
Toward Automatic Verification
of Multiagent Systems for Training Simulations

Ning Wang1, David V. Pynadath2, and Stacy C. Marsella2

1 Curious Lab LLC, Westchester, CA USA
ningwang@curiouslab.com

2 USC Institute for Creative Technologies, Playa Vista, CA USA
{pynadath,marsella}@ict.usc.edu

Abstract. Advances in multiagent systems have led to their successful applica-
tion in experiential training simulations, where students learn by interacting with
agents who represent people, groups, structures, etc. These multiagent simula-
tions must model the training scenario so that the students’ success is correlated
with the degree to which they follow the intended pedagogy. As these simula-
tions increase in size and richness, it becomes harder to guarantee that the agents
accurately encode the pedagogy. Testing with human subjects provides the most
accurate feedback, but it can explore only a limited subspace of simulation paths.
In this paper, we present a mechanism for using human data to verify the degree
to which the simulation encodes the intended pedagogy. Starting with an analysis
of data from a deployed multiagent training simulation, we then present an auto-
mated mechanism for using the human data to generate a distribution appropriate
for sampling simulation paths. By generalizing from a small set of human data,
the automated approach can systematically explore a much larger space of possi-
ble training paths and verify the degree to which a multiagent training simulation
adheres to its intended pedagogy.

Keywords: multiagent training simulation, serious games

1 Introduction

Virtual worlds inhabited by autonomous agents are increasingly being used for expe-
riential training and education (e.g., [1, 5, 8, 12, 14]). These virtual worlds provide an
engaging environment in which students develop skills that can transfer to real-world
tasks. To faithfully capture unpredictable real-world settings, simulations are populated
by synthetic agents that ideally exhibit the same kind of complex behaviors that hu-
mans would exhibit [8, 14]. The creation of these environments raises considerable
challenges. Foremost, a student’s experience in the environment must be consistent with
pedagogical goals and doctrine. Notably, success and failure in the environment must
be aligned with the skills and knowledge that the system is designed to teach.

From an instructional perspective, the use of complex multiagent virtual environ-
ments raises several concerns. The central question is what is the student learning—is
it consistent with training doctrine and will it lead to improved student’s performance?

Negative training can arise in training environments due to discrepancies between sim-
ulation and the real world, as well as discrepancies between simulation and pedagogi-
cal goals. With inaccurate models, undesirable strategies may instead appear effective,
leading one to become overconfident in their likelihood of success. Strategies may also
be locally successful in the simulation but violate broader pedagogical and doctrinal
concerns and lead to failure in larger, real-world contexts. For example, while elimi-
nating political opposition may succeed in a local urban simulation, it may profoundly
violate doctrine by leading to very negative consequences in a more global context.

As these simulations increase in size and richness, it becomes harder to verify (let
alone guarantee) that they accurately encode the pedagogy. Human subject playtesting
provides accurate data. But it explores only a limited subspace of simulation paths due
to the high cost, in time and money. Although multiagent systems support automatic
exploration of many more paths than is possible with real people, the enormous space
of possible simulation paths in any nontrivial training simulation prohibits an exhaustive
exploration of all contingencies.

However, many of these contingencies are very unlikely to ever be realized by a
student. Specifically, a student is highly unlikely to perform actions randomly without
regard to their effects. Consequently, presuming a student is sampling from a uniform
distribution of all possible action sequences is a poor starting point for evaluating a
complex multiagent based social simulation.

We present an automated mechanism that instead tests only those paths that we can
expect from real human behavior. We first analyze a multiagent training simulation al-
ready deployed in classrooms. The result shows that, while the vast majority of students
received appropriate feedback from the multiagent system, some students were able to
succeed despite violating the pedagogy. Given this motivating example, we then present
an automated mechanism for using the human data to generate a distribution appropri-
ate for sampling simulation paths. Our combined mechanism can thus systematically
explore a much larger space of possible training paths and verify the degree to which a
multiagent simulation adheres to its intended pedagogy.

2 PsychSim and UrbanSim

While our methodology applies to many agent-based simulations, we use PsychSim as
our example architecture [7, 11]. PsychSim is a social simulation tool for modeling a
diverse set of entities (e.g., people, groups, structures), each with its own goals, private
beliefs, and mental models about other entities. Each agent generates its beliefs and
behavior by solving a partially observable Markov decision problem (POMDP) [4].

