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Abstract 
We describe technology for robust traffic monitoring and au- 
tomated vehicle control using decision-theoretic and proba- 
bilistic reasoning methods. In this work, we have designed 
and implemented probabilistic models for deriving high- 
level descriptions of traffic conditions, as well as the maneu- 
vers and intentions of individual vehicles, from visual obser- 
vation of a traffic scene. Enhancements to standard proba- 
bilistic modeling and inference techniques have improved the 
performance of uncertain reasoning over time with continu- 
ous variables. We have demonstrated our models and algo- 
rithms in real-time analysis of traffic images as well as con- 
trol of simulated vehicles. 

1 Overview 
This paper describes models and algorithms for de- 
riving high-level descriptions of traffic conditions- 
as well as the maneuvers and intentions of individual 
vehicles-from visual or sensor-based observation of 
a traffic scene. Our probabilistic network models rep- 
resent both individual vehicles (their position, velocity, 
etc.) and aggregate variables concerned with the inter- 
action of vehicles (flow, travel time, etc.). This high- 
level reasoning has been successfully integrated with 
real-time visual processing to identify and track indi- 
vidual vehicles accurately. In addition to modeling the 
traffic situation, we can use the probabilistic networks 
to model the sensors as well, demonstrating integrated 
sensor fusion and validation. 

This framework has been extended to handle reason- 
ing over time, by adding nodes to represent state vari- 
ables at progressive time slices. At the next level of 
abstraction, our plan recognition framework can cap- 
ture the beliefs and intentions of individual drivers 
and represent the dependence of their actions. This 
dependence encapsulates the driver’s decision-making 
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process in choosing a maneuver, based on goals and 
knowledge. With the resulting probabilistic model, we 
can use partial observations (e.g., lane changes, sig- 
nals) of a vehicle to infer the driver’s plan (e.g., pass- 
ing, exiting) and future actions. 

In addition to traffic monitoring on stationary high- 
way video, we have demonstrated the use of simi- 
lar integrated sensing and probabilistic reasoning in 
dynamic vehicle traffic simulation. Through integra- 
tion with a simple decision-tree based decision-making 
system, we have demonstrated autonomous intelligent 
driving. Our driving system is able to maintain a sensi- 
ble estimate of the current traffic situation from simu- 
lated sensor inputs and negotiate a variety of challeng- 
ing traffic contingencies. Our simulator is integrated 
with the SmartPATH animation system for real-time vi- 
sualization of the traffic scenarios. 

Complex probabilistic networks often require pro- 
hibitive computational resources for practical real-time 
traffic monitoring. We have designed, implemented, 
and demonstrated new approximation algorithms for 
probabilistic network inference especially well-suited 
to continual state updating and predicting, as often re- 
quired for traffic monitoring and control. These algo- 
rithms aim to produce the most accurate predictions 
possible within the time available for inference. 

2 Bayesian Networks 
Recent advances in probabilistic modeling technology 
from the AUuncertain reasoning community have led 
to significant improvements in the representation of un- 
certain situations. In particular, formalisms based on 
Bayesian networks [7] support the representation of al- 
most arbitrary patterns of conditional independence, 
and algorithms for exploiting whatever independence 
is expressed in the model. 

More specifically, a Bayesian network is a directed 
acyclic graph representation of a joint probability dis- 
tribution. For a given.set of random variables, the 
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joint distribution represents the probability of each 
and every combination of possible values. However, 
Bayesian networks take advantage of conditional in- 
dependence relations in the distribution to produce a 
more compact representation. The nodes in the net- 
work correspond to the random variables and contain 
local conditional probability distributions of the cor- 
responding variable given its parents. Each variable 
is conditionally independent of any non-descendant 
nodes in the graph given the values of its parent nodes. 
This information is implicit in the network representa- 
tion through the absence of links between nodes, and 
we can exploit the fact to chain together the separate, 
smaller conditional probability distributions to again 
recover the joint distribution. Therefore, in principle, 
we can use the Bayesian network to compute any prob- 
ability of interest. 

