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Abstract

Trust is critical to the success of human-robot interaction
(HRI), and one of the critical antecedents to trust is trans-
parency. To best interact with human teammates, a robot must
be able to ensure that they understand its decision-making
process. Recent work has developed automated explanation
methods that can achieve this goal. However, individual dif-
ferences among human teammates require that the robot dy-
namically adjust its explanation strategy based on their un-
observable subjective beliefs. We therefore need methods by
which a robot can recognize its teammates’ subjective be-
liefs relevant to trust-building (e.g., their understanding of the
robot’s capabilities and process).
We leverage a nonparametric method, common across many
fields of artificial intelligence, to enable a robot to use its his-
tory of prior interactions as a means for recognizing and pre-
dicting a new teammate’s subjective beliefs. We first gather
data combining observable behavior sequences with survey-
based observations of typically unobservable subjective be-
liefs. We then use a nearest-neighbor approach to identify the
prior teammates most similar to the new one. We use these
neighbors to infer the likelihood of possible subjective be-
liefs, and the results provide insights into the types of sub-
jective beliefs that are easy (and hard) to infer from purely
behavioral observations.

1 Introduction
Trust is critical to the success of human-robot interaction
(HRI) (Lewis, Sycara, and Walker 2017). To maximize the
performance of human-robot teams, people should trust their
robot teammates to perform a given task autonomously
when robots are more suited than humans for the task. If the
robots are less suited, then people should perform the task
themselves. Failure to do so results in disuse of robots in the
former case and misuse in the latter (Parasuraman and Riley
1997). Real-world case studies and laboratory experiments
show that failures of both types are common (Lee and See
2004).

Research has shown that people will more accurately
trust an agent if they have a more accurate understand-
ing of its decision-making process (Lee and Moray 1992).
Explanations (whether created manually (Dzindolet et al.
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2003) or automatically (Wang, Pynadath, and Hill 2016))
have shown to contribute to that understanding in a way
that typically improves trust calibration with human team-
mates. However, the agents in these prior studies gave the
same explanations to all of their teammates. Such a “one-
size-fits-all” approach cannot accommodate the individual
differences that are ubiquitous in people’s trust relation-
ships with autonomous systems (e.g., (Lee and Moray 1992;
1994; Singh, Molloy, and Parasuraman 1993)). Furthermore,
even once the agent identifies a particular teammate’s trust-
relevant traits, it must also identify his/her different com-
munication preferences (e.g., for reading uncertainty as a
percentage vs. a frequency (Waters et al. 2006)) before
constructing an effective explanation targeted for the given
teammate.

An agent therefore needs a method to recognize its team-
mate’s current subjective beliefs, as relevant to the trust re-
lationship between them. There are a wide range of methods
for recognizing hidden states of other agents (Sukthankar
et al. 2014), but our focus here is more similar to affect
recognition (Zeng et al. 2009), as opposed to recognition
of domain-level plans and intentions. Furthermore, our spe-
cific recognition problem limits the agent’s information to
only trust-related observations (e.g., did the person follow
or ignore the agent’s advice?). In addition to this difference
in input, we also seek a specific output: recognizing subjec-
tive beliefs collated from a variety of trust-related survey in-
struments in the field (Mayer, Davis, and Schoorman 1995;
Hart and Staveland 1988; Taylor 1989; Ross 2008). For ex-
ample, an agent may want to determine whether its team-
mate believes it to have high ability, benevolence, and in-
tegrity, three critical dimensions of trust (Mayer, Davis, and
Schoorman 1995).

As is common in such recognition domains, we hy-
pothesize that people who exhibit similar trust behaviors
will also share similar subjective beliefs. We operational-
ize this hypothesis by using a nearest-neighbor approach,
commonly used in collaborative filtering (Sarwar et al. 2001;
Schafer et al. 2007), but also in more relevant domains (e.g.,
in activity recognition (Bao and Intille 2004)). We there-
fore avoid having to select or construct a generative/causal
model of trust out of the many candidates in the literature.
However, without a generative/causal model, we run the risk
that the observable behaviors may not be meaningfully con-



nected to the trust-related subjective beliefs that we seek to
recognize. We must first quantify the degree to which differ-
ent subjective beliefs can be inferred from observable data
(if at all), before we can consider more accurate methods for
recognition.

