equilibrium is reached (local optimum is found).

Exhaustive approach for Joint ESP

This algorithm below describes an exhaustive algorithm
for Joint ESP. Here we consider that there are n coop-
erative agents. We modify the policy of one agent at a
time keeping the policies of the other n—1 agents fixed.
The function bestPolicy, returns the joint policy that
maximizes the expected joint reward, obtained by keep-
ing n — 1 agents’ policies fixed and exhaustively search-
ing in the entire policy space of the agent whose policy
is free. At each iteration, the value of the modified joint
policy will either increase or remain unchanged (within
some threshold e of the previous joint policy’s value).
This is repeated until an equilibrium is reached, i.e., the
policies of all n agents remains unchanged. This policy
is guaranteed to be a local maximum since the value of
the new joint policy at each iteration is non-decreasing.

ExhaustiveJointESP()

n: number of agents

€: threshold for convergence

prev: previous joint policy, initially randomly set

convCount: count to indicate if convergence has
taken place, initially 0
1. while convCount # n — 1

2. fori—1ton

3. fix policy of all agents except @

4. policySpace« list of all possible policies for
i

5. new « bestPolicy(i,policySpace,prev)
6. prev «— new

7. if new.value - prev.value < €

8. convCount«—convCount + 1

9. else

10. convCount«—0

11. if convCount =n — 1

12. break

13. return new

This algorithm has the same worst case complexity
as the exhaustive search for a globally optimal policy.
However, this algorithm could end up in a local opti-
mum. Techniques like simulated annealing can be ap-
plied to perturb the solution found to see if it settles
on a different higher value. In the following section
we describe a dynamic programming alternative to this
exhaustive approach for doing Joint ESP.

Introducing Dynamic Programming for
Finding an Optimal Policy

Basic Ideas In this section, we describe a dynamic-
programming like method for finding an optimal policy
for agent 1, assuming that agent 2’s policy my is de-
termined. As discussed in previous sections, we cannot
describe a policy of an agent as a function of its belief
state. Therefore, we cannot use standard value itera-
tion methods. However, we can still utilize a dynamic-
programming like method since the principle of opti-
mality holds. More specifically, assume we have a k-
step optimal policy. If we take a part of this policy for
last j steps, then this policy must be the optimal pol-
icy for remaining j steps, given the history of first k —j
steps. In this section, we show how to define a value
function, which is defined on possible histories agent 1
might encounter.

Notations

e Assume we are designing the policy of agent 1, while
the policy of agent 2, 75 is fixed.

S is a set of world states {1,2,...,m}

Ay, As, are set of action for agent 1 and 2. a joint
action is represented as (ag, as).

4, Qg are set of observations for agent 1 and 2.

Observation functions: O; and Os. O;(s, (a1,as2),w;)
represents the probability of observing wy, if the cur-
rent state is s and the previous joint action is (a1, ag).
For notation simplicity, we define another observation
function O} and O}, where O}(s, (a1, a2),w;) repre-
sents the probability of observing w;, after perform-
ing joint action (a1, az) at state s.

A reward function: R(s,(a1,asz)) is the immediate
reward for performing joint action (a1, as) at state s.

e transition function: P(s;, (a1,a2),sy) represents the
probability of the current state is sy, if the previous
state is s; and the previous joint action is (a1, ag).

e history: history h' is a sequence of t pairs
of an action and an observation, i.e., h! =<
(at,wh), (@, w?),..., (at,w’) >

e A state transition history S*, which is a sequence of
t states < S1,59,...,5; >.

e A belief state over state transition histories BS®. Let
us denote the probability that S* occurs as B(S?)

Details of Dynamic Programming Method

e For a given history h'~! and a state transition
history S*, we can calculate the probability agent

2 has observed a sequence of observations of~!,

P(ot=1|pt=1,SY).
Also, given an observation history o' ~!, agent 2’s t-th
action is determined. We denote this as az(o’~1).

Pt st = T 04(Si, (a, az(0'™)),wi)

1<i<t—1
where S; is the i-th state in S*, a} is the i-th action in
ht~1 and o'~ ! is the first i — 1 observations in o'~!.

e For a given history h*~! and initial synchronized be-
lief state b, we can calculate the current belief
state over state transition histories BS®.

B(S?%) can be incrementally calculated as follows.

