Probabilistic Grammars for Plan Recognition

by

David V. Pynadath

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Computer Science and Engineering)
in The University of Michigan
1999

Doctoral Committee:
Associate Professor Michael P. Wellman, Chair
Associate Professor Edmund H. Durfee
Professor John E. Laird
Professor William C. Rounds
Professor Demosthenis Teneketzis

For my parents

ii

ACKNOWLEDGEMENTS

Thanks to Profs. Edmund H. Durfee, John E. Laird, William C. Rounds, and Demos-
thenis Teneketzis for their many comments and suggestions on this dissertation. Thanks
also to all of the members of the Decision Machine Group for all of their feedback at various
stages of the research. Thanks to my various office-mates over the years for not overly
straining our limited computing resources, and special thanks to Daniel Berwick for provid-
ing his stereo system to enhance the research environment. And very special thanks go to
Prof. Michael P. Wellman as my research advisor, co-author, etc. for all of his ideas, words,

and timely nodding.

iii

TABLE OF CONTENTS

DEDICATION e e s e ii

ACKNOWLEDGEMENTS e e iii

LIST OF FIGURES e e viii

LIST OF APPENDICES i ix
CHAPTERS

1 Introduction o . 1

2 Plan Recognition L 5

2.1 Existing Approaches to Plan Recognition 5

2.1.1 Event Hierarchies 6

2.1.2 Event Grammarso 7

2.1.3 Heuristic Methods 8

2.1.4 Probabilistic Methods 9

2.2 Bayesian Plan Recognition Framework 10

2.2.1 Context 11

2.2.2 Mental Stateo Lo o 13

2.2.3 Planning Process L. 15

224 Plan Execution L L. 18

2.2.5 World Dynamics 0. 19

2.2.6 Inference with the Traffic Bayesian Network 21

2.2.7 Representational Language for the General Framework . . . 23

3 Probabilistic Context-Free Grammarso o ... 26

v

3.1 Specification of PCFG Language Model 26
3.1.1 Standard PCFG Algorithms 27
3.1.2 Indexing Parse Trees 29
3.2 Bayesian Networks for PCFGs 30
3.2.1 PCFG Random Variables 31
3.22 CQalculating 8 L 32
3.2.3 Network Generation Phase 36
324 PCFG Queries.o o i 43
3.3 PCFGs for Plan Recognition 46
4 Context Sensitivity e 49
4.1 Direct Extensions to Network Structure 50
4.2 Modifications to the Grammatical Model 53
4.3 State Dependency in Grammatical Model 55
5 Probabilistic State-Dependent Grammars 57
5.1 Specification of PSDG Language Model 57
5.2 Inferenceon PSDGs. 61
5.2.1 Generation of Bayesian Networks for PSDGs. 61
5.2.2 Dynamic Bayesian Network Representation of PSDGs . .. 62
5.2.3 PSDG Inference through Direct Manipulation of the Belief
State oL e 72
5.2.4 Implementation of PSDG Algorithms 85
6 Modeling Domains with PSDGs 89
6.1 Equivalence of PSDGs and PCFGs 89
6.1.1 Finite State Space oL 89
6.1.2 Infinite State Spaceo 92
6.1.3 Implications of Relationship between PCFG and PSDG Models 93
6.2 Examples of PSDG Domain Representations 94
6.2.1 Traffic Monitoring 94
6.2.2 AirCombat 0. 105
6.3 The PSDG Formalism in Relation to Other Representational Lan-

BUAGES + + v v vt e 110

6.3.1 Event Hierarchies 110
6.3.2 Plan Recognition Bayesian Networks 111
6.3.3 Grammatical Models oL, 111
6.3.4 Stochastic Programs 112
6.3.5 Evaluation of Representational and Inferential Power of PSDG
Language Model 112
7 Conclusion L 115
7.1 Extensions to PSDG Model 115
7.1.1 Generality of PSDG Representation 115
7.1.2 Complexity of PSDG Inference 117
7.1.3 PSDG Domain Specification L. 119
7.2 Contributionso e 119
BIBLIOGRAPHY 121
APPENDICES 126

vi

2.1
2.2
2.3
2.4
2.5
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

3.11
3.12
3.13
4.1
4.2
5.1
5.2
5.3

LIST OF FIGURES

Plan recognition framework. oL 0oL 11
Planning process subnetwork.o oL oL oL 13
Plan execution subnetwork. L L oL 19
Observation subnetwork. oL o 21
Complete Bayesian network for traffic monitoring. 22
A probabilistic context-free grammar (from Charniak [7]). 27
Chart for Swat flies like ants. L. 28
Parse tree for Swat flies like ants, with (i, 7, k) indices labeled. 29
Algorithm for computing g values. 34
Final table for sample grammar. 35
Procedure for generating the network. 37
Procedure for finding all possible abstraction productions. 37
Procedure for finding all possible decomposition productions. 38
Procedure for handling start of parse tree at next level. 38