We perform this quantification using data gathered in a
human-subject study combining direct observation of hu-
man behavior with intermittent surveys of typically unob-
servable subjective beliefs. We then use this data set as our
recognition model for inferring those beliefs (i.e., poten-
tial answers to the survey instruments) from the observ-
able behavioral sequences. By quantifying the accuracy of
such inference, we gain useful insight into what aspects of
human-agent trust are easier to infer from purely behav-
ioral measures than others. Furthermore, by analyzing the
data through a lens of individual behavior sequences, we can
more easily identify the differences in the trust relationship
across our human population.

2 Human-Robot Interaction Scenario
We illustrate our methodology in the context of an online
HRI testbed (Wang, Pynadath, and Hill 2015). For the cur-
rent study, we configured the testbed to implement a sce-
nario in which a human teammate works with a different
robot across eight reconnaissance missions (see Figure 1).
Each mission requires the human teammate to search 15
buildings in a different town. The virtual robot serves as a
scout, scans the buildings for potential danger, and relays
its findings. The robot has an NBC (nuclear, biological, and
chemical) weapon sensor, a camera that can detect armed
gunmen, and a microphone that can identify suspicious con-
versations.

The human must choose between entering a building with
or without protective gear. If there is danger inside the build-
ing, the human will be fatally injured if not wearing the
protective gear. In such cases, our experiment imposes a 3-
minute time penalty, in lieu of actually killing the partici-
pants. If the human teammate fails to enter all 15 buildings
within 10 minutes, the mission is a failure. Four buildings in
each mission contain threats (a different four in each mission
sequence), so entering all of them without protective gear al-
most guarantees mission failure. On the other hand, it takes
time to put on and take off protective gear (20 seconds each).
Therefore, putting on the protective gear for all 15 buildings
also leads to mission failure. So the human is incentivized
to consider the robot’s findings to make a more informed
decision as to wearing or not wearing the protective gear.

2.1 Robot Variations
The virtual robot chooses a recommendation as to whether
its teammate should or should not put on protective gear
by following a policy generated from a Partially Ob-
servable Markov Decision Process (POMDP) (Kaelbling,
Littman, and Cassandra 1998)1. The participant needs to de-
cide only whether to follow or ignore the robot’s findings
(safe/dangerous), before pressing a button to enter/exit the

1The details of the robot’s POMDP model are described in a
prior publication (Wang, Pynadath, and Hill 2016)

room. In the testbed implementation for the current study,
the participant works with a different robot for each mission.
Each of the eight robot represents a different combination
along the following three binary dimensions:

Explanation: Half of the robots provide an assessment of a
building’s safety as being safe or dangerous, with no ad-
ditional information (e.g., “I have finished surveying the
doctor’s office. I think the place is safe.”). The other half
of the robots augment their decisions with additional in-
formation that should help its teammate better understand
its ability (e.g., decision-making), one of the key dimen-
sions of trust (Mayer, Davis, and Schoorman 1995). These
robots give a confidence-level explanation that augments
the decision message with additional information about
the robot’s uncertainty in its decision. One example of a
confidence-level explanation would be: “I have finished
surveying the Cafe. I think the place is dangerous. I am
86% confident about this assessment.” The robot uses its
current probabilistic belief state (derived from its POMDP
model of the world) to fill in the percentage confidence.

Acknowledgment: Half of the robots send an additional
message every time they make an assessment that turned
out to be incorrect; the other half do not send any such
message. In each mission, the team searches 15 buildings,
and the robot makes an incorrect assessment of three of
them. An example of the robot’s acknowledgement would
be “It seems that my assessment of the informant’s house
was incorrect. I will update my algorithms when we return
to base after the mission.” This acknowledgment is in-
spired by a prior investigation in organizational trust that
found that an acknowledgement of a mistake, paired with
a promise to improve, would improve trust under certain
conditions (Schweitzer, Hershey, and Bradlow 2006). One
can view this action as an attempt by the robot at trust re-
pair, which plays a critical role in maintaining long-term
organizational trust (Lewicki 2006).

