Rapid Integration and Coor dination of Heter ogeneous, Distributed Agents for
Collaborative Enterprises

David V. Pynadath, Milind Tambe, Nicolas Chauvat
I nformation Sciences Institute and Computer Science Department
University of Southern California
4676 Admiralty Way, Marina del Rey, CA 90292
{pynadat h, t anbe, ni co}@si . edu

Abstract

As the agent methodology proves more and more use-
ful in organizational enterprises, research/industrial groups
are developing autonomous, heterogeneous agents that are
distributed over a variety of platforms and environments.
Rapid integration of such distributed, heterogeneous agent
components could address large-scale problems of interest
in these enterprises. Unfortunately, rapid and robust inte-
gration remains a difficult challenge. To address this chal-
lenge, we are developing a novel teamwork-based agent in-
tegration framework. In this framework, software develop-
ers specify an agent organization through a team-oriented
program. To locate and recruit agent components for this
organization, an agent resources manager (an analogue of
a “human resources manager”’) searches for agents of in-
terest to this organization and monitors their performance
over time. TEAMCORE wrappers render the agent compo-
nents in this organization team ready, thus ensuring robust,
flexible teamwork among the members of the newly formed
organization. This implemented framework promises to re-
duce the development effort in enterprise integration while
providing robustness due to its teamwork-based founda-
tions. We have applied this framework to a concrete, run-
ning example, using heterogeneous, distributed agents in a
problem setting comparable to many collaborative enter-
prises.

1. Introduction

An increasing number of collaborative enterprises are turn-
ing to agent technology to address the complex, dynamic
environments common to most enterprises [1, 4]. As more
agents populate our organizations, whether in businesses,
the military, etc., there is a more critical need to rapidly
marshal the agents needed for newly arising tasks and to
enforce proper coordination among these agents. Unfortu-
nately, although the agent methodology does provide a great
simplification over directly integrating legacy systems, the
problem of coordinating agent behavior in a large-scale sys-
tem remains difficult.

First, in the distributed, open environments found in
most enterprises, there are great difficulties in identifying
and accessing all of the agents relevant to the particular in-

formation and control needs of a new task. Second, since
the recruited agents are not usually built to work together,
building an integrated system with appropriate coordina-
tion among the agent components is difficult. Third, the
resulting integrated system must be robust, in that it ensures
the desired output despite the uncertainties of a dynamic,
open environment. There are other issues in integration
as well (e.g., common communication language), but this
short note focuses on only the three key challenges men-
tioned here.

To address these integration challenges, our TEAM-
CORE project focuses on enabling enterprise managers to
build large-scale agent organizations. There are currently
two key aspects to this project. The first focuses on the
creation, specification, and monitoring of the agent organi-
zation. The second focuses on enabling the organization to
reliably execute tasks, by ensuring robust teamwork among
the agents in the organization.

KARMA (Knowledgeable Agent Resources Manager
Assistant) addresses the first aspect by assisting enterprise
managers in three ways. First, Karma aids in team-oriented
programming, where the system designer specifies a hier-
archical agent organization, as well as its high-level goals
(e.g., plan hierarchy, supply chain). Team-oriented pro-
gramming abstracts away from coordination details, thus
eliminating the burden of writing large numbers of coordi-
nation plans. Second, Karma locates agents that match the
specified organization’s requirements and assists in allocat-
ing organizational roles to such agents, thus alleviating the
burden of searching through the vast numbers of agent com-
ponents present in most enterprises. Third, Karma mon-
itors the organization to diagnose failures and to evaluate
agent performance for future (re)organizations. Karma’s
agent resources management functionality differs signifi-
cantly from middle agents such as matchmakers. If middle
agents are the analogues of the “middle-men” of physical
commerce [2], then agent resource managers are the ana-
logues of the “human resources managers” of a commercial
firm. Agents such as Karma will become increasingly crit-
ical with the increasing number of agent components avail-
able within an enterprise (and eventually across multiple en-
terprises).