Procedure for computing the probability of the start of the tree occurring for
a particular string length and abstraction level. 39
Network from example grammar at maximum length 4. 42

A probabilistic context-free grammar representing a simplified traffic model. 47

Sample parse tree from traffic PCFG with (i, 7, k) indices labeled. 48
Subnetwork incorporating parent symbol dependency. 51
Subnetwork capturing dependency on previous terminal symbol. 52
A PSDG representation of a simplified traffic domain. 58
Sample PSDG parse tree from the traffic domain. 60
DBN representation for PSDG of Figure 5.1 over two time slices. 65

vii

5.4
9.5

5.6

5.7

5.8

5.9
5.10

5.11

5.12

5.13

5.14

5.15

6.1

6.2

A probabilistic state-dependent grammar with recursive productions.
Pseudocode for algorithm generating the initial variables of a DBN represen-
tation of a given PSDG distribution. Lo L.
Pseudocode for algorithm generating the variables at time 2 of a DBN rep-
resentation of a given PSDG distribution. 0oL
Pseudocode for procedure generating the termination variables for a DBN
representation of a given PSDG distribution.
Pseudocode for procedure generating the nonterminal symbol variables for a
DBN representation of a given PSDG distribution.
Components of belief state for support of PSDG inference.
Pseudocode for initializing PSDG belief state under the assumption of com-
pletely observable states.o Lo oL Lo
Pseudocode for computing explanation probabilities under the assumption of
completely observable states.
Pseudocode for computing prediction probabilities under the assumption of
completely observable states.
Pseudocode for computing termination probabilities under the assumption
of completely observable states. 0 oL
Pseudocode for explanation phase of PSDG inference algorithm without com-
pletely observable states. o
Pseudocode for prediction phase of PSDG inference algorithm without com-
pletely observable states. o
Productions for PSDG representing a probability distribution over the lan-
guage {a®bVc"dY,y >0} . . . oL

68

69

70

71

71
73

74

78

83

84

86

87

92

Transition probability function for PSDG representing the language {a”bYc*d?,y >

1) R

viii

93

LIST OF APPENDICES

APPENDIX

A PSDG Representation of Traffic Domain

B PSDG Representation of Air Combat

ix

CHAPTER 1

Introduction

A decision maker operating in the presence of a planning agent must often try to deter-
mine the plan of action driving the agent’s behavior, based on partial observation of behavior
up to the current time. Deriving the underlying plan can be useful for many purposes—
predicting the agent’s future behavior, interpreting its past behavior, or generating actions
designed to influence the behavior itself. Researchers in AT have studied this problem of plan
recognition for several kinds of tasks, including discourse analysis [18], user modeling [23],
traffic monitoring [37], collaborative planning [20], and adversarial planning [1].

Existing plan recognition approaches illuminate several key issues in the knowledge rep-
resentation and inference subtasks of plan recognition. Modeling the uncertainty inherent in
most planning domains provides one of the most difficult challenges to a recognizer. Many
approaches use representational languages (e.g., first-order logic) where there is no explicit
accounting of the relative likelihood of plan choices or effects. In such instances, the infer-
ence mechanism must use heuristics to distinguish between equally possible explanations
that differ in plausibility. However, if the representation of the plan domain included an
explicit probabilistic model, then the inference mechanism could have a sound, decision-
theoretic basis for choosing among the candidate explanations, as well as for a recognizing
agent’s overall decision process.

The most comprehensive probabilistic approach to plan recognition constructs Bayesian
networks to represent the relationships among observed events [9]. The representational
language has very few restrictions on the types of allowable relationships, but this gener-
ality leads to impractical probability distributions over the entire problem space, so each
particular set of observations requires the generation of a new network. An alternative

probabilistic approach [21] restricts the representational language, but creates Bayesian

networks over the entire problem space. The restricted representation leads to practical
networks, but limits the applicability of the method. A more desirable representation must
be more powerful than this restricted language, but without running into the complexity
concerns of the more general approach.