Multiple training simulations use PsychSim to generate behavior for the people,
groups, and environment that students interact with to practice skills in a safe but re-
alistic setting. The Tactical Language Training System helps students acquire commu-
nicative skills in foreign languages and cultures, where PsychSim agents represented
villagers with whom the student develops rapport through conversation [13]. BiLAT
uses PsychSim agents to engage students in bilateral negotiations in face-to-face meet-
ings within a specific cultural context [5]. PsychSim agents also teach people to avoid
risky behavior by simulating situations with pressure to engage in such behavior [6, 9].

In this paper, we focus on UrbanSim, a simulation-based training system that has
been deployed to teach stabilization operations in post-conflict urban environments [8].
The student directs multiple military units to execute operations in the context of a fic-
tional urban scenario. The student’s goal is to make progress along multiple dimensions
(e.g., economic, political, security), called Lines Of Effort (LOEs). PsychSim agents
generate the behavior for people, groups, and structures, as well as computing the ef-
fects of the students’ decisions on their states. In the scenario used in this paper, there
were 88 such agents and 6 real-valued LOEs derived from their states. The students
give commands to 11 units under their control, after which PsychSim agents observe
the commands’ effects, choose their own counteractions, and observe those counterac-
tions’ effects. This cycle repeats for 15 rounds, with the students getting feedback each
round through their LOE scores and a partial view of the scenario state.

3 Evaluation of Pedagogy

Although UrbanSim has been successfully deployed in classroom, the question remains
about how well the multiagent component correctly encodes the intended pedagogy.
That pedagogy relates to the strategies in selecting commands to give to units based on
current state of the world and phase of the mission. The goal of this training simulation
is for the students’ scores to be positively correlated with how well their action choices
satisfy the intended pedagogy. UrbanSim gives students more than 3000 possible ways
to deploy their 11 units for each of the 15 rounds, thus producing 1026 possible strate-
gies. Given the impracticality of exhaustive enumeration of that strategy space using
agent-based simulation, we instead used playtesting to explore only a subset.

3.1 Study Population

We recruited 58 participants (56 male, 2 female) from a US metropolitan area. 35% of
them are between 18 and 35, 14% are between 36 and 45 and 16% are above 45 years
of age. 11% of the participants have high school education or GED, 79% have some
college education or college degree, 10% have some graduate education or a graduate
degree. 21% of the participants spend 1-4 hours using computer daily, 79% spend more
than 5 hours. 6% of the participants have not or only played video games several times
in the past year, 9% play video games monthly, 28% play weekly and 58% play video
games daily. 70% of the participants did not spend any time in active military duty.

3.2 Experiment Manipulation and Procedure

When UrbanSim is deployed in the classroom, students are first shown a usability video
about basic operations in UrbanSim and then a pedagogy video on the desirable strate-
gies to use in UrbanSim. In the pedagogy video, participants are taught to:

1. Consider a non-aggressive approach as an alternative to the oft-preferred aggressive
approach. For example, attacking a group is an aggressive action while hosting a
meeting with the local mayor is a non-aggressive action.

2. Direct units under command to carry out Clear actions first, then Hold actions and
finally Build actions. Clear, Hold and Build are not types of actions, but effects of
an action. The Clear effect of an action is to remove potential danger in an area. The
Hold effect is to protect an area that has danger already removed. The Build effect
is to help a secured area recover and prosper. Each action has a weighted effect on
Clear, Hold and Build, e.g. advising a local mayor can affect both Hold and Build.

3. Plan ahead instead of being purely reactionary, e.g discouraging “Whack-a-Mole”.

To encourage a greater diversity of strategies, one group of participants watches only
the usability video (NoInstruction) and a second group watches both videos (WithIn-
struction). NoInstruction participants first fill out a consent form and a demographic
background questionnaire, then watch the usability video. Next, they practice basic op-
erations in UrbanSim for 15-20 minutes. After that, the participants interact with Ur-
banSim for 2 hours. Finally, they fill out the post-questionnaire. The procedure for the
WithInstruction group is identical except that participants watch the pedagogy video
following the usability video. There are 32 participants in the NoInstruction group and
26 participants in the WithInstruction group.

3.3 Measures

Demographic background questionnaire: asked questions about participant’s age, ed-
ucation, video game experience, computer use experience and military background.