Embodiment: Half of the robots look like a robotic dog,
with ears, nose and highlighted eyes, suggesting possibly
embedded sound, NBC, and vision sensors. The other half
look like a stereotypical “robot-looking” robot (depicted
in Figure 1). This variation is motivated by studies show-
ing that dog-like robots are treated differently than those
with a more traditionally robotic appearance (Kerepesi et
al. 2006; Melson et al. 2009).

2.2 Participants

The domain of the testbed scenario is relevant to the military,
so we recruited 73 participants from a higher-education mil-
itary school in the United States. Participants were awarded
extra course credit for their participation. 61 participants fin-
ished all eight missions and completed a post-mission survey
after each. However, when possible, we also include the data
from any completed individual mission that also has a cor-
responding filled-out post-mission survey, even if the partic-
ipant did not complete all eight missions.



Figure 1: HRI testbed with HTML front-end.

2.3 Data Gathered
Our agent’s aim is to recognize its teammate’s relevant sub-
jective beliefs, which we capture via self-report in our post-
mission survey (filled out by each participant after each of
the eight missions). This survey includes items to measure
the participants’ trust in and understanding of the robots’
decision-making processes. We modified items on interper-
sonal trust to measure subjective belief in the robot’s abil-
ity, benevolence, and integrity (Mayer, Davis, and Schoor-
man 1995). We also included the NASA Task Load In-
dex (Hart and Staveland 1988), Situation Awareness Rating
Scale (Taylor 1989), and a measure of trust in oneself and
teammates (Ross 2008). In all, the survey contained 43 dif-
ferent subjective belief items, all with responses along a nu-
meric scale (1–7), that we used as the recognition output in
this investigation.

We also collected logs of the participants’ behavior in the
system, allowing us to extract the decision sequence of each
participant as the agent’s recognition input. We seek to quan-
tify the degree to which these observable behaviors can be
used by an agent to infer the unobservable subjective beliefs,
as represented by the survey questions. While surveys render
beliefs observable (subject to the vagaries of self-report), the
robot cannot ask its teammates 43 questions before and after
each of the 15 buildings for all eight missions. We instead
want to understand whether and how well the robot can in-
fer a person’s response to such potential questioning based
on the behavior it can already unobtrusively observe.

3 Behavioral Sequences
The order in which each of the eight robots was teamed with
the participants was randomized, but (importantly for this in-
vestigation) each participant searched the eight towns in the
same order. Every human-robot team visited the buildings
of a given town in the same order as well. The presence of
threats in each building was also identical for every partici-
pant. All of the robots had a faulty camera that failed to iden-
tify armed gunmen, but their NBC sensors and microphones

were perfectly accurate. As a result, the sensor readings re-
ceived by all of the robots and their eventual recommenda-
tions (but not the framing of that recommendation) were also
identical for a given building. In particular, the robot makes
an incorrect assessment of the danger level for 3 out of 15
buildings in each town. For example, the first two rows of
Table 1 list the threats (NBC or armed gunman or blank if
neither) that exist in each of the buildings in Mission 2. The
third row lists the robot’s assessment as to whether the build-
ing is safe or not. The fourth row lists the robot’s confidence
in that assessment, which it communicates to those partici-
pants receiving the confidence-level explanation.

Therefore, we can make meaningful comparisons of the
sequence of participant behaviors—15 decisions to follow
or ignore the robot’s recommendation—across different par-
ticipants in each of the eight missions, even though they may
be interacting with different robots. For example, Table 1’s
first two rows show that Building 6 of Mission 2 is always
a false negative by the robot, regardless of explanation, ac-
knowledgment, or embodiment. We can then reliably judge
each participant’s sixth decision to follow or ignore the robot
as a bad or good decision, respectively. Similarly, we can ex-
amine each participant’s seventh decision to potentially see
whether the robot’s error in the previous building has led to
persistent trust loss.