The plan recognition framework proposed in Chapter 2 starts from a causal theory of
the agent’s decision process and of the world dynamics. The recognizer bases its conclusions
on its uncertain a priori knowledge about the agent’s mental state, the world state, and
the world’s dynamics, which can be summarized (at least in principle) by a probability
distribution. It then makes partial observations about the world, and uses this evidence
to infer properties of the agent and its plan. However, if we allow arbitrary relationships
within the planning domain, the dependency structure of the corresponding distribution
can become arbitrarily complex, rendering it impractical for use in real-world problems. We
can instead make certain assumptions of independence among elements of our model. Such
assumptions restrict the possible relationships that we can represent, limiting in turn the
class of problem domains that fit within the model. However, if we choose the independence
assumptions wisely, then the model will still cover a significant class of domains, while
providing the benefit of a reduced dependency structure that supports operational network
inference.

Pattern recognition research provides one possible source for such models. Plans are
descriptions of action patterns, and therefore any general pattern recognition technique is
automatically a plan recognition technique for the class of plans corresponding to the class
of patterns associated with the given technique. Grammatical representations provide a po-
tential language for specifying pattern generation processes, as well as providing inference
algorithms for reasoning about those processes. If we can model a given plan generation
process within the grammatical model’s independence assumptions, restricting plan rela-
tionships to be in the form of productions, then we can use the inference algorithms to
reason about particular plan instantiations. For instance, existing algorithms can translate
domain rules of a certain form into a corresponding context-free grammar [43, 35]. We
can then treat a sequence of observed actions as a string in the context-free language and
use standard parsing algorithms to answer a wide range of queries. However, even though
these grammatical approaches are suitable for a wide range of problem domains, the lack of
an explicit model of uncertainty and the context-free nature of the grammars limits their

applicability.

We can remedy the former by associating probabilities with the restricted rules allowed
by these methods. We can then perform an analogous transformation, accounting for the
probabilities as well, to produce a probabilistic context-free grammar (PCFG) representing
a distribution over possible action sequences. Existing PCFG parsing algorithms answer a
restricted set of queries, but Chapter 3 presents algorithms to take such a grammar and
generate a Bayesian network capable of producing any conditional probabilities of interest.
Therefore, once we specify the problem domain within the PCFG model, we can answer
most classes of potential plan recognition queries.

However, the probabilistic grammars produced in such a manner are still context-free,
severely restricting the problem domains for which the methods are applicable. Chapter 4
describes the types of context sensitivity that many plan recognition domains require, as well
as methods that adapt the PCFG algorithms from Chapter 3 to handle these extra needs.
To simplify domain specification, we must transform these individual modifications into
a unified representational language. A probabilistic, contezt-sensitive grammar (PCSG),
defined in Chapter 4 is one possible language, but the generality of the model prevents the
development of efficient inference algorithms.

Chapter 5 defines a more restricted model, the probabilistic state-dependent grammar
(PSDG), which adds an explicit state model to an underlying PCFG model of plan selec-
tion. The grammatical structure can still represent the plan/subplan hierarchy through
abstraction and decomposition productions. The state model captures the dependence of
plan selection on the planning context, including the agent’s beliefs about the environment
and its preferences over outcomes. The state model also represents the effects of the agent’s
planning choices on future states (and, subsequently, on future planning choices).

As a generative model of planning, the PSDG model makes stronger assumptions of
independence than more general plan recognition approaches. However, the production
structure introduces a weak form of conditional independence, sufficient to support com-
pact representations of intermediate plan states—representations more compact than the
Bayesian networks used in most probabilistic approaches. Chapter 5 presents algorithms
that generate Bayesian network representations of a given PSDG. However, PSDGs often
fail to exhibit the conditional independence properties that network inference algorithms
require for efficient inference. Chapter 5 also presents specialized inference algorithms that
exploit the weaker independence property that PSDGs do exhibit. These algorithms per-

form inference more efficiently than the Bayesian network algorithms.

Chapter 6 compares the PSDG model with existing representation languages used in
plan recognition and other related domains. The specific comparisons illustrate the repre-
sentational power that the PSDG language sacrifices for its more efficient inference. PSDG
domain specifications for traffic monitoring and air combat demonstrate the utility of the
model in two plan recognition applications. Chapter 7 further analyzes the contributions

of the model, as well as potential extensions to address its limitations.