Post questionnaire: contains questions regarding the strategies that participants used
in UrbanSim, perceived importance of people and groups in the scenario (e.g. po-
lice, tribes), perceived importance of the LOEs, self-efficacy of improving LOEs
and their assessment of the effect of the training simulation actions on LOEs, e.g.
the impact of patrolling a neighborhood on the economy, security, etc.

Training Simulation logs: captures the actions chosen by each participant for each
unit for each turn, LOE scores before each turn was committed, final score of pop-
ular support, and final score for LOEs. We categorized participants’ actions for each
turn as whether they are Clear, Hold or Build actions and which LOEs they address.

3.4 Results

One participant’s data was excluded from the analysis because the participant had no
experience using a computer. A total of 57 participants’ data are included in the analysis.

Encoding of Pedagogy The first aspect of the pedagogy is to consider non-aggressive
action as an alternative to aggressive actions. So overall, we should observe participants
performing more non-aggressive actions than aggressive actions.

Pedagogy 1: Number of Non-aggressive Actions > Number of Aggressive Actions

The second aspect of the pedagogy is to follow a Clear→ Hold→ Build strategy.
We summed up the number of actions carried out by the 11 units during the first third
(turns 1 to 5), second third (turns 6 to 10) and last third (turns 11 to 15) of the game. We

then ranked the Clear, Hold and Build effect of all the actions in each third. If the effect
on Clear is higher than Hold and Build, we then categorize that third as Clear focused.
There are 171 thirds from 57 participants. Only 3% of the thirds are Hold focused, so
we chose to ignore Hold and instead categorized only the Clear and Build effects of the
actions of the first half of the game (turn 1 to 7) and second half (turn 8 to 15) of the
game. Following this categorization, the pedagogy is still very clear: a student should
secure an area through Clear actions before performing Build actions in that area.

Pedagogy 2: Clear→ Build

Effect of Experiment Manipulation We conducted an ANOVA test on the percent-
age of non-aggressive actions participants took, and a CHI-Squared Goodness of Fit
test on whether participants adhered to the two pedagogies, using the NoInstruction

No With
Instruction Instruction

NA Actions 0.788 0.802
Followed Yes 20 14
Pedagogy No 10 10

LOE Score 361.4 358.1

Table 1: Mean percentage of non-
aggressive actions, number of participants
following pedagogy, and mean LOE scores

and WithInstruction groups as indepen-
dent variables. Additionally, we com-
pared the score on LOEs between two ex-
periment groups using the ANOVA test.
Results show that there was no signifi-
cant difference between our two experi-
ment groups on participants’ use of non-
aggressive (NA) actions (N = 57, p =
.45), whether they followed the peda-
gogy (N = 54, p = .53) and their per-
formance on LOEs (N = 47, p = .78).

Effect of Pedagogy Because there are no significant differences between the two ex-
periment groups on the variables we are interested in, we combined the data from the
two groups for the following analysis. Overall, we found that all the participants over-
whelmingly adopted Pedagogy 1, choosing more non-aggressive actions (79%) than
aggressive actions (21%). This means that we do not have data to compare scores be-
tween participants who followed Pedagogy 1 and those who did not. We will focus on
Pedagogy 2 for the remainder of the analysis.

We then conducted an ANOVA test on performance on LOEs between participants
who followed Pedagogy 2 and those who did not. Overall, there is a significant dif-
ference on performance on LOEs between participants who followed the pedagogy
and those who did not. People who followed the intended pedagogy (Clear → Build)
performed better on the LOE scores than those who did not (MNotFollow = 330.4,
MFollow = 377.1, N = 45, p < .001).

Figure 1a shows that the distribution of LOE scores from participants who did not
follow Pedagogy 2 is a lot more spread out compared to the distribution from those
who followed the pedagogy. This implies that some participants who did not follow the
pedagogy got high LOE scores. This issue is clearly illustrated in Figure 1b where we
dichotomize the performance on LOE into High and Low. In Figure 1b, the left column
represents the participants who did not follow the pedagogy, and the right column rep-
resents the ones who did. The lighter color represents low LOE scores and the darker
color represents high LOE scores. The numbers on the graph represents the percentage
of participants in that particular case, e.g. followed pedagogy and got a high LOE score.

(a) LOE scores (b) Dichotomized LOEs scores

Fig. 1: Comparison of performance on (a) LOE scores and (b) dichotomized scores
between participants who followed Pedagogy 2 and those who did not.