In the work described below, we employ Bayesian 
networks as our basic representation for uncertain 
states of knowledge about traffic situations. We present 
specific examples of networks we have developed for 
recognizing driver maneuvers in traffic monitoring, 
and for dynamic vehicle control. 

3 Plan Recognition 

Since driver actions are normally limited to an enu- 
merable set of maneuvers (e.g., lane changes, passing, 
exiting), it is reasonable to categorize driving at this 
high level. Recognizing the high-level maneuver be- 
ing carried out can help in assessing an overall situ- 
ation and in predicting the future behavior of drivers. 
To support maneuver recognition (more generally, plan 
recognition), we require a probabilistic model relating 
the maneuver of a single car to observable features, 
from which we can categorize maneuvers and predict 
future behavior given partial information. 

To perform general plan recognition tasks, we can 
generate a Bayesian network representing our causal 
planning model and use it to support evidential rea- 
soning from observations to plan hypotheses. We be- 
gin with a model of the planning agent operating in the 
world. As it begins planning, the agent has a certain 
mental state, consisting of its preferences (e.g., goals), 
beliefs (e.g., about the state of its environment), and 
capabilities (e.g., available actions). We assume the 
actual planning process to be some rational procedure 
for generating the plan that will best satisfy the agent’s 
preferences based on its beliefs, subject to its capabili- 
ties. This plan then determines (perhaps with some un- 
certainty) the actions taken by the agent in the world. 

The structure of the Bayesian network is based on 
the framework depicted in Figure 1.  That diagram can 

itself be viewed as a Bayesian network, albeit with 
rather broad random variables. To make this opera- 
tional, we replace each component of the model with 
a subnetwork that captures intermediate structure for 
the particular problem. The limited connections among 
the subnetworks reflect the dependency structure of our 
generic planning model. 
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Figure 1 : Plan recognition framework. 

We applied these plan recognition techniques to the 
problem of a driver on the highway trying to predict 
the actions of the other drivers. Since these actions 
are normally limited to a small set of maneuvers (e.g., 
lane changes, passing, exiting), recognition of another 
driver’s maneuvering plan would greatly assist in the 
prediction of future actions. To this end, we have 
worked on a probabilistic model of the maneuvers of 
a single car. We can then use this model to identify the 
current maneuver of an observed car andor predict fu- 
ture actions, given only partial information. 

3.1 Maneuver Recognition Network 
Our traffic maneuver recognition network is depicted 
in Figure 2. A complete description of this network ap- 
pears elsewhere [9]. 

This model in effect specifies the likelihood of cer- 
tain maneuvers under every possible combination of 
world situation and driver mental state. For example, 
suppose that the driver is currently traveling below the 
desired speed and that there is another car directly in 
front while the lane to the left is clear. Then it is likely 
that driver will pass the car on the left. This model 
of the driver’s decision process is based in part on the 
driving model underlying the BAT simulated vehicle, 
described in Section 4. 

3.2 Inference 
Once we have created the Bayesian network, we can 
perform recognition tasks by fixing any observed vari- 
ables and querying the network about the relevant vari- 
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Figure 2: Complete Bayesian network for maneuver recognition. 

ables. For instance, we may be interested in determin- 
ing the plan chosen by the agent, in which case we 
would examine the nodes in the plan subnetwork. Al- 
ternatively, we can predict future agent activity or ef- 
fects by examining the probabilities of those variables. 

