
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 1, JANUARY 1998 1

J:\PRODUCTION\TPAMI\2-INPROD\106036\106036_1.DOC regularpaper97.dot SB 19,968 01/06/98 8:29 AM 1 / 13

Generalized Queries on Probabilistic
Context-Free Grammars

David V. Pynadath and Michael P. Wellman

Abstract—Probabilistic context-free grammars (PCFGs) provide a simple way to represent a particular class of distributions over
sentences in a context-free language. Efficient parsing algorithms for answering particular queries about a PCFG (i.e., calculating
the probability of a given sentence, or finding the most likely parse) have been developed and applied to a variety of pattern-
recognition problems. We extend the class of queries that can be answered in several ways: (1) allowing missing tokens in a
sentence or sentence fragment, (2) supporting queries about intermediate structure, such as the presence of particular nonterminals,
and (3) flexible conditioning on a variety of types of evidence. Our method works by constructing a Bayesian network to represent
the distribution of parse trees induced by a given PCFG. The network structure mirrors that of the chart in a standard parser, and is
generated using a similar dynamic-programming approach. We present an algorithm for constructing Bayesian networks from
PCFGs, and show how queries or patterns of queries on the network correspond to interesting queries on PCFGs. The network
formalism also supports extensions to encode various context sensitivities within the probabilistic dependency structure.

Index Terms—Probabilistic context-free grammars, Bayesian networks.

—————————— ✦ ——————————

1 INTRODUCTION

OST pattern-recognition problems start from observa-
tions generated by some structured stochastic proc-

ess. Probabilistic context-free grammars (PCFGs) [1], [2]
have provided a useful method for modeling uncertainty
in a wide range of structures, including natural languages
[2], programming languages [3], images [4], speech signals
[5], and RNA sequences [6]. Domains like plan recogni-
tion, where nonprobabilistic grammars have provided
useful models [7], may also benefit from an explicit sto-
chastic model.

Once we have created a PCFG model of a process, we
can apply existing PCFG parsing algorithms to answer a
variety of queries. For instance, standard techniques can
efficiently compute the probability of a particular observa-
tion sequence or find the most probable parse tree for that
sequence. Section 2 provides a brief description of PCFGs
and their associated algorithms.

However, these techniques are limited in the types of
evidence they can exploit and the types of queries they can
answer. In particular, the existing PCFG techniques gener-
ally require specification of a complete observation se-
quence. In many contexts, we may have only a partial se-
quence available. It is also possible that we may have evi-
dence beyond simple observations. For example, in natural
language processing, we may be able to exploit contextual
information about a sentence in determining our beliefs
about certain unobservable variables in its parse tree. In
addition, we may be interested in computing the probabili-

ties of alternate types of events (e.g., future observations or
abstract features of the parse) that the extant techniques do
not directly support.

The restricted query classes addressed by the existing al-
gorithms limit the applicability of the PCFG model in do-
mains where we may require the answers to more complex
queries. A flexible and expressive representation for the
distribution of structures generated by the grammar would
support broader forms of evidence and queries than sup-
ported by the more specialized algorithms that currently
exist. We adopt Bayesian networks for this purpose, and
define an algorithm to generate a network representing the
distribution of possible parse trees (up to a specified string
length) generated from a given PCFG. Section 3 describes
this algorithm, as well as our algorithms for extending the
class of queries to include the conditional probability of a
symbol appearing anywhere within any region of the parse
tree, conditioned on any evidence about symbols appearing
in the parse tree.

The restrictive independence assumptions of the PCFG
model also limit its applicability, especially in domains like
plan recognition and natural language with complex de-
pendency structures. The flexible framework of our Baye-
sian-network representation supports further extensions to
context-sensitive probabilities, as in the probabilistic parse
tables of Briscoe and Carroll [8]. Section 4 explores several
possible ways to relax the independence assumptions of the
PCFG model within our approach. Modified versions of
our PCFG algorithms can support the same class of queries
supported in the context-free case.

2 PROBABILISTIC CONTEXT-FREE GRAMMARS

A probabilistic context-free grammar is a tuple Â, , ,N S P ,
where the disjoint sets S and N specify the terminal and
nonterminal symbols, respectively, with S Œ N being the

0162-8828/98/$10.00 © 1998 IEEE

¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥

• The authors are with the Artificial Intelligence Laboratory, University of
Michigan, 1101 Beal Avenue, Ann Arbor, MI 48109.
E-mail: {pynadath, wellman}@umich.edu.

Manuscript received 18 Nov. 1996; revised 4 Nov. 1997. Recommended for accep-
tance by T. Ishida.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 106036.

M

2 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 1, JANUARY 1998

J:\PRODUCTION\TPAMI\2-INPROD\106036\106036_1.DOC regularpaper97.dot SB 19,968 01/06/98 8:29 AM 2 / 13

start symbol. P is the set of productions, which take the form
E Æ x(p), with E Œ N, x Œ (S < N)+, and p = Pr(E Æ x), the
probability that E will be expanded into the string x. The sum
of probabilities p over all expansions of a given nonterminal
E must be one. The examples in this paper will use the
sample grammar (from Charniak [2]) shown in Fig. 1.

This definition of the PCFG model prohibits rules of the
form E Æ e, where e represents the empty string. However,
we can rewrite any PCFG to eliminate such rules and still
represent the original distribution [2], as long as we note
the probability Pr(S Æ e). For clarity, the algorithm descrip-
tions in this paper assume Pr(S Æ e) = 0, but a negligible
amount of additional bookkeeping can correct for any
nonzero probability.

The probability of applying a particular production E Æ x
to an intermediate string is conditionally independent of
what productions generated this string, or what produc-
tions will be applied to the other symbols in the string,
given the presence of E. Therefore, the probability of a
given derivation is simply the product of the probabilities
of the individual productions involved. We define the parse
tree representation of each such derivation as for nonprob-
abilistic context-free grammars [9]. The probability of a
string in the language is the sum taken over all its possible
derivations.

2.1 Standard PCFG Algorithms
Since the number of possible derivations grows exponen-
tially with the string’s length, direct enumeration would
not be computationally viable. Instead, the standard dy-
namic programming approach used for both probabilistic
and nonprobabilistic CFGs [10] exploits the common pro-
duction sequences shared across derivations. The central

structure is a table, or chart, storing previous results for
each subsequence in the input sentence. Each entry in the
chart corresponds to a subsequence xi � xi+j-1 of the obser-
vation string x1 � xL. For each symbol E, an entry contains
the probability that the corresponding subsequence is de-
rived from that symbol, Pr(xi � xi+j-1|E). The index i refers
to the position of the subsequence within the entire termi-
nal string, with i = 1 indicating the start of the sequence.
The index j refers to the length of the subsequence.

The bottom row of the table holds the results for subse-
quences of length one, and the top entry holds the overall
result, Pr(x1 � xL|S), which is the probability of the ob-
served string. We can compute these probabilities bottom-
up, since we know that Pr(xi|E) = 1, if E is the observed
symbol xi. We can define all other probabilities recursively
as the sum, over all productions E Æ x(p), of the product
p ◊ Pr(xi � xi+j-1|x). Altering this procedure to take the
maximum rather than the sum yields the most probable
parse tree for the observed string. Both algorithms require
time O(L3) for a string of length L, ignoring the dependency
on the size of the grammar.