CHAPTER 2

Plan Recognition

2.1 Existing Approaches to Plan Recognition

The problem of plan recognition is to induce the plan of action driving an agent’s
behavior, based on partial observation of its behavior up to the current time. We assume
that this behavior is a product of an underlying planning process. As the observed agent
begins planning, it has a particular mental state, consisting of its preferences (e.g., goals),
beliefs (e.g., about the state of its environment), and capabilities (e.g., available actions).
We assume the actual planning process to be some rational procedure for generating the
plan expected to best satisfy the agent’s preferences based on its beliefs, subject to its
capabilities. This plan then determines (perhaps with some uncertainty) the actions taken
by the agent in the world.

In general, the recognizer observes only the (possibly noisy) effects of some of these
actions on the environment, though in some problem domains (e.g., user modeling) it may
observe the actions directly. The recognizer uses these observations, in whatever form, to
generate hypotheses about which top-level plan or intermediate subplans the agent has se-
lected, or which low-level actions it will perform in the future. The resulting candidates,
as well as possible evaluations of their plausibilities, form the basis for decisions on poten-
tial interactions with the observed agent. The standard definition of the plan recognition
problem covers only the generation of hypotheses and evaluations, but we must consider
the ultimate decision-making problem in the design process, since the intended use of the

recognizer’s output can play a large role in the choice of solution methods.

2.1.1 FEvent Hierarchies

Kautz’s event hierarchy formalism [26] is one of the most famous and most comprehensive
frameworks for performing plan recognition. The hierarchy uses first-order logic to represent
two types of plan relationships: specialization and decomposition. Specialization rules form
the basis for an abstraction hierarchy arranging plan classes according to their generality.
Decomposition rules specify type restrictions on the steps performed in plan execution
and on the interrelationships among these steps and their effects. These rules, as well
as general background knowledge, form the knowledge base for the problem domain. A
circumscription process transforms this knowledge base into a set of rules sufficient for
deductive plan inference.

For instance, consider the example problem of a driver on the highway, trying to predict
the actions of the other drivers. Since these actions are normally limited to a small set of
maneuvers (e.g. lane changes, passing, exiting), recognition of a driver’s maneuvering plan
would greatly assist in the prediction of future actions. If we label the driver’s top-level
plan Drive, then we can represent the various possible maneuvers with abstraction rules like

the following;:

Vz.Left(z) = Drive(x

(z) ()
Vx.Right(z) = Drive(z)
Vzx.Pass(z) = Drive(z)

(z) = Drive(x)

Vz.Exit(z (2.1)

We can also specify subplan sequences through decomposition rules. For instance, a
driver can pass on the left by first performing a left lane change, followed by a right lane
change after overtaking the obstructing car. To represent this execution within an event

hierarchy, we can write the following decomposition rule:
Vz.Pass-on-Left(z) = Left(S(1,z)) A Right(S(2,2)) A k() (2.2)

Since decomposition rules are implications, we can consistently write only one for each
plan. Therefore, we create the new event predicate Pass-on-Left, a specialization of Pass.
A second possible specialization, Pass-on-Right, would have an analogous decomposition.
The term S(i,z) denotes subevent i of event x, where the index value does not indicate

any ordering information. Such temporal relationships appear in the x predicate, which

specifies all of the constraints on the decomposition. In this example, x includes a total
order on the steps, but, in general, the constraint may be only a partial order.

There are additional constraints specifying dependencies among the subplans and the
state of the world. For instance, x includes the requirement that the right lane change
begins only when the driver performing the pass has moved beyond the car being passed.
In general, these constraints can be arbitrarily complex first-order expressions, allowing us
to specify very general relationships among subplans, as well as between subplans and world
states. The resulting knowledge base represents a hierarchy of plan/subplan event types,
as well as general knowledge about the planning agent’s environment.

If we add certain closed-world assumptions and circumscribe the knowledge base, we
can use deductive inference to reason from a set of observations to hypotheses of possible
top-level plans, future actions, etc. For instance, if we observe a driver perform a left
lane change followed by a right lane change, the recognizer would include the Pass-on-Left

subplan of a Pass maneuver as a possible explanation.