Suppose we are trying to predict the behavior of the 
car behind us as we are driving in the middle lane of a 
three-lane highway. We observe the car move into the 
rightmost lane, and we want to determine ifit is passing 
us, preparing to exit, or perhaps simply moving into the 
slower-moving lane. With respect to the Bayesian net- 
work, we have observed that initially front clr? is false 
and that x position is the middle lane. The only ob- 
served effect is that x position at the next point in time 
is the right lane. If we want to infer the driver’s plan, 
we can examine the general lane change node to see 
that the posterior probability of a one-lane right shift 
is 0.64, while that of a pass is 0.35. The former is more 
plausible since we assume that drivers prefer to pass on 
the left-hand side, so passing on the right has a rela- 
tively low prior probability. The only remaining ma- 
neuver with nonzero probability is an exit. All of the 
other plans have zero probability, since the observed 
change in lanes violates their definitions. 

Given no other contextual observations, it is reason- 
able to predict that the car will remain in the right lane. 
However, if there were another car to our left, thus 
blocking the car behind us from passing on the left, we 
could also instantiate frontL clr? to be false. We then 
find that the posterior probability that the car is pass- 
ing has increased to 0.53, while that for the car simply 
shifting one lane to the right has dropped to 0.46. The 
probabilities for the final lane position have changed as 
well, to 0.5 1 and 0.48 respectively. Notice that, with- 

out knowing about the car to our left, our prediction 
would be that the car was not passing, but the obser- 
vation of that aspect of the context changes our belief. 

This example illustrates several aspects of our plan- 
recognition framework, highlighting the importance of 
accounting for context. By modeling a driver’s deci- 
sion process, observations of the initial state provided 
strong evidence about the resulting plan. We were also 
able to model plan execution in a manner similar to 
other approaches to recognition. The resulting network 
was able to perform useful inference, even when given 
only partial observations. 

4 Vehicle Control 

4.1 The BATmobile 

The BAT (Bayesian Automated TaX) project [2] has as 
its ultimate aim to introduce autonomous vehicles into 
normal highway traffic. Because the necessary low- 
level capabilities such as visual vehicle monitoring [3] 
and lane following [SI are reaching maturity, this chal- 
lenging problem may not be as intractable as some- 
times thought. 

The first phase of the project is a feasibility study to 
establish the computational and sensing requirements 
for driving and to investigate the nature of the nec- 
essary decision algorithms. We use a 2-D physical 
simulation that generates moderately realistic 3-D ren- 
dered video output (SmartPATH), which is passed to 
the BAT (see Figure 3). Using this information, the 
BAT must understand the current traffic situation, se- 
lect high-level actions such as braking, accelerating, 
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Figure 3: Basic components of the BAT project 

and lane changing, and implement those actions using 
low-level control. 

The BAT’s real-time driving task is characterized by 
pervasive uncertainty: 

e 

0 

e 

4.2 

noisy sensors-position errors are significant, and 
some vehicles may not be detected, especially at 
night or in poor weather conditions, 

sensor inputs must be integrated, and some sen- 
sors may fail altogether, and 

the world is only partially observable-vehicles 
may be occluded, and other drivers’ intentions 
must be inferred (as in Section 3). 

Dynamic Bayesian Networks 
To maintain the BAT’s belief state, we employ dynamic 
Bayesian networks (DBNs). DBNs are an extension of 
Bayesian networks that allow variables to take on dif- 
ferent values over time [ll. Figure 4 shows the general 
structure of a DBN. Typically, observations are taken 
at regular “time slices”, and a given network structure 
is replicated for each slice. DBNs model their domains 
as partially observable Markovprocesses, so nodes can 
be connected not only to other nodes within the same 
time slice but also (and only) to nodes in the immedi- 
ately preceding or immediately following slice. The 
Markov property states that the future is independent 
of the past given the present. As long as the BAT’S 
representation of the world conforms to this property, 
the BAT need not maintain the history of its percepts 
to predict the next state since the accumulated effect of 
its observations is captured in its current belief state. 

As implemented, the BAT monitors each vehicle 
tracked by the sensor system with a separate DBN. 
Each network contains nodes for sensor observations, 
such as vehicle position and velocity, as well as nodes 
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Figure 4: The structure of a dynamic probabilistic network. The 
ovals denote sets of state nodes or sensor nodes. The arcs going from 
one slice to the next form the state evolution model, and the arcs go- 
ing into the sensor nodes form the sensor model. The shaded ovals 
denote observations available when predicting the state at time t + 1. 

for predicting driver intentions, such as whether the 
driver intends to make a lane change or to slow down. 