To compute the probability of the sentence Swat flies
like ants, we would use the algorithm to generate the
table shown in Fig. 2, after eliminating any unused inter-
mediate entries. There are also separate entries for each
production, though this is not necessary if we are interested
only in the final sentence probability. In the top entry, there
are two listings for the production S Æ np vp, with differ-
ent subsequence lengths for the right-hand side symbols.
The sum of all probabilities for productions with S on the
left-hand side in this entry yields the total sentence prob-
ability of 0.001011.

This algorithm is capable of computing any inside prob-
ability, the probability of a particular string appearing in-
side the subtree rooted by a particular symbol. We can
work top-down in an analogous manner to compute any
outside probability [2], the probability of a subtree rooted by
a particular symbol appearing amid a particular string.
Given these probabilities, we can compute the probability
of any particular nonterminal symbol appearing in the
parse tree as the root of a subtree covering some subse-
quence. For example, in the sentence Swat flies like
ants, we can compute the probability that like ants is a
prepositional phrase, using a combination of inside and

S Æ np vp (0.8) pp Æ prep np (1.0)
S Æ vp (0.2) prep Æ like (1.0)
np Æ noun (0.4) verb Æ swat (0.2)
np Æ noun pp (0.4) verb Æ flies (0.4)
np Æ noun np (0.2) verb Æ like (0.4)
vp Æ verb (0.3) noun Æ swat (0.05)
vp Æ verb np (0.3) noun Æ flies (0.45)
vp Æ verb pp (0.2) noun Æ ants (0.5)
vp Æ verb np pp (0.2)

Fig. 1. A probabilistic context-free grammar (from Charniak [2]).

S Æ vp: 0.00072
S Æ np(2) vp(2): 0.000035

j = 4 S Æ np(1) vp(3): 0.000256
vp Æ verb np pp: 0.0014
vp Æ verb np: 0.00216

3 vp Æ verb pp: 0.016
np Æ noun pp: 0.036

2 np Æ noun np: 0.0018 vp Æ verb np: 0.024
pp Æ prep np: 0.2

np Æ noun: 0.02 np Æ noun: 0.18 np Æ noun: 0.2
1 verb Æ swat: 0.2 verb Æ flies: 0.4 prep Æ like: 1.0 noun Æ ants:

noun Æ swat: 0.05 noun Æ flies: 0.45 verbÆ like: 0.4

i = 1 2 3 4

Fig. 2. Chart for Swat flies like ants.

PYNADATH AND WELLMAN: GENERALIZED QUERIES ON PROBABILISTIC CONTEXT-FREE GRAMMARS 3

J:\PRODUCTION\TPAMI\2-INPROD\106036\106036_1.DOC regularpaper97.dot SB 19,968 01/06/98 8:29 AM 3 / 13

outside probabilities. The Left-to-Right Inside (LRI) algo-
rithm [10] specifies how we can use inside probabilities to
obtain the probability of a given initial subsequence, such
as the probability of a sentence (of any length) beginning
with the words Swat flies. Furthermore, we can use such
initial subsequence probabilities to compute the conditional
probability of the next terminal symbol given a prefix string.

2.2 Indexing Parse Trees
Yet other conceivable queries are not covered by existing
algorithms, or answerable via straightforward manipula-
tions of inside and outside probabilities. For example, given
observations of arbitrary partial strings, it is unclear how to
exploit the standard chart directly. Similarly, we are un-
aware of methods to handle observation of nonterminals
only (e.g., that the last two words form a prepositional
phrase). We seek, therefore, a mechanism that would admit
observational evidence of any form as part of a query about
a PCFG, without requiring us to enumerate all consistent
parse trees.

We first require a scheme to specify such events as the
appearance of symbols at designated points in the parse
tree. We can use the indices i and j to delimit the leaf nodes
of the subtree, as in the standard chart parsing algorithms.
For example, the pp node in the parse tree of Fig. 3 is the
root of the subtree whose leaf nodes are like and ants, so
i = 3 and j = 2.

However, we cannot always uniquely specify a node
with these two indices alone. In the branch of the parse tree
passing through np, n, and flies, all three nodes have i = 2
and j = 1. To differentiate them, we introduce the k index,
defined recursively. If a node has no child with the same i
and j indices, then it has k = 1. Otherwise, its k index is one
more than the k index of its child. Thus, the flies node
has k = 1, the noun node above it has k = 2, and its parent np
has k = 3. We have labeled each node in the parse tree of
Fig. 3 with its (i, j, k) indices.

We can think of the k index of a node as its level of ab-
straction, with higher values indicating more abstract sym-
bols. For instance, the flies symbol is a specialization of
the noun concept, which, in turn, is a specialization of the
np concept. Each possible specialization corresponds to an
abstraction production of the form E Æ E¢, that is, with only
one symbol on the right-hand side. In a parse tree involving
such a production, the nodes for E and E¢ have identical i

and j values, but the k value for E is one more than that of
E¢. We denote the set of abstraction productions as PA Õ P.

All other productions are decomposition productions, in the
set PD = P\PA, and have two or more symbols on the right-
hand side. If a node E is expanded by a decomposition pro-
duction, the sum of the j values for its children will equal its
own j value, since the length of the original subsequence
derived from E must equal the total lengths of the subse-
quences of its children. In addition, since each child must
derive a string of nonzero length, no child has the same j
index as E, which must then have k = 1. Therefore, abstrac-
tion productions connect nodes whose indices match in the
i and j components, while decomposition productions con-
nect nodes whose indices differ.

3 BAYESIAN NETWORKS FOR PCFGS

A Bayesian network [11], [12], [13] is a directed acyclic graph
where nodes represent random variables, and associated
with each node is a specification of the distribution of its
variable conditioned on its predecessors in the graph. Such
a network defines a joint probability distribution— the
probability of an assignment to the random variables is
given by the product of the probabilities of each node con-
ditioned on the values of its predecessors according to the
assignment. Edges not included in the graph indicate con-
ditional independence; specifically, each node is condition-
ally independent of its nondescendants given its immediate
predecessors. Algorithms for inference in Bayesian net-
works exploit this independence to simplify the calculation
of arbitrary conditional probability expressions involving
the random variables.

By expressing a PCFG in terms of suitable random vari-
ables structured as a Bayesian network, we could in princi-
ple support a broader class of inferences than the standard
PCFG algorithms. As we demonstrate below, by expressing
the distribution of parse trees for a given probabilistic
grammar, we can incorporate partial observations of a sen-
tence as well as other forms of evidence, and determine the
resulting probabilities of various features of the parse trees.

3.1 PCFG Random Variables
We base our Bayesian-network encoding of PCFGs on the
scheme for indexing parse trees presented in Section 2.2.
The random variable Nijk denotes the symbol in the parse
tree at the position indicated by the (i, j, k) indices. Looking
back at the example parse tree of Fig. 3, a symbol E labeled
(i, j, k) indicates that Nijk = E. Index combinations not ap-
pearing in the tree correspond to N variables taking on the
null value nil.

Assignments to the variables Nijk are sufficient to de-
scribe a parse tree. However, if we construct a Bayesian
network using only these variables, the dependency struc-
ture would be quite complicated. For example, in the ex-
ample PCFG, the fact that N213 has the value np would in-
fluence whether N321 takes on the value pp, even given that
N141 (their parent in the parse tree) is vp. Thus, we would
need an additional link between N213 and N321, and, in fact,
between all possible sibling nodes whose parents have
multiple expansions.

Fig. 3. Parse tree for Swat flies like ants, with (i, j, k) indi-
ces labeled.