2.1.2 Event Grammars

However, the time complexity of general deductive inference algorithms makes this ap-
proach practical for only very small knowledge bases. Fortunately, we can reduce the
complexity of inference by restricting the representational language and using specialized
algorithms to answer queries. Lin and Goebel [31] restrict the constraint language, per-
mitting use of a faster, specialized message-passing recognition algorithm. Alternatively, if
we assume that the agent always executes its subplans and actions sequentially, then we
can view the actions we observe as a string in a language. In addition, if there are no con-
straints among subplans in the decomposition rules, then we can view the action sequences
as members of a context-free language [43]. Rules (2.1) and (2.2) become productions of

the following form:

Drive — Left Drive

Drive — Right Drive

Drive — Pass Drive

Drive — Exit

Pass — Left Right

Pass — Right Left (2.3)

The intermediate Pass-on-Left plan is no longer necessary because we can specify multiple
productions to expand a single plan. When we have such a grammar, we can use standard
parsing algorithms to process a partial string of actions and decide what possible high-level
plans are present and which actions may occur in the future. For instance, if the recognizer
observes the sequence Left Right Exit, a parsing algorithm could determine that a single
pass or two separate lane changes are the possible explanations for the observations. The
parsing algorithms are much more efficient than general deductive inference, but this greater
efficiency comes at the cost of requiring a total order over subplan decompositions. The

event grammar is also incapable of capturing the constraints imposed by the external world.

2.1.3 Heuristic Methods

With both event hierarchies and event grammars, the response to a query will often be
a set of candidate hypotheses, as we see in the example from the driving event grammar.
Unfortunately, there is no basis within the original domain specification for distinguishing
among the possible explanations. As a possible basis for disambiguation, we could augment
the specification with heuristic rules to support such preferences. For instance, Kautz’s
approach prefers explanations that involve a single top-level plan instead of combinations
of multiple plans. The algorithm of Lin and Goebel prefers plan scenarios that are more
general. In the parsing example, such a heuristic rule would favor the Pass hypothesis over
the successive lane change explanation.

In the air combat domain (described in more detail in Section 6.2.2), a fighter pilot has
little time to perform the necessary recognition tasks, so he cannot spend time exploring
the different alternatives. Therefore, the agent tracking work [41] that addresses this recog-
nition problem uses heuristic methods to disambiguate multiple hypotheses. The recognizer
maintains only a single hypothesis, choosing the candidate that, if correct, would have the
worst consequences for the recognizing pilot. This heuristic prevents the pilot from ignoring
a possibly dire outcome of a rejected hypothesis.

However, with this heuristic, as with most, we can find problem instances where it
produces suboptimal behavior. If the recognizing driver observes another car operating
directly to its left, the direst outcome corresponds to the accident that would take place if
the observed car executed a Left action and moved into the recognizer’s lane. A heuristic
favoring prediction and explanation candidates with dire outcomes would compel the rec-

ognizing driver toward actions that are excessively defensive, because the probability that

the observed car would execute such a Left action is very low. Of course, we could add an
additional heuristic to handle this specific problem, as well as any other similar situations
that may arise. Many plan recognition approaches aimed at solving a particular problem
domain use such heuristic rules to choose among the recognizer’s hypotheses. Unfortunately,
it is unlikely that any such ad hoc set of rules will be sufficient for a wide range of problem

domains.

2.1.4 Probabilistic Methods

The recognizing agent could instead compute a probability distribution over all the can-
didates. It could then use this distribution as the input of a decision-theoretic procedure
for choosing its actions, allowing the recognizer to distinguish among equally possible, but
unequally plausible explanations for the observed activity. In the traffic example, the rec-
ognizing driver would most likely derive very little expected utility from responding to a
possible Left action by the observed car. A decision procedure that considered the proba-
bility of such an act, as well as the large negative utility of an accident, would suggest an
evasive maneuver only if the probability of the act reached some threshold indicating an
abnormal situation.

The most comprehensive probabilistic approach to plan recognition [9] constructs Baye-
sian networks representing the relationships among observed events. The work is intended
as an aid in story understanding, so there are very few restrictions on the types of allowable
relationships. Fach random variable represents the occurrence of an event of a certain type,
and the links among the variables represent the relationships among event types. These
relationships could be very general, allowing partial orders, arbitrary constraints on subplan
effects, etc.