Once the enterprise manager has specified a team-
oriented program, the second aspect of the TEAMCORE

project focuses on robust execution. Agent teamwork en-
hances robust execution, since we can expect agent com-
ponents, as team members, to act responsibly towards
one another, covering for each other’s execution failures
and sharing key information. To enable such teamwork
among independently designed agent components, we make
the agents team-ready by providing each with a separate
TEAMCORE wrapper. We thus avoid the need to mod-
ify the agents themselves, an important consideration when
the agent components can be complex legacy systems. The
TEAMCORE wrappers are based on STEAM, a reusable,
general-purpose teamwork module that encapsulates rea-
soning about common teamwork coordination, including
contingencies in such coordination [6]. Given this model,
the TEAMCORE wrappers automatically generate the re-
quired coordination actions in executing a team-oriented
program. Thus, TEAMCORE shields the human developer
from the responsibility of designing all such specifications.

We have applied our framework to a concrete prob-
lem from a military domain that shares many features with
most enterprise integration tasks. In our example problem,
we successfully integrated various information and control
agents to provide a simulated mission rehearsal of the evac-
uation of civilians stranded in a hostile area. The integrated
system had to enable a human commander to interactively
provide locations of the stranded civilians, safe areas for
evacuation, and other mission parameters, and to then have
simulated helicopters fly a coordinated mission to evacuate
the civilians. The integrated system plans routes to avoid
known obstacles, obtains information about dynamic enemy
threats, and changes routes when needed. Thus, we have
an information and task dependency structure similar to the
supply chains found in many collaborative enterprises.

Our framework enabled the construction of such an in-
tegrated system out of 11 different existing components, in-
cluding a multi-modal user interface agent, a route-planner,
a web-querying information-gathering agent and synthetic
helicopter pilots. Different developers, using four differ-
ent computer languages, designed these agents, which ran
on two different operating systems, on machines distributed
across the United States. The heterogeneity and decentral-
ization present in this military enterprise reflect the reality
of most collaborative enterprises. Here, we used Karma
to specify the necessary team-oriented program and to suc-
cessfully locate relevant agents through an interface with a
matchmaker and other middle agents. The chosen agents,
with their TEAMCORE wrappers, successfully executed
the team-oriented program, with this execution being ro-
bust against agent failures and other dynamic events similar
to those that arise in most real-world enterprises.

2. Karma& TEAMCORE

Figure 1 illustrates how one builds agent organizations
through the Karma-TEAMCORE framework. The num-
bered arrows show the typical stages of this process. In
stage 1, human enterprise managers use TOPI (Team-
Oriented Programming Interface) to specify a team-oriented
program, with an organization, its goals, and its plans. TOPI
in turn passes on the program specification to Karma (stage
2). In stage 3, Karma derives the requirements for roles in
the organization and searches for agents with relevant ex-
pertise (labeled “domain agents” in Figure 1). Karma can
query different middle agents, an Agent Naming Service
(ANS) white pages, and other directory services. Karma
then aids the developer in assigning these agents to organi-
zational roles.

Having thus fully defined a team-oriented program,
Karma launches the TEAMCOREs. Each TEAMCORE
wraps an individual domain agent assigned to the orga-
nization, and the teams of wrappers jointly execute the
team-oriented program. While executing this program, the
TEAMCOREs broadcast information among themselves
via multiple broadcast nets (stage 4). TEAMCOREs also
communicate with the domain agents (stage 5). Karma
“eavesdrops” on the various broadcasts to monitor the
progress of the teams (stage 6), and it displays this progress
to the enterprise manager.

A key novelty and strength of our framework is that
powerful teamwork capabilities are built into its founda-
tions, i.e., in the TEAMCORE wrappers. These wrappers
enable agents, not originally constructed as cooperative, to
still plan and act together as a team. Thus, in a team formed
with TEAMCORE wrappers, agents automatically cover for
failed teammates, supply key information to each other, etc.
This framework strongly contrasts with previous agent in-
tegration frameworks such as the Open Agent Architecture
(OAA) [5], where centralized facilitators enable agents to
locate each other, but do not provide teamwork capabilities.
In addition, TEAMCORE’s distributed approach avoids a
centralized processing bottleneck, as well as eliminating
any central point of failure.

3. Karma: Specifyingand Monitoring
Team Programs

Karma helps a enterprise manager in three tasks important
in the building of an agent organization: (i) specifying a
team program; (ii) locating and assigning relevant agents;
(iii) monitoring and recording agent performance.