4 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 1, JANUARY 1998

J:\PRODUCTION\TPAMI\2-INPROD\106036\106036_1.DOC regularpaper97.dot SB 19,968 01/06/98 8:29 AM 4 / 13

To simplify the dependency structure, we introduce
random variables Pijk to represent the productions that ex-
pand the corresponding symbols Nijk. For instance, we add
the node P141, which would take on the value vp Æ verb
np pp in the example. N213 and N321 are conditionally inde-
pendent given P141, so no link between siblings is necessary
in this case.

However, even if we know the production Pijk, the corre-
sponding children in the parse tree may not be condition-
ally independent. For instance, in the chart of Fig. 2, entry
(1, 4) has two separate probability values for the production
S Æ np vp, each corresponding to different subsequence
lengths for the symbols on the right-hand side. Given only
the production used, there are again multiple possibilities
for the connected N variables: N113 = np and N231 = vp, or
N121 = np and N321 = vp. All four of these sibling nodes are
conditionally dependent, since knowing any one deter-
mines the values of the other three. Therefore, we dictate
that each variable Pijk take on different values for each
breakdown of the right-hand symbols’ subsequence lengths.

The domain of each Pijk variable therefore consists of pro-
ductions, augmented with the j and k indices of each of the
symbols on the right-hand side. In the previous example, the
domain of P141 would require two possible values, S Æ
np[1, 3]vp[3, 1] and S Æ np[2, 1]vp[2, 1], where the numbers
in brackets correspond to the j and k values, respectively, of
the associated symbol. If we know that P141 is the former,
then N113 = np and N231 = vp with probability one. This de-
terministic relationship renders the child N variables condi-
tionally independent of each other given Pijk. We describe the
exact nature of this relationship in Section 3.3.2.

Having identified the random variables and their do-
mains, we complete the definition of the Bayesian network
by specifying the conditional probability tables represent-
ing their interdependencies. The tables for the N variables
represent their deterministic relationship with the parent P
variables. However, we also need the conditional probabil-
ity of each P variable given the value of the corresponding N
variable, that is, Pr(Pijk = E Æ E1[j1, k1] � Em[jm, km]|Nijk = E).
The PCFG specifies the relative probabilities of different
productions for each nonterminal, but we must compute
the probability, b(E, j, k) (analogous to the inside probabil-
ity [2]), that each symbol Et on the right-hand side is the
root node of a subtree, at abstraction level kt, with a termi-
nal subsequence length jt.

3.2 Calculating b
3.2.1 Algorithm
We can calculate the values for b with a modified version of
the dynamic programming algorithm sketched in Section 2.1.
As in the standard chart-based PCFG algorithms, we can
define this function recursively and use dynamic pro-
gramming to compute its values. Since terminal symbols
always appear as leaves of the parse tree, we have, for any
terminal symbol x Œ S, b(x, 1, 1) = 1, and for any j > 1 or k > 1,
b(x, j, k) = 0. For any nonterminal symbol E Œ N, b(E, 1, 1) = 0,
since nonterminals can never be leaf nodes. For j > 1 or k > 1,
b(E, j, k) is the sum, over all productions expanding E, of
the probability of that production expanding E and pro-
ducing a subtree constrained by the parameters j and k.

For k > 1, only abstraction productions are possible. For an
abstraction production E Æ E¢, we need the probabilities that
E is expanded into E¢ and that E¢ derives a string of length j
from the abstraction level immediately below E. The former
is given by the probability associated with the production,
while the latter is simply b(E¢, j, k - 1). According to the inde-
pendence assumptions of the PCFG model, the expansion of
E¢ is independent of its derivation, so the joint probability is
simply the product. We can compute these probabilities for
every abstraction production expanding E. Since the different
expansions are mutually exclusive events, the value for
b(E, j, k) is merely the sum of all the separate probabilities.

We assume that there are no abstraction cycles in the
grammar. That is, there is no sequence of productions E1 Æ
E2, º, Et-1 Æ Et, Et Æ E1, since, if such a cycle existed, the
above recursive calculation would never halt. The same
assumption is necessary for termination of the standard
parsing algorithm. The assumption does restrict the classes
of grammars for which such algorithms are applicable, but
it will not be restrictive in domains where we interpret pro-
ductions as specializations, since cycles would render an
abstraction hierarchy impossible.

For k = 1, only decomposition productions are possible.
For a decomposition production E Æ E1E2 � Em(p), we
need the probability that E is thus expanded, and that
each Et derives a subsequence of appropriate length.
Again, the former is given by p, and the latter can be
computed from values of the b function. We must con-
sider every possible subsequence length jt for each Et,

such that j jtt

m
=

=Â 1
. In addition, the Et could appear at

any level of abstraction kt, so we must consider all possi-
ble values for a given subsequence length. We can obtain

the joint probability of any combination of j kt t t

m
,1 6= B =1

 val-

ues by computing b E j kt t tt

m
, ,1 6=’ 1

, since the derivation

from each Et is independent of the others. The sum of

these joint probabilities over all possible j kt t t

m
,1 6= B =1

 yields

the probability of the expansion specified by the produc-
tion’s right-hand side. The product of the resulting prob-
ability and p yields the probability of that particular ex-
pansion, since the two events are independent. Again, we
can sum over all relevant decomposition productions to
find the value of b(E, j, 1).

The algorithm in Fig. 4 takes advantage of the division
between abstraction and decomposition productions to
compute the values b(E, j, k) for strings bounded by length.
The array kmax keeps track of the depth of the abstraction
hierarchy for each subsequence length.

3.2.2 Example Calculations
To illustrate the computation of b values, consider the re-
sult of using Charniak’s grammar from Fig. 1 as its input.
We initialize the entries for j = 1 and k = 1 to have probabil-
ity one for each terminal symbol, as in Fig. 1. To fill in the
entries for j = 1 and k = 2, we look at all of the abstraction
productions. The symbols noun, verb, and prep can all be

PYNADATH AND WELLMAN: GENERALIZED QUERIES ON PROBABILISTIC CONTEXT-FREE GRAMMARS 5

J:\PRODUCTION\TPAMI\2-INPROD\106036\106036_1.DOC regularpaper97.dot SB 19,968 01/06/98 8:29 AM 5 / 13

expanded into one or more terminal symbols, which have
nonzero b values at k = 1. We enter these three nontermi-
nals at k = 2, with b values equal to the sum, over all rele-
vant abstraction productions, of the product of the prob-
ability of the given production and the value for the right-
hand symbol at k = 1. For instance, we compute the value
for noun by adding the product of the probability of noun
Æ swat and the value for swat, that of noun Æ flies
and flies, and that of noun Æ ants and ants. This
yields the value one, since a noun will always derive a
string of length one, at a single level abstraction above the
terminal string, given this grammar. The abstraction
phase continues until we find S at k = 4, for which there
are no further abstractions, so we go on to j = 2 and begin
the decomposition phase.

To illustrate the decomposition phase, consider the
value for b(S, 3, 1). There is only one possible decomposi-
tion production, sÆ np vp. However, we must consider
two separate cases: when the noun phrase covers two
symbols and the verb phrase one, and when the noun

phrase covers one and the verb phrase two. At a subse-
quence length of two, both np and vp have nonzero prob-
ability only at the bottom level of abstraction, while, at a
length of one, only at the third. So, to compute the prob-
ability of the first subsequence length combination, we
multiply the probability of the production by b(np, 2, 1)
and b(vp, 1, 3). The probability of the second combination
is a similar product, and the sum of the two values pro-
vides the value to enter for S.

The other abstractions and decompositions proceed
along similar lines, with additional summation required
when multiple productions or multiple levels of abstraction
are possible. The final table is shown in Fig. 5, which lists
only the nonzero values.