B(S') = binit(S1)

B(SY) = B(S) YP(0 10,81 - O4(Si, (0} aa(o ™)), w

oi—1

- P(S;, (af,a2(0"™1)), Six1)/

DB(S) DL MK ST) - O1(Si, (af, az(0™ 1)), w

si oi—1
where a%,w? is i-th action and observation in h'~1.

e Assume we are designing a k step policy.

We define a value function V}, which is a function
of a history h*~7. V;(h*~7) represents the expected
reward for taking an optimal policy for remaining j
steps after history h*=7.

V; is derived from Vj“l,
mMaXg, €A, Vja1 (hF=7).

Vi" is defined as follows.

i.e.,

Vi) =

Vit (W) = ER(ay[h*71)

%
1

%
1

)

)

) Vja1 is recursively defined as follows.

Va(REI) = ER(a1|hk_j)+
> Plwr|nF 7 a1) - Vioa(< B~
w1 €Q

ER (Zl‘ht 1 ZE St t 1‘ht 1 St)
Stot 1

R(S, (a1,a2(0"™1)))

Plwr|h*,a1) = Z E(Skfﬂl)'

Sk—j+1pt—1

-0} (Sk—js1, (a1, az(0"7)),w1)

Experimental Results

In this section, we perform an empirical comparison of
the algorithms described in sections 3 and 4.1 in terms
of time and performance. We are currently working on
an implementation of the dynamic programming ap-
proach. The following subsections describes the exper-
imental setup and the results.

Experimental Description

We consider a multiagent version of the classic tiger
problem that has been used in order to explain ap-
proaches to solving single agent POMDPs(Cassandra
et al 1994). Our modified version of the problem is as
follows:

Two agents are in a corridor facing two doors:”left”
and “right”. Behind one door lies a hungry tiger and
behind the other lies untold riches but the agents don’t
know the position of either. The agents can jointly or
individually open either door. If either of them opens
the door behind which the tiger is present they are at-
tacked by the tiger, however the injury sustained if the
opened the door to the tiger is less severe if they open
that door jointly. Similarly, they receive wealth when
they open the door to the riches in proportion to the
number of agents that opened that door. The agents
can independently listen for the presence of the tiger at
a small cost. If the tiger is behind the left door and the
agent has listened, the agent received a . The agents
cannot communicate with each other at all. Further we
assume that every time either agent opens either one of
the doors, the riches and the tiger are randomly reposi-
tioned and the agents have to solve the problem again.
This problem can be generalized to n agents but we will
only consider the 2 agent problem here.

Clearly, acting jointly is beneficial because the agents
receive more riches and sustain less damage if they
acted together. However, because the agents receive in-
dependent observations and cannot communicate, they
need to consider the observation histories of the other
agent and what action they are likely to perform. We

consider two cases of the reward function, where we
vary the penalty for jointly opening the door to the
tiger. The exact problem specification is as described
1n Fig. 1. Fig. 1(a) describes the transition probabili-

(a1,w1) it Qb for each state transition given start state and joint

action, Fig. 1(b) describes the observation probabilities
for each joint observation given state and joint action
last performed and Figs. 1(c) and 1(d) describe the two
reward functions A and B that we use to evaluate the
algorithms in section 3 and 4.1.

Evaluation Results

We ran the exhaustive globally optimal algorithm(sect
3) and the Exhaustive JESP algorithm(section 4.1) for

oF— j‘hk i gk-itl the multiagent tiger problem using the specifications

provided in Fig. 1. Finding the globally optimal policy
is extremely slow for this problem and is exponential in
the finite horizon, T. Hence, we evaluate the algorithms
only for finite horizons of 1 and 2. Fig 2 shows the
results of this evaluation. We ran the JESP algorithm
for 5 different randomly selected initial policy settings.
We compare the performance of the algorithms in terms
of the number of policy evaluations that were necessary
and in terms of the expected value of the policy.