The Team-Oriented Program A enterprise manager
specifies an organization of interest via a team program: (i)

Domain

Registration
Agent
3
ANS =
Y
TEAMCORE TEAMCORE
wrapper wrapper
—
4
6 TEAMCORE
. KARMA v
2 roadcast net
4
. TOPIs - TEAMCORE TEAMCORE
Enterprise Middle wrapper wrapper
Managers agents

Registration

Figure 1: The overall Karma-TEAMCORE framework. TEAMCOREs may wrap different “domain agents” which may

include information gathering agents, user assistants etc.

an organization hierarchy; (ii) a plan hierarchy; and (iii) as-
signments of agents to execute plans. The team organization
hierarchy consists of roles for individuals and for groups
of agents. For example, Figure 2-a illustrates a portion of
the organization hierarchy involved with the evacuation sce-
nario. Each leaf node corresponds to a role for an individual
agent, while the internal nodes correspond to teams of these
roles. Task Force is thus the highest level team in this orga-
nization, while Orders-Obtainer is an individual role.

The second aspect of a team program is a hierarchy of
team plans explicitly expressing the joint activities of the
relevant team. These plans describe the appropriate ac-
tions, the agents performing these actions, and additional
high-level coordination knowledge (e.g., relevant informa-
tion to be shared). The generality of the plan representa-
tion could potentially represent multi-level supply chains as
the joint activity of suppliers and consumers. Figure 2-b
shows an example from the evacuation scenario (please ig-
nore the bracketed names for now). Here, high-level team
plans, such as Evacuate, typically decompose into other
team plans, such as Process-orders, to interpret orders pro-
vided by a human commander.

The third aspect of team-oriented programming is the
assignments of agents to plans. The developer first assigns
the organization’s roles to plans and then assigns agents to
these roles. Assigning only abstract roles rather than actual

agents to plans provides a useful level of abstraction, since
we can more quickly (re)assign new agents more quickly
as needed. Figure 2-b shows the assignment of roles (in
brackets) to the plan hierarchy for the evacuation domain.
Associated with each plan is a specification of the require-
ments to perform the plan. A role inherits the requirements
from each plan that it is assigned to.

The team program offers the key advantage of omit-
ting the details of how to realize the specified coordina-
tion. Thus, for instance, the team designer does not program
any synchronization actions — instead, during execution,
the TEAMCORE wrappers automatically enforce the cor-
rect synchronization actions, both with respect to the time
of plan initiation, the choice of plan, and the time of plan
termination.

To facilitate the encoding of the team-oriented program,
Karma interacts with a developer via the TOPI interface.
Figure 3 shows a sample screenshot from programming the
evacuation scenario, where the three panes correspond to
the plan hierarchy (left pane), organization hierarchy (mid-
dle pane), and the domain agents (right pane). The left pane
reflects the diagram 2-b. Associated with each entity are its
properties, including its coordination constraints, precondi-
tions, assigned subteam, etc.

TASK RORCE

= |

ORDERS SAFETYINFO [|G4T ROUTE
ESCORT TRAN RT
HELO1 HELO2 HELO1 HELO2

(@

EVACUATE [TASK FORCE]

PROCESS EXECUTE LANDING
ORDERS MISSION ZONE
[TASK FORCE] [TASK FORCE] MANEUVERS
% / [TASK FORCE]
OBTAIN FLY-FLIGHT /\
ORDERS PLAN
[ORDERS [TASK FORCE] MASK PICKUP
OBTAINER] \ OBSERVE | trANSPORT]
[ESCORT]

FLY-CONTROL
ROUTE....

[TASK FORCE] (b)

Figure 2: (a) Partial organization hierarchy with roles; (b) Partial reactive team plan hierarchy, both for the evacuation

scenario.
'_| Topi I
__file Edit Agents Config Debug _ﬂeln
=@ [ol=lm| 4] |l o Je=fm| [«] |8 Jaz| &) |oo)
|tem Item: Jte
O Evacuate [Task Ferce] ofh Task Force autol
@ (O Obtain orders [Task Forcel ; & Orders Obtainer [oaa—kqml-bridge] autod