3.2.3 Complexity
For analysis of the complexity of computing the b values
for a given PCFG, it is useful to define d to be the maxi-
mum length of possible chains of abstraction productions
(i.e., the maximum k value), and m to be the maximum

Fig. 4. Algorithm for computing b values.

k E b(E, 4, k) k E b(E, 3, k) k E b(E, 2, k) k E b(E, 1, k)

2 S 0.02016 2 S 0.0208 2 S 0.024 4 S 0.06

1 S 0.0832 1 S 0.0576 1 S 0.096 3 np 0.4
np 0.0672 np 0.176 np 0.08 vp 0.3

vp 0.1008 vp 0.104 vp 0.12 2 prep 1.0
pp 0.176 pp 0.08 pp 0.4 verb 1.0

1 like 1.0
swat 1.0
flies 1.0
ants 1.0

Fig. 5. Final table for sample grammar.

6 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 1, JANUARY 1998

J:\PRODUCTION\TPAMI\2-INPROD\106036\106036_1.DOC regularpaper97.dot SB 19,968 01/06/98 8:29 AM 6 / 13

production length (number of symbols on the right-hand
side). A single run through the abstraction phase requires
time O(|PA|), and for each subsequence length, there are
O(d) runs. For a specific value of j, the decomposition
phase requires time O(|PD|jm-1dm), since, for each de-
composition production, we must consider all possible
combinations of subsequence lengths and levels of ab-
stractions for each symbol on the right-hand side. There-
fore, the whole algorithm would take time
O(n[d|PA|+|PD|nm-1dm]) = O(|P|nmdm).

3.3 Network Generation Phase
We can use the b function calculated as described above to
compute the domains of random variables Nijk and Pijk and
the required conditional probabilities.

3.3.1 Specification of Random Variables
The procedure CREATE-NETWORK, described in Fig. 6, be-
gins at the top of the abstraction hierarchy for strings of
length n starting at position 1. The root symbol variable,
N1n(kmax[n]), can be either the start symbol, indicating the
parse tree begins here, or nil*, indicating that the parse
tree begins below. We must allow the parse tree to start at
any j and k where b(S, j, k) > 0, because these can all possi-
bly derive strings (of any length bounded by n) within the
language.

CREATE-NETWORK then proceeds downward through the
Nijk random variables and specifies the domain of their cor-
responding production variables, Pijk. Each such production
variable takes on values from the set of possible expansions
for the possible nonterminal symbols in the domain of Nijk.
If k > 1, only abstraction productions are possible, so the
procedure ABSTRACTION-PHASE, described in Fig. 7, inserts
all possible expansions and draws links from Pijk to the ran-
dom variable Nij(k-1), which takes on the value of the right-
hand side symbol. If k = 1, the procedure DECOMPOSITION-
PHASE, described in Fig. 8, performs the analogous task for

decomposition productions, except that it must also con-
sider all possible length breakdowns and abstraction levels
for the symbols on the right-hand side.

CREATE-NETWORK calls the procedure START-TREE, de-
scribed in Fig. 9, to handle the possible expansions of nil*:
either nil*Æ S, indicating that the tree starts immediately
below, or nil* Æ nil*, indicating that the tree starts further
below. START-TREE uses the procedure START-PROB, described
in Fig. 10, to determine the probability of the parse tree
starting anywhere below the current point of expansion.

When we insert a possible value into the domain of a
production node, we add it as a parent of each of the nodes
corresponding to a symbol on the right-hand side. We also
insert each symbol from the right-hand side into the do-
main of the corresponding symbol variable. The algorithm
descriptions assume the existence of procedures INSERT-
STATE and ADD-PARENT. The procedure INSERT-STATE(node,
label) inserts a new state with name label into the domain of
variable node. The procedure ADD-PARENT(child, parent)
draws a link from node parent to node child.

Fig. 6. Procedure for generating the network.

Fig. 7. Procedure for finding all possible abstraction productions.

Fig. 8. Procedure for finding all possible decomposition productions.

Fig. 9. Procedure for handling start of parse tree at next level.

Fig. 10. Procedure for computing the probability of the start of the tree
occurring for a particular string length and abstraction level.

PYNADATH AND WELLMAN: GENERALIZED QUERIES ON PROBABILISTIC CONTEXT-FREE GRAMMARS 7

J:\PRODUCTION\TPAMI\2-INPROD\106036\106036_1.DOC regularpaper97.dot SB 19,968 01/06/98 8:29 AM 7 / 13

3.3.2 Specification of Conditional Probability Table
After CREATE-NETWORK has specified the domains of all of
the random variables, we can specify the conditional prob-
ability tables. We introduce the lexicographic order a over
the set {(j, k)|1 £ j £ n, 1 £ k £ kmax[j]}, where if j1 < j2 then
(j1, k1) a (j2, k2) and if k1 < k2 then (j, k1) a (j, k2). For the pur-
poses of simplicity, we do not specify an exact value for
each probability Pr(X = x|Y), but instead specify a weight,
Pr(X = xt|Y) µ at. We compute the exact probabilities
through normalization, where we divide each weight by
the sum Âtat. The prior probability table for the top node,
which has no parents, can be defined as follows:

Pr(N1n(kmax[n]) = S) µ b(S, n, kmax[n])

Pr(N1n(kmax[n]) = nil*) µ Â(j,k)a(n,kmax[n]) b(S, j, k).

For a given state r in the domain of any Pijk node, where
r represents a production and corresponding assignment of
j and k values to the symbols on the right-hand side, of the
form EÆ E1[j1, k1] � Em[jm, km](p), we can define the condi-
tional probability of that state as:

Pr , ,P N E p E j kijk ijk t t tt

m
= = µ

=’r b4 9 1
.

For any symbol E¢ π E in the domain of Nijk, Pr(Pijk =
r|Nijk = E¢) = 0. For the productions for starting or delaying
the tree, the probabilities are:

Pr(P1jk = nil* Æ S[j¢, k¢]|Nijk = nil*) µ b[S, j¢, k¢]

Pr(P1jk = nil*Æ nil*|Nijk = nil*) µ Â(j¢,k¢)a(j,k) b[S, j¢, k¢].

The probability tables for the Nijk nodes are much sim-
pler, since once the productions are specified, the symbols
are completely determined. Therefore, the entries are either
one or zero. For example, consider the nodes Ni j k

" " "

 with the

parent node Pi¢j¢k¢ (among others). For the rule r representing

E Æ E1[j1, k1] � Em[jm, km], Pr(Ni j k
" " "

 = E,|Pi¢j¢k¢ = r, º) = 1

when i i jtt"

"

= ¢ +
=

-Â 1

1
, j = j,. For all symbols other than E, in

the domain of Ni j k
" " "

, this conditional probability is zero.

We can fill in this entry for all configurations of the other
parent nodes (represented by the ellipsis in the condition
part of the probability), though we know that any conflict-
ing configurations (i.e., two productions both trying to
specify the symbol Ni j k

" " "

) are impossible. Any configura-

tion of the parent nodes that does not specify a certain
symbol indicates that the Ni j k

" " "

 node takes on the value

nil with probability one.

3.3.3 Network Generation Example
As an illustration, consider the execution of this algorithm
using the b values from Fig. 5. We start with the root vari-
able N142. The start symbol S has a b value greater than zero
here, as well as at points below, so the domain must include
both S and nil*. To obtain Pr(N142 = S), we simply divide
b(S, 4, 2) by the sum of all b values for S, yielding 0.055728.