We exploit this property of the domain to describe the
participants’ behavior in a mission as simply the sequence
of their follow/ignore decisions. The 15 buildings in each
mission lead to a behavioral sequence of 15 decisions. The
bottom four rows of Table 1 show the four most common
behavioral sequences exhibited in Mission 2, which we have
manually labeled as follows:

Compliant: The most common sequence in Mission 2 is
one that is fully “Compliant” (i.e., 15 “follow” decisions).
Such a decision sequence will cause the participant to die
three times per mission (Buildings 6, 8, and 15 in Mission
2).

Correct: More successful is the second-most common se-



Building 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Threat NBC Gun Gun Gun

Robot Safe Unsafe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe
Confidence 97% 86% 96% 97% 96% 63% 96% 63% 97% 96% 97% 97% 97% 97% 63%

Compliant (11) F F F F F F F F F F F F F F F
Correct (8) F F F F F I F I F F F F F F I
Follow confident (6) F I F F F I F I F F F F F F I
Never protect (5) F I F F F F F F F F F F F F F

Table 1: Mission 2 ground truth, robot recommendation, and the most common follow (F) and ignore (I) behaviors (number of
matching participants in parentheses)

quence, where the participants do not die at all. These
participants correctly ignore the robot’s false negatives in
Buildings 6, 8, and 15. In general, participants following
this optimal strategy ignore the robot if and only if (iff)
the robot’s confidence is less than 80%.

Follow confident: In the third-most common sequence, the
participants seem to ignore the robot whenever its confi-
dence is less than 90%. In other words, they use too high
of a confidence threshold for trusting the robot, compared
to the “Correct” sequence. These participants will cor-
rectly ignore the robot’s false negatives, too, but they will
also incorrectly ignore the robot’s true positives (e.g. in
Room 2).

Never protect: Finally, participants following the fourth-
most common sequence never choose to put on protective
gear, treating the building as safe regardless of the robot’s
assessment. These participants fare the worst, as they suf-
fer the deaths from both the “Compliant” sequence (by
following the robot’s false negatives) and the “Follow
confident” sequence (by not following the robot’s true
positives).

The specific sequences of “follow” and “ignore” deci-
sions that qualify as the “Correct”, “Follow confident”, and
“Never protect” sequences change from mission to mission,
depending on the location of threats within the building se-
quence.

3.1 Behavioral Distance
The hypothesis underlying our approach is that people who
have exhibited similar outward behaviors will also have sim-
ilar subjective beliefs. To operationalize this hypothesis, we
first need a definition of similarity. Given that our behavioral
sequences all have the same length, the Hamming distance
between them makes a natural metric of similarity. In other
words, we simply count the number of positions at which
two behavioral sequences differ. Smaller counts mean fewer
differences, which mean more similarity between the two
behaviors. For example, the “Compliant” behavior from Ta-
ble 1 would have a Hamming distance of 3 from the “Cor-
rect” behavior (e.g., differing in only Buildings 6, 8, and
15, the robot’s false-negative recommendations). Using this
metric, the “Follow confident” behavior is closer to “Cor-
rect” than “Compliant”, while the “Never protect” behavior
is the opposite.

Given the binary nature of our decisions, there are 215 =
32, 768 possible behaviors. However, people are likely to
cluster around a much smaller subset of “reasonable” behav-
iors and ignore unreasonable ones (e.g., alternate following
and ignoring the robot each building, or do the opposite of
what the mostly reliable robot recommends for every build-
ing). Because the behavioral patterns are being thus gener-
ated by a somewhat rational process, we will most likely ob-
serve a smaller space of feasible patterns than we would in
less-constrained pattern-recognition domains. We therefore
gain computational efficiency from the nature of plan, ac-
tivity, and intent recognition (Sukthankar et al. 2014), even
though we do not explicitly model plans, activities, or inten-
tions within our purely behavioral sequences.

Having translated our data set into a space of behavioral
comparison points, we can then apply a nearest-neighbor ap-
proach to find the participants most similar to the one whose
subjective beliefs we are currently trying to recognize. If
there are multiple participants whose behavior is at the same
minimal Hamming distance from our target behavior, we do
not break the tie. Instead, we generate a distribution from
the frequency count across the tied participants. For exam-
ple, the “Compliant” behavior will be the nearest neighbor
for any new participant who is always following as well.