We can see that a significant percentage of participants achieved high LOE scores
despite not following the intended pedagogy (Clear → Build). In fact, this group of
participants all followed the Build→ Build strategy, which worked just as well as the
Clear → Build strategy. This could be problematic in a training simulation because
following the Build→ Build strategy would have severe consequences in the real world,
e.g. early builds will be destroyed if an area was not secured first through Clear/Hold.

Figure 1b also shows a region of participants who followed the pedagogy but re-
ceived low scores (the lower right). While this is also indicative of an error, our proce-
dure for identifying Clear→ Build strategies is subject to false positives, in that strate-
gies that we identified as following Clear→ Build may still be violating Pedagogy 2.
For example, while a student’s Build actions may be restricted to only the second half of
the game, they may have been executed in regions that had not been previously cleared.
Our purely temporal classification would not detect such an error. On the other hand,
a strategy that does not satisfy Clear→ Build in our crude classification definitely vi-
olates Pedagogy 2, so the upper left region of Figure 1b (and the rewarded Build →
Build strategy within) corresponds to clearly undesirable outcomes.

4 Simulation-Based Verification of Pedagogy

Section 3’s experimental results demonstrate that the simulation generally encourages
the correct behavior, thanks to the rounds of playtesting and model editing that had al-
ready occurred. However, the results also identified one pedagogically incorrect strategy
(namely, Build→ Build) that was also rewarded by the simulation. The encouragement
of such a strategy suggests the need for changes to the underlying scenario model to
bring the simulation more in line with the intended pedagogy. Unfortunately, it is pro-
hibitively costly to playtest after each such change, making it impossible to use human
subjects in a tight iterative refinement cycle. Moreover, the playtesting results from
Section 3 represent only 57 possible simulation paths. However, the training scenario

provides the student with over 1026 possible simulation paths in trying to capture the
complexity of real-world urban stabilization. Thus, even if playtesting were feasible, it
could explore only an infinitesimal portion of the possible space.

On the other hand, a student actively trying to succeed in the simulation would
never try many of the 1026 possible simulation paths. For example, a student would not
deliberately choose to devote resources to repair a structure that was already operating
at full capacity. Although it is possible that a student might do so in error, the likelihood
of such errors is so low that we may safely ignore such a possibility in our verification
process. Of greater concern are errors like Build→ Build that show up in multiple cases
even within the relatively small data set of Section 3. Our goal in this section is to use
this data acquired as the basis for an automatic method for exploring simulation paths
that is sensitive to the likelihood of behaviors by real students.

4.1 Markov Chain Monte Carlo Simulation

Our proposed automatic method generates a plot like Figure 1b by randomly generat-
ing paths through the training simulation that give us a final score and that allow us to
determine whether they followed the pedagogy. Markov chain Monte Carlo (MCMC)
simulation provides such a method, in that we can translate a distribution over student
actions into simulation path samples [2, 3]. To apply MCMC to a training simulation,
we must first represent the evolving state (both observed by the student and hidden in-
side the system) as a Markov chain, Xt . In the multiagent system underlying our sim-
ulation, the complete state (S from the POMDP) of the UrbanSim scenario is already
represented as a set of 1452 features (e.g., a structure’s capacity), each a real-valued
number from -1 to 1 (e.g., 1 means that the structure is functioning at 100% of capac-
ity). While we wish to capture the evolution of the overall simulation state, the states
in the Markov chain must represent the student’s decision-making inputs as well. The
student sees very little of the 1452 features and is instead informed mainly by the LOE
scores (which in this scenario, are derived deterministically from the simulation state).
We thus augment the simulation state with the observable LOE scores to capture both
the state of the simulation and the factors that influence the student’s choice of action.
In addition to capturing all of the relevant factors, the Markov chain representation must
also capture the transition from the current state to the next as a function of the student’s
action, but independent of prior state history. However, our survey data identified that
students often reacted to changes in their score, not just the current value. Therefore, to
account for this factor and to preserve the Markovian property, we add the latest change
in LOE score to the state as well. In summary, the set of possible states for our Markov
chain is defined over the possible simulation states, observable values, and changes in
reward values: X = S ×Ω ×∆R.

4.2 Sampling Distribution

Given this representation of the current state, we must represent the Markovian state
transitions in terms of the distribution over possible student’s actions and their effects.
The underlying simulation dynamics (T) can generate the effects of actions, the obser-
vation function (O) can generate what the student sees of that state, and the scoring

function (R) can generate the changes in rewards. However, all three functions require
the student’s action choices as input. Therefore, the only new component we need for
the dynamics of our Markov chain (Pr(Xt|Xt−1)) is the students’ decision-making.
The current state has sufficient information to motivate different students’ choices,
which we can thus model as a function, π : Ω ×∆R → Π(A), that maps from obser-
vation and change in reward to a probability distribution over action choices.