The domain of P142 is partially specified by the abstrac-
tion phase for the symbol S in the domain of N142. There is

only one relevant production, S Æ vp, which is a possible
expansion since b(vp, 4, 1) > 0. Therefore, we insert the
production into the domain of P142, with conditional prob-
ability one given that N142 = S, since there are no other pos-
sible expansions. We also draw a link from P142 to N141,
whose domain now includes vp with conditional probabil-
ity one given that P142 = SÆ vp.

To complete the specification of P142, we must consider
the possible start of the tree, since the domain of N142 in-
cludes nil*. The conditional probability of P142 = nil* Æ S is
0.24356, the ratio of b(S, 4, 1) and the sum of b(S, j, k) for
(j, k) d (4, 1). The link from P142 to N141 has already been
made during the abstraction phase, but we must also insert
S and nil* into the domain of N141, each with conditional
probability one given the appropriate value of P142.

We then proceed to N141, which is at the bottom level of
abstraction, so we must perform a decomposition phase.
For the production SÆ np vp, there are three possible
combinations of subsequence lengths which add to the total
length of four. If np derives a string of length one and vp a
string of length three, then the only possible levels of ab-
straction for each are three and one, respectively, since all
others will have zero b values. Therefore, we insert the
production s Æ np[1, 3]vp[3, 1] into the domain of P141,
where the numbers in brackets correspond to the subse-
quence length and level of abstraction, respectively. The
conditional probability of this value, given that N141 = S, is
the product of the probability of the production, b(np, 1, 3),
and b(vp, 3, 1), normalized over the probabilities of all pos-
sible expansions.

We then draw links from P141 to N113 and N231, into
whose domains we insert np and vp, respectively. The i
values are obtained by noting that the subsequence for np
begins at the same point as the original string while that for
vp begins at a point shifted by the length of the subse-
quence for np. Each occurs with probability one, given that
the value of P141 is the appropriate production. Similar ac-
tions are taken for the other possible subsequence length
combinations. The operations for the other random vari-
ables are performed in a similar fashion, leading to the
network structure shown in Fig. 11.

3.3.4 Complexity of Network Generation

The resulting network has O(n2d) nodes. The domain of

each Ni11 variable has O(|S|) states to represent the possi-

ble terminal symbols, while all other Nijk variables have
O(|N|) possible states. There are n variables of the former,
and O(n2d) of the latter. For k > 1, the Pijk variables (of

which there are O(n2d)) have a domain of O(|PA|) states.

For Pij1 variables, there are states for each possible decom-
position production, for each possible combination of sub-
sequence lengths, and for each possible level of abstraction
of the symbols on the right-hand side. Therefore, the Pij1

variables (of which there are O(n2)) have a domain of

O(|PD|jm-1dm) states, where we have again defined d to be
the maximum value of k, and m to be the maximum pro-
duction length.

8 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 1, JANUARY 1998

J:\PRODUCTION\TPAMI\2-INPROD\106036\106036_1.DOC regularpaper97.dot SB 19,968 01/06/98 8:29 AM 8 / 13

Unfortunately, even though each particular P variable
has only the corresponding N variable as its parent, a given
N variable could have potentially O(n) P variables as par-
ents. The size of the conditional probability table for a node
is exponential in the number of parents, although given that
each N can be determined by at most one P (i.e., no inter-
actions are possible), we can specify the table in a linear
number of parameters.

If we define T to be the maximum number of entries of
any conditional probability table in the network, then the ab-
straction phase of the algorithm requires time O(|PA|T), while
the decomposition phase requires time O(|PD|nm-1dmTm).
Handling the start of the parse tree and the potential space
holders requires time O(T). The total time complexity of the
algorithm is then O(n2|PD|nm-1dmTm + ndT + n2d|PA|T +
n2dT) = O(|P|nm+1dmTm), which dwarfs the time complexity
of the dynamic programming algorithm for the b function.
However, this network is created only once for a particular
grammar and length bound.

3.4 PCFG Queries
We can use the Bayesian network to compute any joint
probability that we can express in terms of the N and P
random variables included in the network. The standard
Bayesian network algorithms [11], [12], [14] can return
joint probabilities of the form Pr , ,X x X xi j k i j k mm m m1 1 1 1= =�3 8
or conditional probabilities of the form Pr Xijk =2
x X x X x

i j k i j k mm m m1 1 1
1= =, ,� 8 , where each X is either N or

P. Obviously, if we are interested only in whether a symbol
E appeared at a particular i, j, k location in the parse tree,
we need only examine the marginal probability distribution

of the corresponding N variable. Thus, a single network
query will yield the probability Pr(Nijk = E).

The results of the network query are implicitly condi-
tional on the event that the length of the terminal string
does not exceed n. We can obtain the joint probability by
multiplying the result by the probability that a string in the
language has a length not exceeding n. For any j, the prob-
ability that we expand the start symbol S into a terminal
string of length j is Â =k

kmax j S j k1
[] , ,b1 6 , which we can then

sum for 1 £ j £ n. To obtain the appropriate unconditional
probability for any query, all network queries reported in
this section must be multiplied by Â Â= =j

n
k
kmax j S j k1 1

[] , ,b1 6 .

3.4.1 Probability of Conjunctive Events
The Bayesian network also supports the computation of
joint probabilities analogous to those computed by the
standard PCFG algorithms. For instance, the probability of
a particular terminal string such as Swat flies like

ants corresponds to the probability Pr(N111 = swat, N211 =
flies, N311 = like, N411 = ants). The probability of an ini-
tial subsequence like Swat flies..., as computed by the
LRI algorithm [10], corresponds to the probability Pr(N111 =
swat, N211 = like). Since the Bayesian network represents
the distribution over strings of bounded length, we can find
initial subsequence probabilities only over completions of
length bounded by n - L.

Although, in this case, our Bayesian network approach
requires some modification to answer the same query as the
standard PCFG algorithm, it needs no modification to han-
dle more complex types of evidence. The chart parsing and
LRI algorithms require complete sequences as input, so any

Fig. 11. Network from example grammar at maximum length 4.

PYNADATH AND WELLMAN: GENERALIZED QUERIES ON PROBABILISTIC CONTEXT-FREE GRAMMARS 9

J:\PRODUCTION\TPAMI\2-INPROD\106036\106036_1.DOC regularpaper97.dot SB 19,968 01/06/98 8:29 AM 9 / 13

gaps or other uncertainty about particular symbols would
require direct modification of the dynamic programming
algorithms to compute the desired probabilities. The Baye-
sian network, on the other hand, supports the computation
of the probability of any evidence, regardless of its struc-
ture. For instance, if we have a sentence Swat flies ...
ants where we do not know the third word, a single net-
work query will provide the conditional probability of pos-
sible completions Pr(N311 | N111 = swat, N211 = flies, N411 =
ants), as well as the probability of the specified evidence
Pr(N111 = swat, N211 = flies, N411 = ants).

This approach can handle multiple gaps, as well as par-
tial information. For example, if we again do not know the
exact identity of the third word in the sentence Swat
flies ... ants, but we do know that it is either swat or
like, we can use the Bayesian network to fully exploit this
partial information by augmenting our query to specify that
any domain values for N311 other than swat or like have
zero probability. Although these types of queries are rare in
natural language, domains like speech recognition often
require this ability to reason when presented with noisy
observations.

We can answer queries about nonterminal symbols as
well. For instance, if we have the sentence Swat flies
like ants, we can query the network to obtain the condi-
tional probability that like ants is a prepositional phrase,
Pr(N321 = pp|N111 = swat, N211 = like, N311 = like, N411 =
ants). We can answer queries where we specify evidence
about nonterminals within the parse tree. For instance, if
we know that like ants is a prepositional phrase, the
input to the network query will specify that N321 = pp, as
well as specifying the terminal symbols.