3.2 Behavioral Overlap
We first examine the commonality of behavioral sequences,
broken down by mission. Because each mission presents a
different sequence of threats, we cannot combine sequences
across missions. Fortunately, there is significant common-
ality of behaviors within each mission, as illustrated in Ta-
ble 2. The second column lists how many total participants
completed each mission. The third column lists how many
distinct behavioral sequences were exhibited by at least one
participant (n ≥ 1). We filter out less common behaviors
in the fourth and fifth columns, which list how many dis-
tinct behavioral sequences were exhibited by at least three
(n ≥ 3) and five (n ≥ 5) participants, respectively.

Table 2 shows that behaviors are much more diverse in
Mission 1, with very little overlap: only two behavioral se-
quences are performed by at least three different users each.
The overlap increases on subsequent missions, most likely
due to participants gaining a better understanding of the task
(i.e., and thus behaving less randomly). In fact, the first mis-
sion is quite anomalous with respect to these behaviors. In
the other seven missions, the behavior with the largest n is



Mission Total n ≥ 1 n ≥ 3 n ≥ 5
Behaviors Behaviors Behaviors Behaviors

1 72 55 2 2
2 68 40 4 4
3 66 25 5 4
4 64 27 4 3
5 63 24 4 3
6 62 17 3 3
7 63 23 4 3
8 62 20 4 3

Table 2: Number of distinct behaviors per mission, across
different frequency thresholds.

Mission Follow Never
Compliant Correct Confident Protect

1 0 9 5 0
2 11 8 6 5
3 14 12 6 9
4 15 11 3 11
5 9 18 4 9
6 20 16 2 10
7 9 19 1 11
8 16 16 4 10

Table 3: Frequency of most common behaviors across all
missions (highest count for each mission in bold).

the “Compliant” sequence. However, no participant chooses
this behavioral sequence in Mission 1. It thus appears that
Mission 1 stimulates more exploratory actions by the par-
ticipants, leading to more diversity within their behaviors. It
also implies an ordering effect that will skew an aggregation
of results over all of the missions, but which we can still ac-
count for when examining individual behavioral sequences.

As it turns out, all of the n ≥ 5 behaviors in Table 2
are in our list of four identifiable sequences, as specified in
Section 3. Table 3 shows the detailed breakdown of how
many participants exhibit those four sequences across the
eight missions. We see further evidence of the anomalous
behavior during the first mission, where every single partic-
ipant ignored the robot at least once (no “Compliant” partic-
ipants) and chose to use protective gear at least once (no
“Never protect” participants). There is also a general in-
creasing trend in the number of “Correct” participants as the
missions progress, another ordering effect (i.e., participants
calibrate their threshold for the robot’s confidence) that will
interfere with an aggregate-level analysis of the data.

4 Recognizing Subjective Beliefs
The subjective beliefs we seek to recognize are exemplified
by the questions asked in our post-mission survey. We must
therefore predict a new participant’s potential answer to such
questions, based on his/her behavior as observed so far. We
can use the behaviors and survey responses of the other par-
ticipants to implement a 1-nearest-neighbor algorithm, as a
simple collaborative-filtering approach to recognition.

4.1 Predicting Self-Reported Beliefs
If we want to recognize, for example, whether a new partic-
ipant believes that “The robot is capable of performing its
tasks”, we can construct a probability distribution over the
responses of the other participants in the behavioral cluster
containing the new participant. For example, consider a par-
ticipant who exhibited the “Follow confident” behavior in
Mission 2. This participant’s nearest behavioral neighbors
(by Hamming distance) would include the participants who
also performed the “Follow confident” strategy or at least
did so with little deviation. As we see from Table 3, there
are five other such participants when n ≥ 1. We would then
extract the histogram of those participants’ survey responses
to “The robot is capable of performing its tasks.” One partic-
ipant in this group responded with a neutral 4, another with a
more agreeing 5, and the other three with an even more pos-
itive 6 (on a 7-point Likert scale). The robot could use this
frequency count to predict that this new participant will also
agree with this statement, responding with a 6 with a 60%
probability and with a 4 or 5 with a 20% probability each.