For complex training scenarios, students may have too many possible choices for
limited data to generate a meaningful distribution over their decision-making. For ex-
ample, in the UrbanSim scenario, there are more than 3000 possible actions, so we
would require a prohibitively large data set to learn a distribution over the original fine-
grained action space, |A| > 3000. Instead, we propose clustering the original actions
based on their effect on the game scores (e.g., the 6 different LOEs). For a given state,
we can sum the cumulative effect of the student’s actions on the game score (e.g., the
effect of all 11 subordinates’ actions on the 6 LOEs).

We can now examine the playtesting data in these terms to compute a frequency
count of actions chosen as a function of possible score changes. Table 2 shows the
expected rate of different types of actions as a function of changes in one of the score
dimensions (labeled LOE 2). The probability distribution in this table is based on data
collected from 57 participants. Students are roughly half as likely to choose an action to

Action Decrease Increase No Change
LOE 1 0.36 0.32 0.38
LOE 2 0.25 0.22 0.12
LOE 3 0.00 0.01 0.01
LOE 4 0.13 0.10 0.10
LOE 5 0.05 0.09 0.08
LOE 6 0.19 0.22 0.25

Table 2: Expected probability of action
types given most recent change in LOE 2

increase LOE 2 if there has been no
change in its value, and that actions LOE
1 are more common regardless. Note
that the numbers in Table 2 are obvi-
ously highly domain-dependent, but the
method of acquiring them generalizes
quite easily. By clustering the actions
according to the scores they immedi-
ately increase, one can automatically an-
alyze the logs to compute such frequency
counts in a straightforward manner.

4.3 Simulation Paths

Now that we have the abstract strategy, π̂, for the students’ actions, we can compute the
dynamics of our Markov chain:

Pr(Xt = 〈st, ωt, ∆rt〉 |Xt−1) = 〈st−1, ωt−1, ∆rt−1〉

=
∑
â∈Â

π̂(ωt−1, ∆rt−1, â)T̂ (st−1, â, st)O(st, â, ωt) Pr(∆rt = R(st, â)−R(ωt−1))

where we assume that the previous reward is extractable from the previous observation,
ωt−1. For training simulations where the students do not observe their scores along
the way, we can simply explicitly encode the score as an additional component of our
Markov chain state, X . The final missing piece is the abstract transition probability,
T̂ , over our abstract actions, Â. The underlying simulation provides the fine-grained
transition function, T , which we will use to derive its abstract counterpart. In particular,

for each abstract action, â, we will define its effect as a uniform distribution over its
possible corresponding fine-grained actions, a:

T̂ (st−1, â, st) =
∑

a|C(a)=â

T (st−1, a, st)/ |{a|C(a) = â}|

We can now run the simulation engine and substitute actions sampled according
to Section 4.2 instead of the student actions. Each such run requires only 4 minutes
(as opposed to the hour required by the typical human subject), and we were able to
generate 316 paths in 21 hours of computation time. The end result of each path is a
run of the exact same form as used in playtesting and, thus, amenable to the evaluation
procedure of Section 3. Thus, we determined whether the generated actions satisfied
the intended pedagogy, and we extracted the score achieved by those actions. Finally,
we generated the graph in Figure 2 (of exactly the same form as Figure 1b) to identify
the degree to which the pedagogy is satisfied. Of the paths that violated Pedagogy 2,

Fig. 2: Results from simulation-based veri-
fication

most received an appropriately low score,
but the simulation identified 143 paths
where an incorrect strategy received a
high score, far exceeding the incorrect
paths found among the 57 student paths
in Figure 1b. Given that the simulation
was able to generate Figure 2 overnight,
as opposed to the weeks required to
schedule the human subjects for Figure
1b, our automated exploration method
has greatly accelerated our ability to ver-
ify the simulation underlying our training
system.