Alternate network algorithms can compute the most
probable state of the random variables given the evidence,
instead of a conditional probability [11], [15], [14]. For ex-
ample, consider the case of possible four-word sentences
beginning with the phrase Swat flies The prob-
ability maximization network algorithms can determine
that the most probable state of terminal symbol variables
N311 and N411 is like flies, given that N111 = swat, N211 =
flies, and N511 = nil.

3.4.2 Probability of Disjunctive Events
We can also compute the probability of disjunctive events
through multiple network queries. If we can express an
event as the union of mutually exclusive events, each of the
form X x X xi j k i j k mm m m1 1 1 1= Ÿ Ÿ =� , then we can query the

network to compute the probability of each, and sum the
results to obtain the probability of the union. For instance, if
we want to compute the probability that the sentence Swat
flies like ants contains any prepositions, we would
query the network for the probabilities Pr(Ni12 = prep|N111

= swat, N211 = like, N311 = like, N411 = ants), for 1 £ i £ 4.
In a domain like plan recognition, such a query could corre-
spond to the probability that an agent performed some
complex action within a specified time span.

In this example, the individual events are already mutu-
ally exclusive, so we can sum the results to produce the
overall probability. In general, we ensure mutual exclusiv-

ity of the individual events by computing the conditional
probability of the conjunction of the original query event
and the negation of those events summed previously. For
our example, the overall probability would be Pr(N112 =
prep|e) + Pr(N212 = prep, N112 π prep| e) + Pr(N112 = prep,
N112 π prep, N212 π prep| e) + Pr(N112 = prep, N112 π prep,
N212 π prep, N312 π prep| e), where e corresponds to the
event that the sentence is Swat flies like ants.

The Bayesian network provides a unified framework
that supports the computation of all of the probabilities
described here. We can compute the probability of any
event e, where e is a set of mutually exclusive events

X Xi j k t i j k t
t

h
t t t tmt tmt tmt mt1 1 1 1 1

Œ Ÿ Ÿ Œ
=

; ;�> C with each X being

either N or P. We can also compute probabilities of events
where we specify relative likelihoods instead of strict subset
restrictions. In addition, given any such event, we can de-
termine the most probable configuration of the uninstanti-
ated random variables. Instead of designing a new algorithm
for each such query, we have only to express the query in
terms of the network’s random variables, and use any
Bayesian network algorithm to compute the desired result.

3.4.3 Complexity of Network Queries
Unfortunately, the time required by the standard network
algorithms in answering these queries is potentially expo-
nential in the maximum string length n, though the exact
complexity will depend on the connectedness of the net-
work and the particular network algorithm chosen. The
algorithm in our current implementation uses a great deal
of preprocessing in compiling the networks, in the hope of
reducing the complexity of answering queries. Such an al-
gorithm can exploit the regularities of our networks (e.g.,
the conditional probability tables of each Nijk consist of only
zeroes and ones) to provide reasonable response time in
answering queries. Unfortunately, such compilation can
itself be prohibitive and will often produce networks of
exponential size. There exist Bayesian network algorithms
[16], [17] that offer greater flexibility in compilation, possi-
bly allowing us to limit the size of the resulting networks,
while still providing acceptable query response times.

Determining the optimal tradeoff will require future re-
search, as will determining the class of domains where our
Bayesian network approach is preferable to existing PCFG
algorithms. It is clear that the standard dynamic program-
ming algorithms are more efficient for the PCFG queries
they address. For domains requiring more general queries
of the types described here, the flexibility of the Bayesian
network approach may justify the greater complexity.

4 CONTEXT SENSITIVITY

For many domains, the independence assumptions of the
PCFG model are overly restrictive. By definition, the prob-
ability of applying a particular PCFG production to expand
a given nonterminal is independent of what symbols have
come before and of what expansions are to occur after.
Even this paper’s simplified example illustrates some of the
weaknesses of this assumption. Consider the intermediate
string Swat ants like noun. It is implausible that the

10 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 1, JANUARY 1998

J:\PRODUCTION\TPAMI\2-INPROD\106036\106036_1.DOC regularpaper97.dot SB 19,968 01/06/98 8:29 AM 10 / 13

probability that we expand noun into flies instead of
ants is independent of the choice of swat as the verb or the
choice of ants as the object.

Of course, we may be able to correct the model by ex-
panding the set of nonterminals to encode contextual in-
formation, adding productions for each such expansion,
and thus preserving the structure of the PCFG model.
However, this can obviously lead to an unsatisfactory in-
crease in complexity for both the design and use of the
model. Instead, we could use an alternate model which re-
laxes the PCFG independence assumptions. Such a model
would need a more complex production and/or probability
structure to allow complete specification of the distribution,
as well as modified inference algorithms for manipulating
this distribution.

4.1 Direct Extensions to Network Structure
The Bayesian network representation of the probability
distribution provides a basis for exploring such context
sensitivities. The networks generated by the algorithms of
this paper implicitly encode the PCFG assumptions
through assignment of a single nonterminal node as the
parent of each production node. This single link indicates
that the expansion is conditionally independent of all other
nondescendant nodes, once we know the value of this
nonterminal. We could extend the context-sensitivity of
these expansions within our network formalism by altering
the links associated with these production nodes.

We can introduce some context sensitivity even without
adding any links. Since each production node has its own
conditional probability table, we can define the production
probabilities to be a function of the (i, j, k) index values. For
instance, the number of words in a group strongly influ-
ences the likelihood of that group forming a noun phrase.
We could model such a belief by varying the probability of
a np appearing over different string lengths, as encoded by
the j index. In such cases, we can modify the standard
PCFG representation so that the probability information
associated with each production is a function of i, j, and k,
instead of a constant. The dynamic programming algorithm
of Fig. 4 can be easily modified to handle production prob-
abilities that depend on j and k. However, a dependency on
the i index as well would require adding it as a parameter
of b and introducing an additional loop over its possible
values. Then, we would have to replace any reference to the
production probability, in either the dynamic programming
or network generation algorithm, with the appropriate
function of i, j, and k.

Alternatively, we may introduce additional dependen-
cies on other nodes in the network. A PCFG extension that
conditions the production probabilities on the parent of the
left-hand side symbol has already proved useful in model-
ing natural language [18]. In this case, each production has
a set of associated probabilities, one for each nonterminal
symbol that is a possible parent of the symbol on the left-
hand side. This new probability structure requires modifi-
cations to both the dynamic programming and the network
generation algorithms. We must first extend the probability
information of the b function to include the parent nonter-
minal as an additional parameter. It is then straightforward

to alter the dynamic programming algorithm of Fig. 4 to
correctly compute the probabilities in a bottom-up fashion.

The modifications for the network generation algorithm
are more complicated. Whenever we add Pijk as a parent for

some symbol node N
i jk�� �

, we also have to add Nijk as a parent

of P
i jk�� �

. For example, the dotted arrow in the subnetwork of

Fig. 12 represents the additional dependency of P112 on

N113. We must add this link because N112 is a possible child

nonterminal, as indicated by the link from P113. The condi-
tional probability tables for each P node must now specify
probabilities given the current nonterminal and the parent
nonterminal symbols. We can compute these by combining
the modified b values with the conditional production
probabilities.