To evaluate the results, we iterate through each partici-
pant in our data set, treating the remaining participants as
the robot’s knowledge base. We construct three different
versions of this knowledge base by changing our threshold
for the frequency of our clusters, as illustrated in Table 2.
A more inclusive knowledge base (lower n threshold) may
capture more diverse behaviors, but runs the risk of being
skewed by outliers. A less inclusive knowledge base (higher
n threshold) will be more concentrated on “typical” behav-
iors and should thus generalize well, but it may miss out on
rarer (but still relevant) behaviors.

As a baseline, we also generate predictions from a distri-
bution of responses across all of the other participants in the
knowledge base. This baseline thus constitutes a “typical”
model that has been aggregated over all of the participants. It
would therefore answer with the same belief state for every
new participant, regardless of observed behavior. For exam-
ple, using all of the participants’ responses to the statement
“The robot is capable of performing its tasks.” yields a dis-
tribution of 〈.17, .06, .08, .15, .23, .23, .08〉 over the possi-
ble responses 1–7. One can see the clear difference between
this distribution and the distribution specified above for the
“Follow confident” cluster: 〈.00, .00, .00, .20, .20, .60, .00〉.
In particular, 17% of the total participants strongly disagreed
that the robot was capable, while none of the participants
who exhibited the “Follow confident” behavior disagreed at
all.

We examine the predictions made using only the (behav-
iorally) nearest neighbors vs. using all of the participants.
For each question in the survey, we count how many par-
ticipants get a more accurate prediction (higher probability
given for their actual response) using the former vs. the lat-
ter. Our example participant’s actual response to the survey
item was a 6, which was predicted with a 60% probability
using just the cluster, but with only a 23% probability using
the entire population. We can repeat this process for each of
our participants to identify those for whom the cluster gives
a more accurate prediction. The more participants for whom
the cluster is more accurate, the more useful behavioral ob-



servations will be in predicting responses to the given survey
item.

On the other hand, survey items for which the cluster does
not provide a more accurate prediction represent beliefs that
are harder to infer from observed behavior. Such cases may
arrive when (for example) two participants who have differ-
ing beliefs nevertheless exhibit the same behavior. No matter
what method the agent uses, it will not be able to distinguish
the beliefs of such participants.

Table 4 shows the questions for which our nearest-
neighbor approach is more accurate than the baseline for the
highest percentage of participants, averaged over all eight
missions. The first observation is that our nearest-neighbor
approach is more accurate than the baseline for a clear ma-
jority of the participants. In fact, when using all of the behav-
iors in our knowledge base (n ≥ 1), the result consistently
exceeds the baseline for approximately 80% of the partic-
ipants. Notably, the accuracy declines as we prune out the
less common behaviors. It is likely that the pruning leads
to overgeneralization, mapping too many participants to the
most common behaviors.

Looking at the questions themselves reveals additional in-
sights into the recognizability of the corresponding subjec-
tive beliefs. Most of the questions appearing in Table 4 are
directly related to the trust level that the participant has in the
robot. The participants’ observable behaviors clearly make it
easy to recognize whether they felt the robot was “capable”
and “qualified” and whether they had “confidence” in its var-
ious capabilities. In other words, participants who made sim-
ilar choices about whether to follow or ignore the robot’s
recommendation also expressed similar levels of trust in the
robot’s capability and decisions.

While this may seem straightforward, it is illuminating
to also look at the questions for which the nearest-neighbor
approach was more accurate than the aggregate model on a
lower percentage of participants. Looking at Table 5, we first
see that the overall accuracy drops to roughly 2/3, even for
the n ≥ 1 knowledge base. The more selective knowledge
bases perform even worse. In fact, the n ≥ 3 and n ≥ 5
knowledge bases are outperformed by the baseline on a ma-
jority of participants on two questions.

These two questions, as well as some others that appear in
Table 5, concern the participants’ own experience and capa-
bility, not the robot’s. It thus appears that people who behave
similarly may have very dissimilar feelings about their own
task performance. As a result, the robot may not be able to
recognize these feelings from just the observed behavioral
sequence, regardless of the recognition procedure used.