Because of the generality of the representation, it would be impractical to generate a
Bayesian network representing the entire distribution. The networks are instead created
for only a particular set of observed events. A generated network would contain variables
corresponding to the classifications of these observations and other variables representing
possible unobserved events, as determined by the knowledge elements related to the ob-
served events. We can use the network to compute the probability distribution over these
unobserved events, but if we observe new events, then we may have to generate a new net-
work before answering any more queries. Since the time complexity of the generation and

compilation of a Bayesian network dwarfs that of evidence propagation, this approach can

be inappropriate for domains where we have to answer queries while processing a stream of
observations.

The recognition model of Carberry [6], based on the Dempster-Shafer theory of eviden-
tial reasoning instead of Bayesian techniques, takes a similar approach by using threshold
plausibility and difference levels of belief to distinguish among competing hypotheses. An
alternative probabilistic approach [21] restricts the representational language, but creates
Bayesian networks over the entire problem space, for those problems that fit within the
language. However, the language restrictions do not allow adequate modeling of the plan-
ning process, so the networks cannot always represent the effects of world state on plan
selection. Therefore, although the resulting networks support feasible inference, the range

of problems that the mechanism supports is too limited.

2.2 Bayesian Plan Recognition Framework

In many plan recognition domains, the recognizing agent would greatly benefit from a
probabilistic approach, but such an approach requires a representation language powerful
enough to capture the structure of the domain, while still supporting practical inference.
This section proposes a general framework for a Bayesian approach to plan recognition,
within which we can analyze the types of dependencies present in most problem domains.
To perform plan recognition tasks within this framework, we specify a causal planning model
along the general structure of Figure 2.1 and use it to support evidential reasoning from
observations to plan hypotheses. That diagram can be viewed as a Bayesian network, where
the limited connections among the nodes reflect the dependency structure of our generic
planning model.

To illustrate the general model, this section presents a hand-coded Bayesian network,
following the dependency structure of Figure 2.1, of the maneuvers of a single car. To
make the network operational, we replace each component of the model with a subnetwork
that captures intermediate structure. We can then use this model to identify the current
maneuver of an observed car and/or predict future actions, given only partial information.
The subnetwork descriptions below first present the general modeling issues for the corre-
sponding component and then provide a specific instantiation, in the form of a Bayesian

subnetwork, for this specific traffic domain.

10

i plan
iexecution
; A

ctivity
N

Context)

planning
model

T TT,TTmmm rm mhTMmMmMmmmnfmnMmnMmMMmMMMM MMM I ImMmMMmMMmMM MM MMM MMM
observations world agent agent world
observation "communication” observation observation

bservi

Context Observ

Activit

Plan Recognition

!

Figure 2.1: Plan recognition framework.

2.2.1 Context

The causal model begins with the initial world state. We must include all possibly
observable events that are relevant to formation—the process by which the agent’s mental
state is affected by the world. By including these events, the recognition procedure can take
advantage of partial information about the agent’s mental state. Note that even though the
initial world state model may itself include inaccessible variables, the context subnetwork
includes only those which are observable. However, we may wish to simplify the network
by providing more compact intermediate results derived from inaccessible variables.

One of the motivations for maintaining a separate initial-state subnetwork is to distin-
guish between our contextual observations and those of the agent. Therefore, we may have
an unobservable node representing an aspect of the world state accessible to the agent, and
an observable node representing a related feature accessible to us. The dependency between
these nodes is essentially a sensor model. If we are fortunate enough to have perfect sensors,
then the context variables become redundant, since they will simply echo the values of the
actual variables, and can be eliminated.

In this model, the initial world state is defined as causally prior to all agent behavior.

Therefore, the corresponding random variables can have links only from other such variables,

11

representing dependencies within the state. Any dependency links connecting a node from
the initial state to any node outside this subnetwork must be directed to the outside node.

This treatment of context differs from the work of Huber et al. [21], where the initial
situation depends on the agent’s mental state and not the other way around as it is here.
This was possible given the planning model employed in that work, that of the Procedural
Reasoning System (PRS) [22]. In the PRS model, plan selection is a function of current goal
and situation. Because these context variables have no predecessors or substructure, the
direction of links can be reversed without changing the rest of the dependency structure.
However, the agent’s mental state considered here may be more complex, especially in terms
of its preference structure. Even if the agent has only simple goals, there are potential
interactions among the goals that could affect the planning process. Hopefully, by following
the causal structure in creating the network and placing the context prior to the plan, we
can represent these interactions without greatly complicating the dependency structure.