Fig. 2(a), shows the results of running the globally
optimal algorithm and the Exhaustive JESP algorithm
using reward function A for finite horizon=1. As can be
seen from this figure, the JESP algorithm requires much
fewer evaluations to arrive at an equilibrium. Also the
policy at equilibrium is the same as the globally opti-
mal policy for this particular setting. The difference
in the run times of the globally optimal algorithm and
the JESP algorithm is more apparent when the finite
horizon=2 (See Fig. 2(b)). Here the globally optimal al-
gorithm performed 531441 policy evaluations while the
JESP algorithm did fewer than 3000 evaluations. In
this case, too, JESP succeeded in finding the globally
optimal policy. However, this is not always the case.
Fig. 2(c), shows the results of running the globally op-
timal algorithm and the Exhaustive JESP algorithm
using reward function B for finite horizon=1. Here, the
JESP algorithm often settles on a locally optimal policy
that is different from the globally optimal policy.

Based on Fig 2, we can conclude that the exhaus-
tive JESP algorithm performs better than an exhaus-
tive search for the globally optimal policy but can some
times settle on a policy that is only locally optimal.
This could be sufficient for problems where the differ-
ence between the locally optimal policy’s value and the
globally optimal policy’s value is small and it is impera-
tive that a policy be found quickly. The JESP algorithm
can be altered so that it doesn’t get stuck in a local op-
timum using techniques like simulated annealing.

Summary and Conclusion

Decentralized POMDPs can be used as a decision theo-
retic model for many multiagent problems highlighting
the importance of finding algorithms for solving decen-
tralized POMDPs. Most of the work in the literature

Action/Transition | Tiger Left « Tiger Left] Tiger Left « Tiger Right | Tiger Right «+ Tiger Right | Tiger Right «— Tiger Left |

<Open Right,Open Right> 0.5 0.5 0.5 0.5
<Open Left,Open Left> 0.5 0.5 0.5 0.5
<Open Right,Open Left> 0.5 0.5 0.5 0.5
<Open Left,Open Right> 0.5 0.5 0.5 0.5
< Listen,Listen> 1.0 0.0 1.0 0.0
<Listen,Open Right> 0.5 0.5 0.5 0.5
<Open Right,Listen> 0.5 0.5 0.5 0.5
<Listen,Open Left> 0.5 0.5 0.5 0.5
<Open Left,Listen> 0.5 0.5 0.5 0.5

Action | State | <Tiger Left,Tiger Left> l <Tiger Left,Tiger Right> | <Tiger Right,Tiger Right> | <Tiger Right,Tiger Left> |

< Listen,Listen> Tiger Left 0.7225 0.1275 0.0225 0.1275

<Listen,Listen> Tiger Right 0.0225 0.1275 0.7225 0.1275
ZOpen Right,Open Right> * 0.25 0.25 0.25 0.25
<Open Left,Open Left> * 0.25 0.25 0.25 0.25
<Open Right,Open Left> * 0.25 0.25 0.25 0.25
<Open Left,Open Right> * 0.25 0.25 0.25 0.25
<Listen,Open Right> * 0.25 0.25 0.25 0.25
<Open Right,Listen> * 0.25 0.25 0.25 0.25
<Listen,Open Left> * 0.25 0.25 0.25 0.25
<Open Left,Listen> * 0.25 0.25 0.25 0.25

[Action/State [Tiger Left [Tiger Right |
<Open Right,Open Right> +20 -50
<Open Left,Open Left> -50 +20
<Open Right,Open Left> -100 -100
<Open Left,Open Right> -100 -100
<Listen,Listen> -2 -2
<Listen,Open Right> +9 -101
<Open Right,Listen> +9 -101
<Listen,Open Left> -101 —+9
<Open Left,Listen> -101 +9
(c)
[Action/State [Tiger Left [Tiger Right |
<Open Right,Open Right> +20 0
<Open Left,Open Left> -50 +20
<Open Right,Open Left> -100 -100
<Open Left,Open Right> -100 -100
<Listen,Listen> -2 -2
<Listen,Open Right> +9 -101
<Open Right,Listen> +9 -101
<Listen,Open Left> -101 —+9
<Open Left,Listen> -101 +9

(d)

Figure 1: (a) Transition function; (b) Observation function; (¢) Reward function A;(d)Reward function B

Figure 2: Evaluation Results for (a) Reward A, Horizon = 1; (b) Reward A, Horizon = 2; (¢) Reward B, Horizon =