Table 5 also includes questions pertaining to the partici-
pant’s understanding of how the robot functions. Again, the
indication is that, just because two participants’ behaviors
are similar, their understanding (or at least their perception
of their own understanding) of the robot may not be. Thus,
the participants’ behavior may not be sufficient for the robot
to recognize whether they have a sufficiently accurate under-
standing of it. Therefore, while the results in Table 4 suggest
that this nearest-neighbor approach works well for recogniz-
ing levels of trust, we may need additional modeling support
or human input to recognize levels of understanding.

4.2 Dynamics of Recognition
The results presented so far have used behavioral sequences
of length 15, i.e., the complete mission sequence. We would
also like to know whether the nearest-neighbor approach
might be able to provide useful predictions earlier. To do
so, we consider prefixes of each participants’ behavior, such
as an initial subsequence of “follow”-”follow”-”follow”-
”ignore”-”follow”, ignoring the actions to come afterward.
We then find the nearest neighbors in the knowledge base,
where we consider only the initial subsequences of the other
observed behaviors when computing the Hamming distance.
Table 6 shows the results for subsequences of length 5 and
10 for the questions that were answered the most accurately
with the full-length sequences (the n ≥ 5 column from Ta-
ble 4).

Not surprisingly, using only the first five actions results in
much lower accuracy than when using the entire sequence.
The participants’ responses to the post-mission survey were
naturally given only after all 15 actions, so ten actions have
passed between the first five decisions and the subjective be-
liefs revealed in the survey. Taking this into consideration,
it is actually a pleasant surprise that the first five actions are
sufficiently informative for our nearest-neighbor approach
to still outperform the aggregate baseline prediction. In fact,
recognizing the participants’ feeling about the robot’s capa-
bility outperforms the baseline for a significantly high per-
centage of participants for all lengths of sequences.

However, some subjective beliefs are much harder to rec-
ognize with only five observations. In particular, the partici-
pants’ feeling about their own performance (“How success-
ful were you in accomplishing what you were asked to do?”)
cannot be predicted any better with five observations than
with none. It is encouraging to note that the accuracy of the
nearest-neighbor prediction greatly increases once we have
received ten observations. This effect is most likely due to
the timing of the robot’s failures. Most of the robot’s failures
occur after the five-step cutoff, so there are few behavioral
differences in the short subsequence to distinguish between
the participants who will succeed overall vs. those who will
fail.

5 Conclusion
The proposed methodology provides a very flexible method
for using behavioral and mental-state data to support the
online recognition of subjective beliefs from observed be-
haviors in an HRI domain. It does so without constructing
any generative or causal model of those subjective beliefs.
Yet our nearest-neighbor approach was still able to capture
individual differences to a degree that it could consistently
generate more accurate recognition than a baseline model of
“typical” subjective beliefs and behaviors.

It is important to note that there is no inherent obstacle
to expanding this methodology to consider generative and
causal models. In fact, we can potentially use this same
methodology to understand the effect of our different robots
on those subjective beliefs. For example, instead of cluster-
ing behavioral sequences across all participants, we could
cluster them separately for different robot variations. In



n ≥ 1 n ≥ 3 n ≥ 5 Survey Item
83.6% (3) 72.8% (3) 74.6% (1) “The robot is capable of performing its tasks.”
84.6% (2) 73.4% (1) 74.2% (2) “I feel confident about the robot’s capability.”
83.4% (4) 72.8% (2) 74.0% (3) “The robot’s capable of making sound decisions based on its sensor readings.”
82.4% (7) 72.3% (4) 73.6% (4) “I feel confident about the robot’s sensors.”
82.4% (8) 69.9% (7) 71.3% (5) “The robot has specialized capabilities that can increase our performance.”
81.8% (9) 70.1% (6) 70.3% (6) “To what extent do you believe you can trust the decisions of the robot?”
82.4% (6) 68.7% (9) 69.7% (7) “The robot’s camera is capable of making accurate readings.”
81.6% (10) 69.1% (8) 69.7% (8) “The robot is well qualified for this job.”
85.0% (1) 71.3% (5) 69.1% (9) “How successful were you in accomplishing what you were asked to do?”
79.7% (13) 68.7% (10) 69.1% (10) “I feel confident about the robot’s camera’s sensing capability.”
83.0% (5) 67.6% (11) 68.2% (11) “I feel confident about the robot’s NBC sensor’s sensing capability.”