In the traffic domain, the driver must consider several aspects of the initial world state
in rationally choosing a plan. First of all, the current position and speed of the car are
important factors, and we assume that both are observable, to the driver as well as to us. We
also assume perfect sensors, but an extension to incorporate sensor noise is straightforward,
as described above. The random variables x position and y position of Figure 2.2 represent
the car’s lane position and distance from the highway’s start, respectively. The driver can
be in one of three lanes or may be off the highway, either preparing to enter or having just
exited. The random variable y speed, denoting the car’s speed, initially depends on the
current node, since the farther left the lane, the faster the car is usually traveling.

We can also observe the presence of other cars around the driver of interest, who must
consider them in choosing a maneuver. For instance, if there is a car blocking the driver’s
front, then a passing maneuver is more likely. We can observe any cars to the driver’s
immediate front, back, left, and right, as well as in the four diagonal directions. In the
Bayesian network, the Boolean random variable left clr? represents the presence of any car
to the immediate left of the driver. There are similar variables for the right, front, and
back, as well as the four diagonal directions. The variables indexed t0 in the first column

of nodes in Figure 2.2 constitute the context subnetwork.

12

at target? acc maneuver?

Figure 2.2: Planning process subnetwork.

2.2.2 Mental State

The plan-recognition framework should accommodate all possible information about
the agent’s plan selection process, beginning with its mental state. We can break down an

agent’s mental state into three distinct components:

Beliefs. The agent’s knowledge of the state of the world and its dynamics. Beliefs may be

incomplete, uncertain, or incorrect.

Preferences. The agent’s desires about the world. These may be simple goals, or arbi-

trarily graded degrees of utility.

Capabilities. The agent’s self-model of its available actions. Strictly speaking, this should

be knowledge of capabilities, but we stick to the more concise term.

The representation of the agent’s beliefs about the world state must include random
variables for all aspects of the context that the agent can observe and that factor into its
decision-making. There may be some agent beliefs that are independent of any real-world
variable. Unless we can observe these beliefs(perhaps through communication with the
agent), there is no advantage in adding the corresponding random variables. Instead, we
can fold the uncertainty in these beliefs into the plan component. However, agent beliefs
will typically depend on the some aspect of the actual state of the world, although we can

model the agent as being arbitrarily uncertain or deluded. As mentioned in Section 2.2.1,

13

this dependency represents the imperfection and /or incompleteness of sensors. If the agent’s
sensors were perfect, then we could eliminate the nodes for the agent’s belief variables, as
they would take on the same values as the context variables.

The agent’s knowledge of its capabilities is usually independent of the world state, as are
its preferences in most cases. Simple goals can be represented as separate Boolean variables,
though it may be useful to combine a set of mutually exclusive variables into a single variable
with several possible values. More complex preference structures will require more complex
subnetwork structures. The agent’s capabilities can be represented in a similar fashion.

The model of agent formation is greatly simplified in our traffic domain. Because of
our assumption of perfect sensors, the driver’s beliefs about the world correspond to the
actual values in our simplified model. In addition, the agent’s beliefs about its capabilities
are not represented explicitly in our traffic network. Instead, the driver is assumed to know
all of the possible plans (as described in Section 2.2.3). The planning process also assumes
that the driver has complete knowledge of how the plans can best satisfy its preferences in
the current context. Thus the plan selection mechanism implicitly represents the driver’s
beliefs about its capabilities.

We model the driver preferences with two goals. First, a driver has the explicit goal
of getting from one exit to another, though the intended exits are unknown to an external
observer. The random variable exit position in Figure 2.2 represents the driver’s desired
exit. All of the possible exit positions are farther along the highway than the values of y
position. If this were not the case, then the current position would provide evidence that
the desired exit is probably not one that has been passed. Therefore, there would be a
dependency, but to simplify the network, we make the sets of y and exit positions disjoint.

Second, there may be some constraint on the travel time between these exits, or the
driver might have some target speed which is preferred for the duration of travel. However,
we can usually translate the former into a desired speed because of the fixed positions of the
exits. Therefore, our model uses only the random variable target y speed in Figure 2.2, with
its values clustered around the speed limit. If the car has been on the highway for enough
time, then its current speed should provide some clue as to the driver’s target speed. We
could model this with a link from y speed. On the other hand, if we have been observing
the car and its maneuvers for some time, then these past observations should provide more
conclusive evidence as to its target speed. Thus, we can make the target speed independent

of current speed and encode our past observations in the prior probabilities.