@ O Route planning [Task Force]
O Obtain route info [Route Planner]
D wait [.]
@ (3 Prepare to execute mission [.]
@ (O Execute mission [Task Force]
@ O Fly flight plan [Task Forcel
@ O Fly control route [Task Force]
@ O Travelling overwatch [Flight Team]
@ (O Obtain safety info [Task Force]
safety Query [Safety Info Obtainer]
D wait[..]
O wait [.]
D Select point [Task Force]
O Select route [Task Force]
@ O Landing zone maneuvers [Task Forcel
@ Understand orders [.]
0 Dropoff L]

o] 8’%(Flight Team

@ 8& Escort
o] 8% Lead Section
R Helo 1 [aute1]

& Helo 2 [auted]
] a% Follow Section
T Helo 1 [auted]
& Helo 2
L ﬁ% Transport
o] 8% Lead Division
T Helo 1 [trans2]
& Helo 2 [trans3]
& Helo 3 [trans4]
& Helod [transi]
& Route Planner [Moksaf_RPA]
& safety Info Obtainer [ARIADNE_TEAMCORE]

caa—kgml-bridge
ARIADME_TEAMCORE
autod

transz

Moksaf_RP#&

trans3

trans4

transi

Can only add a role to ateam!

Figure 3: TOPI: The team-Oriented programming interface.

Searching and Assigning Agents Once Karma derives
requirements for individual roles based on their assigned
plans, it searches for agents with matching capabilities.
Karma searches multiple sources: middle agents, local
white pages directories of known agents, and other reg-
istry services. For instance, Karma may query the AM-
atchMaker [2] middle agent by sending it a KQML mes-
sage specifying an advertisement template. AMatchMaker
returns descriptions of those agents whose advertised capa-
bilities match the template. In addition, Karma can search
its own database of previously used agents. More recently,
we have interfaced Karma with “the Grid” (produced by
DARPA’s COABS program [3]), an agent infrastructure
providing registration and other interconnection services.

Karma compiles a list of relevant agents from these dif-
ferent sources, specifying their properties, including com-
munication address, capabilities, etc. From this list, the de-
veloper can assign agents to the roles in the specified orga-
nization. By limiting its search to just those agents that meet
the organizational requirements, Karma avoids overwhelm-
ing the system designer with unnecessary information.

Monitoring and Recording Agent Performance While
the team executes its program, Karma’s task shifts to moni-
toring and recording the execution. Currently, Karma’s ob-
servations trigger feedback in TOPI, showing the developer
which team plans and domain agents are currently active.
To facilitate the reuse of agents across multiple tasks (or
multiple runs of the same task), Karma also records how
well each agent performs in the current task. Thus, upon
completion of the task, each TEAMCORE wrapper sends
Karma a report regarding the wrapped agent’s performance,
including any catastrophic failures during a run, success
during runs, response times etc. Karma records this infor-
mation in its local database. In addition, the TOPI inter-
face provides immediate feedback for catastrophic failures
to aid debugging. For instance, in Figure 3, TOPI shows the
enterprise manager that Ariadne is disabled, along with its
assigned role and plan.

4. TEAMCORE: Executing
Team Programs

While the enterprise manager uses Karma to specify the
team program and monitor its execution, the distributed set
of TEAMCORE wrappers, developed in the Soar rule-based
integrated agent architecture, perform the actual execution.
The STEAM teamwork model [6] provides agents with
three forms of domain-independent knowledge of teamwork
to enable them to autonomously reason about coordination
and communication. Coherence preserving rules require
team members to communicate with each other to ensure

coherent initiation and termination of team plans. Moni-
tor and repair rules detect if a team task is unachievable
due to unexpected member failure. It then leads the team
into reorganization to overcome this failure. Selectivity-
in-communication rules avoid excessive communication
through decision-theoretic communication selectivity.

In the original STEAM implementation, the teamwork
knowledge resided directly in the domain agent’s knowl-
edge base, an impractical implementation in an open, het-
erogeneous environment where a domain agent may be a
complex legacy system. By placing this knowledge in an
external TEAMCORE wrapper, we now no longer need
to modify the domain agent itself. However, while the
STEAM rules enable the TEAMCORE wrappers to com-
municate with each other automatically, we now also need
a domain-agent interface module to enable a TEAMCORE
wrapper to communicate requests to the domain agent it
wraps. The interface module allows each TEAMCORE
wrapper to send the control and information request mes-
sages that are appropriate given the current team activity.
The wrapper may then communicate any response from the
domain agent to the other TEAMCORE wrappers as part of
the usual STEAM procedures.