Table 4: Questions for which nearest neighbors provided improvement over the highest percentage of users (rank of question in
parentheses).

n ≥ 1 n ≥ 3 n ≥ 5 Survey Item
64.8% (43) 44.3% (43) 42.4% (43) “To what extent do you believe you can trust the decisions you will make, if you were

to make the decision without the robot?”
65.2% (42) 45.5% (42) 46.7% (42) “How hurried or rushed was the pace of the task?”
66.6% (40) 50.0% (40) 50.2% (41) “I understand how the robot’s camera’s sensing capability works.”
66.4% (41) 50.0% (39) 50.2% (40) “I understand how the robot’s microphone’s sensing capability works.”
69.9% (29) 50.8% (37) 50.2% (39) “How would you rate the expected performance of the robot relative to your expected

performance?”
69.3% (34) 49.6% (41) 50.4% (38) “How hard did you have to work to accomplish your level of performance?”
66.6% (39) 50.8% (38) 50.4% (37) “How well do you think you will perform the next mission, if you were to perform

the mission without the robot?”
70.1% (28) 51.6% (34) 51.4% (36) “How mentally demanding was the task?”
69.9% (31) 51.0% (36) 51.8% (35) “I understand the robot’s decision-making process, e.g. how and why the robot makes

its decisions.”
67.8% (38) 52.1% (33) 52.1% (34) “I understand how the robot’s sensing capability (e.g. the NBC sensors, camera, mi-

crophone) works.”
68.2% (37) 52.3% (32) 52.3% (33) “I understand how the robot makes its decisions.”
68.7% (36) 55.5% (26) 54.9% (27) “The robot’s actions and behaviors are not very consistent.”
68.9% (35) 51.4% (35) 53.3% (31) “To what extent did you lose trust in the robot when you noticed it made an error?”

Table 5: Questions for which nearest neighbors provided improvement over the lowest percentage of users (rank of question in
parentheses).

length = 5 length = 10 length = 15 Survey Item
65.6% (1) 77.5% (1) 74.6% (1) “The robot is capable of performing its tasks.”
61.1% (6) 75.6% (3) 74.2% (2) “I feel confident about the robot’s capability.”
59.2% (12) 74.8% (4) 74.0% (3) “The robot’s capable of making sound decisions based on its sensor readings.”
63.9% (2) 76.2% (2) 73.6% (4) “I feel confident about the robot’s sensors.”
62.1% (3) 71.5% (6) 71.3% (5) “The robot has specialized capabilities that can increase our performance.”
56.2% (19) 69.7% (10) 70.3% (6) “To what extent do you believe you can trust the decisions of the robot?”
61.3% (5) 70.5% (8) 69.7% (7) “The robot’s camera is capable of making accurate readings.”
60.1% (9) 73.2% (5) 69.7% (8) “The robot is well qualified for this job.”
49.4% (36) 68.0% (13) 69.1% (9) “How successful were you in accomplishing what you were asked to do?”
58.4% (16) 70.7% (7) 69.1% (10) “I feel confident about the robot’s camera’s sensing capability.”
59.4% (11) 63.5% (17) 68.2% (11) “I feel confident about the robot’s NBC sensor’s sensing capability.”

Table 6: Questions for which nearest neighbors (using only sequences with n ≥ 5) provided improvement over the highest
percentage of users (rank of question in parentheses).



other words, we could compare behavioral sequences for
those participant who interacted with the robot who pro-
vided confidence-level explanations vs. the one who pro-
vided none. In fact, a quick examination shows that the par-
ticipants who always followed the robot were predominantly
in the latter group. We can thus see that providing the expla-
nations broke people out of blind compliance.

By examining the behavioral sequences at the individual
level, our approach avoids the information loss inherent to
statistical aggregation. The recognizing agent has access to
all of the individual differences across prior human interac-
tions, and it can bring that knowledge to bear when deciding
dynamically how to best interact with a new person. In sum-
mary, our methodology provides a potentially rich launching
pad for further investigations into leveraging prior interac-
tions with people into online methods for recognizing and
adapting to a new person’s subjective beliefs.
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