5 Discussion

The methodology presented in this paper provides a mechanism for automatic verifi-
cation of an agent-based training simulation using limited human user data. The true
test of a training simulation is in a thorough pedagogical evaluation of student learn-
ing when using the system, and our proposed methodology is in no way a replacement
of such an evaluation. Our methodology instead seeks to give the simulation designer
feedback during the authoring process. In particular, a graph like Figure 1b identifies
paths through the simulation that violate the intended pedagogy, directing the designer
to possible modeling errors. Section 4’s automatic method for generating such graphs
can then give the simulation designer similar feedback for the refined models, without
requiring further playtesting. Furthermore, the systematic exploration of a larger space
of possible student strategies can give the simulation designer greater confidence in the
agent models before proceeding to the overall pedagogical evaluation and deployment.

Going beyond the reactive strategies of our MCMC approach to modeling the stu-
dent’s behavior, there is the potential to use PsychSim’s POMDP-based behavior-genera-
tion mechanism to provide more sophisticated models of student moves. In the post-
questionnaire, we collected information about how students ranked the various LOEs

in priority and how they thought different actions affected those LOEs. The former gives
us insight into how the students’ subjective reward function deviated from the “ratio-
nal” student’s. The latter gives us insight into how the students’ model of the simulation
dynamics deviated from the correct transition probability function, T . Thus, we can po-
tentially learn PsychSim models for different students and use these models to generate
more deliberative strategies than the reactive strategies of our MCMC approach.

Finally, our verification methodology can be a key component to facilitating the
overall authoring process for training simulations. This paper presents a novel method
for automatically finding simulation paths that are inconsistent with intended pedagogy.
Given the output of our method, we can then use existing algorithms [10] to help au-
tomate the modification of the simulation to bring it more in line with that intended
pedagogy. Thus, the methodology and algorithms presented in this paper represent a
critical step toward greatly reducing the burden of authoring agent-based training sim-
ulations while simultaneously improving their pedagogical fidelity.

References
1. R. Calder, J. Smith, A. Courtemanche, J. Mar, and A. Ceranowicz. ModSAF behavior sim-

ulation and control. In Proceedings of the Conference on Computer-Generated Forces and
Behavioral Representation, pages 347–356, 1993.

2. W. Gilks, S. Richardson, and D. Spiegelhalter, editors. Markov chain Monte Carlo in prac-
tice. Chapman and Hall, London, 1996.

3. W. Hastings. Monte Carlo sampling methods using Markov chains and their applications.
Biometrika, 57(1):97–109, 1970.

4. L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially ob-
servable stochastic domains. Artificial Intelligence, 101:99–134, 1998.

5. J. M. Kim, J. Randall W. Hill, P. J. Durlach, H. C. Lane, E. Forbell, M. Core, S. Marsella,
D. Pynadath, and J. Hart. BiLAT: A game-based environment for practicing negotiation in a
cultural context. IJAIED, 19(3):289–308, 2009.

6. J. Klatt, S. Marsella, and N. Krämer. Negotiations in the context of AIDS prevention: an
agent-based model using theory of mind. In IVA, 2011.

7. S. C. Marsella, D. V. Pynadath, and S. J. Read. PsychSim: Agent-based modeling of social
interactions and influence. In ICCM, pages 243–248, 2004.

8. R. McAlinden, A. Gordon, H. C. Lane, and D. Pynadath. UrbanSim: A game-based simula-
tion for counterinsurgency and stability-focused operations. In AIED Workshop on Intelligent
Educational Games, 2009.

9. L. C. Miller, S. Marsella, T. Dey, P. R. Appleby, J. L. Christensen, J. Klatt, and S. J. Read.
Socially optimized learning in virtual environments (SOLVE). In ICIDS, 2011.

10. D. V. Pynadath and S. C. Marsella. Fitting and compilation of multiagent models through
piecewise linear functions. In AAMAS, pages 1197–1204, 2004.

11. D. V. Pynadath and S. C. Marsella. PsychSim: Modeling theory of mind with decision-
theoretic agents. In IJCAI, pages 1181–1186, 2005.

12. J. Rickel and W. L. Johnson. Integrating pedagogical capabilities in a virtual environment
agent. In Agents, pages 30–38. ACM Press, 1997.

13. M. Si, S. C. Marsella, and D. V. Pynadath. THESPIAN: An architecture for interactive
pedagogical drama. In AIED, pages 595–602, 2005.

14. M. Tambe, W. L. Johnson, R. M. Jones, F. Koss, J. E. Laird, P. S. Rosenbloom, and
K. Schwamb. intelligent agents for interactive simulation environments. AI Magazine,
16:15–39, 1995.