Returning to the example from the beginning of this sec-
tion, we may want to condition the production probabilities
on the terminal string expanded so far. As a first approxi-
mation to such context sensitivity, we can imagine a model
where each production has an associated set of probabili-
ties, one for each terminal symbol in the language. Each
represents the conditional probability of the particular ex-
pansion given that the corresponding terminal symbol oc-
curs immediately previous to the subsequence derived
from the nonterminal symbol on the left-hand side. Again,
our b function requires an additional parameter, and we
need a modified version of the dynamic programming al-
gorithm to compute its values. However, the network gen-
eration algorithm needs to introduce only one additional
link, from Ni11 for each P(i+1)jk node. The dashed arrows in
the subnetwork of Fig. 13 reflect the additional dependen-
cies introduced by this context sensitivity, using the net-
work example from Fig. 11. The P1jk nodes are a special
case, with no preceding terminal, so the steps from the
original algorithm are sufficient.

We can extend this conditioning to cover preceding ter-
minal sequences rather than individual symbols. Each pro-
duction could have an associated set of probabilities, one
for each possible terminal sequence of length bounded by
some parameter h. The b function now requires an addi-
tional parameter specifying the preceding sequence. The
network generation algorithms must then add links to Pijk
from nodes N(i-h)11, º, N(i-1)11, if i ≥ h, or from N111, º,
N(i-1)11, if i < h. The conditional probability tables then
specify the probability of a particular expansion given the
symbol on the left-hand side and the preceding terminal
sequence.

Fig. 12. Subnetwork incorporating parent symbol dependency.

PYNADATH AND WELLMAN: GENERALIZED QUERIES ON PROBABILISTIC CONTEXT-FREE GRAMMARS 11

J:\PRODUCTION\TPAMI\2-INPROD\106036\106036_1.DOC regularpaper97.dot SB 19,968 01/06/98 8:29 AM 11 / 13

In many cases, we may wish to account for external in-
fluences, such as explicit context representation in natural
language problems or influences of the current world state
in planning, as required by many plan recognition prob-
lems [19]. For instance, if we are processing multiple sen-
tences, we may want to draw links from the symbol nodes
of one sentence to the production nodes of another, to re-
flect thematic connections. As long as our network can in-
clude random variables to represent the external context,
then we can represent the dependency by adding links
from the corresponding nodes to the appropriate produc-
tion nodes and altering the conditional probability tables to
reflect the effect of the context.

In general, the Bayesian networks currently generated
contain a set of random variables sufficient for expressing
arbitrary parse tree events, so we can introduce context
sensitivity by adding the appropriate links to the produc-
tion nodes from the events on which we wish to condition
expansion probabilities. Once we have the correct network,
we can use any of the query algorithms from Section 3.4 to
produce the corresponding conditional probability.

4.2 Extensions to the Grammar Model
Context sensitivities expressed as incremental changes to
the network dependency structure represent only a minor
relaxation of the conditional independence assumptions of
the PCFG model. More global models of context sensitivity
will likely require a radically different grammatical form
and probabilistic interpretation framework. The History-
Based Grammar (HBG) [20] provides a rich model of con-
text sensitivity by conditioning the production probabilities
on (potentially) the entire parse tree available at the current
expansion point. Since our Bayesian networks represent all
positions of the parse tree, it is theoretically possible to rep-
resent these conditional probabilities by introducing the
appropriate links. However, since the HBG model uses de-

cision tree methods to identify equivalence classes of the
partial trees and thus produce simple event structures to
condition on, it is unclear exactly how to replicate this be-
havior in a systematic generation algorithm.

If we restrict the types of context sensitivity, then we are
more likely to find such a network generation algorithm. In
the nonstochastic case, context-sensitive grammars [9] pro-
vide a more structured model than the general unrestricted
grammar by allowing only productions of the form a1Aa2
Æ a1Ba2, where the as are arbitrary sequences of terminal
and/or nonterminal symbols. This restriction eliminates
productions where the right-hand side is shorter then the
left-hand side. Such a production indicates that A can be
expanded into B only when it appears in the surrounding
context of a1 immediately precedent and a2 immediately
subsequent. Therefore, perhaps an extension to a probabilis-
tic context-sensitive grammar (PCSG), similar to that for
PCFGs, could provide an even richer model for the types of
conditional probabilities briefly explored here.

The intuitive extension involves associating a likelihood
weighting with each context-sensitive production and
computing the probability of a particular derivation based
on these weights. These weights cannot correspond to
probabilities, because we do not know, a priori, which ex-
pansions may be applicable at a given point in the parse
(due to the different possible contexts). Therefore, a set of
fixed production values may not produce weights that sum
to one in a particular context. We can instead use these
weights to determine probabilities after we know which pro-
ductions are applicable. The probability of a particular
derivation sequence is then uniquely determined, though it
could be sensitive to the order in which we apply the pro-
ductions. We could then define a probability distribution
over all strings in the context-sensitive language so that the
probability of a particular string is the sum of the probabili-
ties over all possible derivation sequences for that string.

Fig. 13. Subnetwork capturing dependency on previous terminal symbol.

12 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 1, JANUARY 1998

J:\PRODUCTION\TPAMI\2-INPROD\106036\106036_1.DOC regularpaper97.dot SB 19,968 01/06/98 8:29 AM 12 / 13

This definition appears theoretically sound, though it is
unclear whether any real-world domains exist for which
such a model would be useful. If we create such a model,
we should be able to generate a Bayesian network with the
proper conditional dependency structure to represent the
distribution. We would have to draw links to each produc-
tion node from its potential context nodes, and the condi-
tional probability tables would reflect the production
weights in each particular context possibility. It is an open
question whether we could create a systematic generation
algorithm similar to that defined for PCFGs.

Although the proposed PCSG model cannot account for
dependence on position or parent symbol, described earlier
in this section, we could make similar extensions to account
for these types of dependencies. The result would be simi-
lar to the context-sensitive probabilities of PEARL [21].
However, PEARL conditions the probabilities on a part-of-
speech trigram, as well as on the sibling and parent non-
terminal symbols. If we allow our model to specify con-
junctions of contexts, then it may be able to represent these
same types of probabilities, as well as more general con-
texts beyond siblings and trigrams.

It is clearly difficult to select a model powerful enough to
encompass a significant set of useful dependencies, but re-
stricted enough to allow easy specification of the produc-
tions and probabilities for a particular language. Once we
have chosen a grammatical formalism capable of represent-
ing the context sensitivities we wish to model, we must de-
fine a network generation algorithm to correctly specify the
conditional probabilities for each production node. However,
once we have the network, we can again use any of the query
algorithms from Section 3.4. Thus, we have a unified frame-
work for performing inference, regardless of the form of the
language model used to generate the networks.

Probabilistic parse tables [8] and stochastic programs
[22] provide alternate frameworks for introducing context
sensitivity. The former approach uses the finite-state ma-
chine of the chart parser as the underlying structure and
introduces context sensitivity into the transition probabili-
ties. Stochastic programs can represent very general sto-
chastic processes, including PCFGs, and their ability to
maintain arbitrary state information could support general
context sensitivity as well. It is unclear whether any of these
approaches have advantages of generality or efficiency over
the others.

5 CONCLUSION

The algorithms presented here automatically generate a
Bayesian network representing the distribution over all
parses of strings (bounded in length by some parameter) in
the language of a PCFG. The first stage uses a dynamic
programming approach similar to that of standard parsing
algorithms, while the second stage generates the network,
using the results of the first stage to specify the probabili-
ties. This network is generated only once for a particular
PCFG and length bound. Once created, we can use this
network to answer a variety of queries about possible
strings and parse trees. Using the standard Bayesian net-
work inference algorithms, we can compute the conditional

probability or most probable configuration of any collection
of our basic random variables, given any other event which
can be expressed in terms of these variables.