Like a Kalman filter, each network computes prob- 
ability distributions for a vehicle’s position and veloc- 
ity based on both its latest observations and its previ- 
ous state estimate (which reflects the influence of all 
previously observed evidence). Unlike a Kalman fil- 
ter, which is limited to Gaussian distributions, the net- 
work predictions can be arbitrarily distributed. For ex- 
ample, if a vehicle were approaching some debris di- 
rectly in front of it, the network could predict that the 
vehicle would move either to the right or to the left (but 
not straight) in order to avoid the debris. Also, the net- 
work could easily incorporate additional sensor infor- 
mation. If the sensor system recognized that a vehi- 
cle was flashing its right turn signal, the network could 
make predictions that biased the vehicle’s position to- 
wards the right. 

To incorporate the influence of nearby vehicles, each 
network contains nodes corresponding to those vehi- 
cles. For example, the Front Clear and Front Speed 
Diff nodes in Figure 5 refer to “the space between this 
vehicle and the vehicle in front”, and “the speed dif- 
ference between this vehicle and the vehicle in front”, 
respectively. Since the vehicle in front of or behind 
a given vehicle may change, these indexical nodes do 
not correspond to a specific vehicle. Instead, a prepro- 
cessing step using sensor data determines the spatial re- 
lationships among the vehicles and then sets the node 
states accordingly. Figure 5 shows an example vehi- 
cle network for one time slice, along with the inter-slice 
links to the next time slice. 

4 3  Decision Making in the BAT 
Technically, the decision problem faced by the BAT 
can be Characterized as a partially observable Markov 
decision process (POMDP). Computing the optimal 
policy for POMDPs is feasible only for tiny state 
spaces. Therefore, we have explored three approxi- 
mation approaches: (1) bounded lookahead using dy- 

242 1 



Figure 5: Dynamic Bayesian network for one vehicle, including 
inter-slice arcs. The smaller nodes with thicker outlines denote sen- 
sor observations. 

namic decision networks, which incorporate action 
nodes and an explicit utility function, (2) hand-coded, 
explicit policy representations, such as decision trees, 
that take as input the joint probability distribution en- 
coded in the DPN, and (3) supervised learning and rein- 
forcement learning methods for solving the pOh4DP, in 
which we learn a policy representation, a utility func- 
tion on belief states, or an action-value function on 
belief-statdaction pairs. Here we briefly describe the 
second approach. 

The decision tree is a tree of binary if-thenelse con- 
structs where the test predicates are computed from 
the joint distribution computed by the DPN. Each leaf 
of the tree is a decision. This obviously yields an ef- 
fective, real-time policy, but constructing the decision 
tree is a difficult task. Other researchers, for exam- 
ple Lehner and Sadigh [6], have examined the creation 
of decision trees from Bayesian networks, but only for 
static problems. In such cases, the decision tree nodes 
test fully determined evidence variables. If this method 
is applied to DBNs, one may be forced to test the entire 
percept sequence. 

Our approach involves testing the current belief state 
instead. Although this is potentially much smaller, op- 
timality in a POMDP requires that the tests define re- 
gions in the joint probability space rather than regions 
in the marginal probability space for each variable. We 
have found this extremely unintuitive, and so have used 
tests on marginals of individual variables as an ap- 

proximation. To date, this has been reasonably effec- 
tive. We have implemented several hand-constructed 
decision trees, which have the following general struc- 
ture (each “predicate” here is actually a complex set of 
probability thresholds on specific variables, and each 
“action” a subsidiary decision tree): 

if changing lane 
if safe to continue 

else 
Continue lane change 

Abort lane change 
else if not in target lane and can change lanes 

else ifvehicle in front 

else 

Initiate lane change to target lane 

Maintain safe following or Pass 

Maintain target speed 

Figure 6: General decision-tree sfructure. 