We have applied our Karma-TEAMCORE framework
to the mission rehearsal of the evacuation of civilians from
a threatened location. The system designer created a team-
oriented program for this problem, using the following
agents:

Quickset: (P. Cohen et al., Oregon Graduate Institute)
Multimodal command input agents [C++, Windows NT]

Route planner: (Sycara et al., Carnegie-Mellon Uni-
versity) Path planner for aircraft [C++, Windows NT]

Ariadne: (Minton et al., USC Information Sciences In-
stitute) Database engine for dynamic threats [Lisp, Unix]

Helicopter pilots: (Tambe, USC Information Sciences
Institute) Pilot agents for simulated helicopters [Soar, Unix]

Although none of these agents had any teamwork ca-
pabilities, we successfully used these agents within the
Karma-TEAMCORE framework to build a team-oriented
program for an evacuation mission rehearsal system. Karma
can locate these agents based on the team-oriented program
and the specified organization hierarchy. The TEAMCORE
wrappers then successfully executed the team-oriented pro-
gram, consisting of 18 reactive team plans. Even in the face
of failures of individual agents, the entire system is robust
and does not halt; instead, the team members try to substi-
tute another agent with relevant expertise if possible and/or
show graceful degradation. A second aspect of evalua-
tion is measuring the benefit of the TEAMCORE wrappers’
domain-independent teamwork knowledge, versus alterna-
tive coordination schemes. An alternative would reproduce
all of TEAMCORE’s capabilities via domain-specific co-
ordination plans, where about 10 separate domain-specific

coordination plans would be needed for each team plan.
In contrast, with TEAMCORE, we wrote no coordination
plans for inter-TEAMCORE communication. Instead, such
communications occurred automatically from the team plan
specification. A third aspect of evaluation is the ease of
modification to the team. For instance, the route planner
was the last addition to the team. Its integration required
coding of one additional role in the organization, one addi-
tional team plan in the plan hierarchy, and the specification
of the new agent’s capabilities. None of the existing teams,
roles, or plans required any modifications.

5. Summary

Collaborative enterprises face daunting challenges when at-
tempting the rapid integration of heterogeneous, distributed
components. To this end, this article focuses on enabling
designers to rapidly create agent organizations. It describes
an agent resources manager, Karma, for assistance in effec-
tively creating and managing agent organizations. As the
number and variety of agents available to a particular enter-
prise increases, new agents, like Karma, that aid in building
and maintaining agent organizations will become increas-
ingly critical. This article also focuses on the novel TEAM-
CORE framework, where teamwork capabilities are built
into its very foundations, through the teamwork models in
our TEAMCORE wrappers. These wrappers make existing
individual domain agents, who are originally not ready to
be responsible team members, “team ready”. Once made
team-ready, these agents enable abstract specifications of
an agent organization in the form of team-oriented pro-
grams. This can significantly reduce the design effort, since

team-oriented programs eliminate the need to script all of
the agent interactions. Our framework has shown promise,
given its successful application in the concrete collaborative
enterprise of the evacuation scenario.

References

[1] Mihai Barbuceanu and Mark S. Fox. The Information
Agent: An infrastructure agent supporting collabora-
tive enterprise architectures. In Third Workshop on En-
abling Technologies: Infrastructures for Collaborative
Enterprises, 1994.

[2] K. Decker, S. Sycara, and M. Williamson. Middle-
agents for the internet. In Proceedings of the In-
ternational Joint Conference on Artificial Intelligence
(IJCAI-97), July 1997.

[3] J. Hendler and R. Metzeger. Putting it all together — the
control of agent-based systems program. IEEE Intelli-
gent Systems and their applications, 14, March 1999.

[4] Michael N. Huhns and Munindar P. Singh. Multiagent
systems for workflow. International Journal of Intelli-
gent Systems in Accounting, Finance and Management,
8:105-117,1999.

[5] David L. Martin, Adam J. Cheyer, and Douglas B.
Moran. The open agent architecture: A framework for
building distributed software systems. Applied Artifi-
cial Intelligence, 13(1-2):92-128, 1999.

[6] M. Tambe. Towards flexible teamwork. Journal of Ar-
tificial Intelligence Research (JAIR), 7:83-124,1997.