These algorithms have been implemented and tested on
several grammars, with the results verified against those of
existing dynamic programming algorithms when applica-
ble, and against enumeration algorithms when given non-
standard queries. When answering standard queries, the
time requirements for network inference were comparable
to those for the dynamic programming techniques. Our
network inference methods achieved similar response times
for some other types of queries, providing a vast improve-
ment over the much slower brute force algorithms. How-
ever, in our current implementation, the memory require-
ments of network compilation limit the complexity of the
grammars and queries, so it is unclear whether these results
will hold for larger grammars and string lengths.

Preliminary investigation has also demonstrated the use-
fulness of the network formalism in exploring various
forms of context-sensitive extensions to the PCFG model.
Relatively minor modifications to the PCFG algorithms can
generate networks capable of representing the more general
dependency structures required for certain context sensi-
tivities, without sacrificing the class of queries that we can
answer. Future research will need to provide a more gen-
eral model of context sensitivity with sufficient structure to
support a corresponding network generation algorithm.

Although answering queries in Bayesian networks is ex-
ponential in the worst case, our method incurs this cost in
the service of greatly increased generality. Our hope is that
the enhanced scope will make PCFGs a useful model for
plan recognition and other domains that require more
flexibility in query forms and in probabilistic structure. In
addition, these algorithms may extend the usefulness of
PCFGs in natural language processing and other pattern rec-
ognition domains where they have already been successful.

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewers for careful
reading and helpful suggestions. This work was supported
in part by Grant F49620-94-1-0027 from the Air Force Office
of Scientific Research.

REFERENCES

[1] R.C. Gonzalez and M.S. Thomason, Syntactic Pattern Recognition:
An Introduction. Reading, Mass.: Addison-Wesley, 1978.

[2] E. Charniak, Statistical Language Learning. Cambridge, Mass.: MIT
Press, 1993.

[3] C.S. Wetherell, “Probabilistic Languages: A Review and Some
Open Questions,” Computing Surveys, vol. 12, no. 4, pp. 361-379,
1980.

[4] P.A. Chou, “Recognition of Equations Using a Two-Dimensional
Stochastic Context-Free Grammar,” Proc. SPIE: Visual Communica-
tions and Image Processing IV, Int’l Soc. Optical Eng., pp. 852-863,
Bellingham, Wash., 1989.

[5] H. Ney, “Stochastic Grammars and Pattern Recognition,” Speech
Recognition and Understanding, P. Laface and R. DeMori, eds.,
pp. 319-344. Berlin: Springer, 1992.

[6] Y. Sakakibara, M. Brown, R.C. Underwood, I.S. Mian, and D.
Haussler, “Stochastic Context-Free Grammars for Modeling RNA,”
Proc. 27th Hawaii Int’l Conf. System Sciences, pp. 284-293, 1995.

PYNADATH AND WELLMAN: GENERALIZED QUERIES ON PROBABILISTIC CONTEXT-FREE GRAMMARS 13

J:\PRODUCTION\TPAMI\2-INPROD\106036\106036_1.DOC regularpaper97.dot SB 19,968 01/06/98 8:29 AM 13 / 13

[7] M. Vilain, “ Getting Serious About Parsing Plans: A Grammatical
Analysis of Plan Recognition,” Proc. Eighth Nat’l Conf. Artificial In-
telligence, pp. 190-197, 1990.

[8] T. Briscoe and J. Carroll, “ Generalized Probabilistic LR Parsing of
Natural Language (Corpora) With Unification-Based Grammars,”
Computational Linguistics, vol. 19, no. 1, pp. 25-59, Mar. 1993.

[9] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory,
Languages, and Computation. Reading, Mass.: Addison-Wesley,
1979.

[10] F. Jelinek, J.D. Lafferty, and R.L. Mercer, “ Basic Methods of Prob-
abilistic Context Free Grammars,” Speech Recognition and Under-
standing, P. Laface and R. DeMori, eds., pp. 345-360. Berlin:
Springer, 1992.

[11] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Mateo, Calif.: Morgan Kaufmann, 1987.

[12] R.E. Neapolitan, Probabilistic Reasoning in Expert Systems: Theory
and Algorithms. New York: John Wiley and Sons, 1990.

[13] F.V. Jensen, An Introduction to Bayesian Networks. New York:
Springer, 1996.

[14] R. Dechter, “ Bucket Elimination: A Unifying Framework for
Probabilistic Inference,” Proc. 12th Conf. Uncertainty in Artificial In-
telligence, pp. 211-219, San Francisco, 1996.

[15] E. Charniak and S.E. Shimony, “ Cost-Based Abduction and MAP
Explanation,” Artificial Intelligence, vol. 66, pp. 345-374, 1994.

[16] R. Dechter, “ Topological Parameters for Time-Space Tradeoff,”
Proc. 12th Conf. Uncertainty in Artificial Intelligence, pp. 220-227,
San Francisco, 1996.

[17] A. Darwiche and G. Provan, “ Query DAGs: A Practical Paradigm
for Implementing Belief-Network Inference,” J. Artificial Intelli-
gence Research, vol. 6, pp. 147-176, 1997.

[18] E. Charniak and G. Carroll, “ Context-Sensitive Statistics for Im-
proved Grammatical Language Models,” Proc. 12th Nat’l Conf. Ar-
tificial Intelligence, pp. 728-733, Menlo Park, Calif., 1994.

[19] D.V. Pynadath and M.P. Wellman, “ Accounting for Context in
Plan Recognition, With Application to Traffic Monitoring,” Proc.
11th Conf. Uncertainty in Artificial Intelligence, pp. 472-481, San
Francisco, 1995.

[20] E. Black, F. Jelinek, J. Lafferty, D.M. Magerman, R. Mercer, and S.
Roukos, “ Towards History-Based Grammars: Using Richer Mod-
els for Probabilistic Parsing,” Proc. Fifth DARPA Speech and Natu-
ral Language Workshop, M. Marcus, ed., pp. 31-37, Feb. 1992.

[21] D.M. Magerman and M.P. Marcus, “ Pearl: A Probabilistic Chart
Parser,” Proc. Second Int’l Workshop on Parsing Technologies, pp.
193-199, 1991.

[22] D. Koller, D. McAllester, and A. Pfeffer, “ Effective Bayesian Infer-
ence for Stochastic Programs,” Proc. 14th Nat’l Conf. Artificial In-
telligence, pp. 740-747, Menlo Park, Calif., 1997.

Author: Please supply photos for Biographies.

David V. Pynadath received BS degrees in electrical engineering and
computer science from the Massachusetts Institute of Technology in
1992. He received the MS degree in computer science from the Uni-
versity of Michigan in 1994. He is currently a doctoral student in com-
puter science at the University of Michigan. His current research in-
volves the use of probabilistic grammars and Bayesian networks for
plan recognition.

Michael P. Wellman received a PhD in computer science from the
Massachusetts Institute of Technology in 1988 for his work in qualita-
tive probabilistic reasoning and decision-theoretic planning. From 1988
to 1992, Dr. Wellman conducted research in these areas at the USAF’s
Wright Laboratory. He is currently an associate professor in the De-
partment of Electrical Engineering and Computer Science at the Uni-
versity of Michigan. Current research also includes investigation of
computational market mechanisms for distributed decision making. In
1994, he received a U.S. National Science Foundation National Young
Investigator award.