4.4 Results 

We have built a working simulator to test various de- 
cision making modules for the BAT. For each test, the 
simulator reads a scenario description file, which de- 
scribes the volume of traffic and the behaviors of other 
vehicles traveling along the highway. At each “clock 
ticK’, the simulator determines the trajectories of all the 
vehicles until the next tick, passing state information 
in the form of sensor readings (adding noise as neces- 
sary using sensor models) to each vehicle’s controller, 
which in turn outputs its decision for the current time 
step. The simulator uses the vehicle’s decision and a 
physical model to plot trajectories and to detect colli- 
sions and other significant events. 

The goal of the BAT controller is to maintain a 
target speed in a target lane. When other vehicles 
interfere, the controller makes appropriate accelera- 
tioddeceleration and lane-changing maneuvers. We 
show present a scenario where the BAT passes a slow- 
moving vehicle in Figure 7. We depict the situation as a 
discrete sequences of 2-D pictures, although of course 
they are actually continuous 3-D video sequences. In 
the figure, the BAT is the shaded vehicle. 

5 Probabilistic Inference 
Using the probabilistic models described above has re- 
quired several enhancements to existing techniques for 
inference in Bayesian networks. One important tech- 
nique is rollup, the process of incorporating evidence 
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6 Discussion 

Figure 7: As the BAT approaches a slower vehicle, it decides to 
pass to the left so that it can maintain its target speed. Because of 
another vehicle in that lane, the BAT waits until the left lane is clear 
and then performs a left lane change maneuver and accelerates back 
to its target speed. 

(such as sensor readings) and updating a DBN over 
time. Any exact method for rolling up one slice of 
a network is equivalent to performing a sequence of 
node eliminations [5 ] .  Node elimination may introduce 
additional links into the network, complicating prob- 
abilistic inference in several ways. By restricting our 
structures to temporally invariant networks [2], we can 
alleviate some of these complications. 

We have also improved the performance of rollup 
by enhancing procedures for stochastic simulation in 
DBNs. Specifically, we have introduced two new tech- 
niques, evidence reversal and survival of fittest sam- 
pling [4]. Downstream evidence (i.e., observed nodes 
with parents) can degrade performance of stochastic 
simulation. Evidence reversal transforms a given net- 
work so that all evidence nodes are at the root. This 
is a provably correct operation that yields significant 
improvement in performance, especially in the type of 
DBNs used in the BAT. Survival of fittest sampling is 
based on the use of a fixed-size population of samples. 
After each decision epoch, we extend the sample pop- 
ulation by one time slice. We randomize the repopu- 
lation process based on the likelihood of the evidence 
given a particular sample (thus this algorithm is related 
to genetic algorithms although there is no crossover in 
our approach). 

Stochastic simulation permits us to consider net- 
works with continuous random variables, which often 
arise in traffic modeling. Another approach that fa- 
cilitates use of continuous variables is state-space ab- 
straction [ 101, a technique for probabilistic inference 
at varying levels of granularity. By solving the net- 
work using progressively refined state variables, we 
can achieve whatever level of accuracy time will allow, 
while still providing useful results even in highly time- 
stressed situations. 

Although there are dozens of projects worldwide with 
related goals, descriptions of which can be found in 
the proceedings of many ITS conferences (including 
this one), few have taken uncertainty in sensors and 
actuators as a central characteristic. Among these, 
the work reported here represents the only effort to 
date (of which we are aware) to apply Bayesian net- 
works to traffic monitoring or vehicle control. Because 
Bayesian networks provide a very general, principled, 
and flexible basis for probabilistic reasoning, and based 
in part on our initial results, we expect that these meth- 
ods will receive increasing attention by traffic modelers 
and other ITS researchers. 
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