1

Joint Policy

| Number of evaluations | Value |

Globally Optimal Policy 81 -2
JESP Policy (at start, Agentl—Policyl,Agent2<—Policy7) 27 (3 iterations) -2
JESP Policy (at start, Agentl—Policy4,Agent2—Policy8) 18 (2 iterations) -2
JESP Policy (at start, Agentl«—Policy4,Agent2—Policy7) 27 (3 iterations) -2
JESP Policy (at start, Agentl—Policy6,Agent2—Policy8) 18 (2 iterations) -2
JESP Policy (at start, Agentl—Policy8,Agent2—Policy6) 27 (3 iterations) -2

(a)

Joint Policy

| Number of evaluations | Value |

Globally Optimal Policy 531441 -4
JESP Policy (at start, Agentl«Policy275,Agent2—Policy713) 1458 (2 iterations) -4
JESP Policy (at start, Agentl«Policy140,Agent2—Policy522) 2187 (3 iterations) -4
JESP Policy (at start, Agentl«—Policy245,Agent2—Policy523) 2187 (3 iterations) -4
JESP Policy (at start, Agentl<Policy678,Agent2—Policy310) 2187 (3 iterations) -4
JESP Policy (at start, Agentl«Policy421,Agent2+Policy720) 1458 (2 iterations) -4

(b)

Joint Policy

| Number of evaluations [Value |

Globally Optimal Policy 81 10
JESP Policy (at start, Agentl—Policy7,Agent2—Policy4) 18 (2 iterations) 10
JESP Policy (at start, Agentl—Policy0,Agent2—Policy3) 27 (3 iterations) -2
JESP Policy (at start, Agentl—Policyl,Agent2—Policy5) 27 (3 iterations) -2
JESP Policy (at start, Agentl—Policy6,Agent2—Policy8) 18 (2 iterations) -2
JESP Policy (at start, Agentl«—Policyb,Agent2<—Policy6) 27 (3 iterations) -2

()

is restricted to the single agent POMDP case and does
not directly apply because the decentralized problem
is much harder. Most algorithms for solving decen-
tralized POMDPs make some simplifying assumptions
that restrict their applicability and do not explicitly
model communication amongst the agents. To over-
come these shortcomings, we present a formal model,
COM-MTDP (Pynadath & Tambe 2002), that can ex-
plicitly reason about communication (when and what
to communicate).

We then describe a exhaustive search algorithm for
a globally optimal solution and analyze the complexity
of this algorithm, which we find to be doubly expo-
nential in the number of agents and time, highlighting
the importance of more feasible approximations. We
then describe a class of algorithms which we refer to as
“Joint Equilibrium-based Search for Policies” that will
find a local optimum and describe an exhaustive algo-
rithm and a dynamic programming algorithm for JESP.
We empirically compared the exhaustive JESP algo-
rithm with the globally optimal exhaustive algorithm
for a 2 agent “tiger problem”. For this problem it was
found that the JESP algorithm was much faster than
the global search. Simulated Annealing like techniques
can be used to prevent the exhaustive JESP algorithm
from getting stuck in a local optimum.

References

Bernstein, D. S.; Zilberstein, S.; and Immerman, N. 2000.
The complexity of decentralized control of MDPs. In UAI-
00.

Cassandra, A. R.; Kaelbling, L. P.; and Littman, M. L.

1994. Acting optimally in partially observable stochastic
domains. In AAAI-199/.

Chades, I.; Scherrer, B.; and Charpillet, F. 1994. A heuris-
tic approach for solving decentralized-pomdp: Assessment
on the pursuit problem. In SAC-2002.

Kitano, H. et al. 1999. Robocup-rescue: Search and res-

cue for large scale disasters as a domain for multiagent
research. In IEEE Conference SMC-99.

Nair, R.; Tambe, M.; and Marsella, S. 2002. Team
formation for reformation in multiagent domains like
RoboCupRescue. In RoboCup Symposium.
Papadimitriou, C. H., and Tsitsiklis, J. N. 1987. Complex-
ity of markov decision processes. Mathematics of Operatios
Research 12(3):441-450.

Peshkin, L.; Meuleau, N.; Kim, K.-E.; and Kaelbling, L.
2000. Learning to cooperate via policy search. In UAI-
2000.

Pynadath, D., and Tambe, M. 2002. Multiagent teamwork:
Analyzing the optimality complexity of key theories and
models. In AAMAS-02.

Xuan, P.; Lesser, V.; and Zilberstein, S. 2001. Communi-
cation decisions in multiagent cooperation. In Agents-01.