14

This network also contains the intermediate belief random variables, at exit? and at
target?, in the second column of nodes in Figure 2.2. These reflect the driver’s belief about
the proximity of the desired exit and the desirability of the current speed, respectively. The
at exit? variable depends only on the current position and the preferred exit, and is true
only when the former is immediately before the latter. The at target? variable depends
only on the current and preferred speeds, and its value indicates whether the current speed

is too slow, too fast, or just right, with respect to the driver’s desired cruising speed.

2.2.3 Planning Process
Plan Variables

The plan component is comprised of random variables collectively representing the cur-
rent plan. For instance, in Kautz’s event hierarchies, there is a taxonomy of plans and
actions. The children of a certain plan correspond to possible subplans or actions, while
other links indicate necessary components. If our planning model is based on such event
hierarchies, we may designate one Boolean variable corresponding to each element in the
taxonomy, indicating the presence of the corresponding plan. Or we may combine certain
mutually exclusive subplans into a single random variable, which takes on a different value
depending on the actual subplan present.

Such hierarchies are based on the subsumption relation, requiring a dependency link
from the more general node to the more specific. The conditional probability table can
represent the distribution of the specific values, given the general. In particular, because of
the subsumption relation, we can set the conditional probability of a child node given that
its parent node is false to zero.

In the traffic domain, we can classify driving maneuvers according to the lane changes
involved. The simplest plan is to simply continue driving in the same lane. At the next
level of complexity, a driver can shift one lane to the left or right. We consider entering
and exiting the highway as specific instances of these one-lane shifts. The driver could also
shift two lanes to the left or right, where this could again involve entering or exiting the
highway. As a final option, the driver may choose a passing maneuver, which we view as
two successive lane shifts of opposite direction. In Figure 2.2, the variable gen maneuver
represents the general driving maneuver and takes on a value corresponding to the chosen
plan.

We can also classify driving plans according to the acceleration. Depending on the

15

current and desired speed, a driver may decide to speed up, slow down, or maintain current
speed, indicated by the value of the variable acc maneuver of Figure 2.2. The acceleration
maneuver depends on the lane maneuver if we do not consider the plan selection mechanism.
For instance, a deceleration is more likely as a part of a right lane change plan than as a
part of a plan to pass. However, the two variables are independent given the initial context,
as indicated in the network.

The variable spec pass in Figure 2.2 indicates the direction of the pass, if one is taking
place. Since passing in a specific direction is a subplan of the general passing maneuver
which gen maneuver can represent, this is an example of the subsumption relation found in
event hierarchies. If the driver decides to pass, there are the options of passing on the left
and passing on the right. And even if the driver chooses to pass, there may be cars blocking
both lanes, forcing the driver to wait for another opportunity to pass. This variable clearly
depends on gen maneuver, since the more general passing maneuver is its parent and the
conditional probability table represents a subsumption relation as described above. In other
words, if a passing maneuver is not chosen, then spec pass will be neither pass on left nor

pass on right.

Plan Selection

Links from the agent’s mental state into the plan component represent the agent’s
planning process. For hierarchical planning, we start with the most general plan nodes and
proceeding to the most specific, determine which aspects of the mental state influence the
agent’s choice. For instance, suppose the agent’s decision-making procedure consists of a
set of condition-action rules. Then, any plan choices in the action portion of a rule depend
on all of the context variables that appear in the conditions of the rule. By connecting only
parts of the mental state relevant to particular choices, we keep the dependency structure
as simple as possible.

We must then specify the conditional probabilities of the plan variables given the rele-
vant aspects of the agent’s mental state. If the agent is a deterministic planner, then the
conditional probability given a particular mental state instantiation will be 1 for a single
instantiation of the plan subnetwork and 0 for all others. For nondeterministic planners,
we must determine the conditional probabilities from whatever agent model we have.

If in fact we have no opportunity to observe anything about the initial world state or the

agent’s mental state, then we may collapse the initial state and mental state subnetworks

16

into prior probabilities for the top-level plan variables. The plan recognition networks
(PRNs) of Charniak and Goldman [9] use such priors to model the agent’s plan selection
process. These prior probabilities represent the same distribution as the explicit planning
process subnetwork, but since the initial nodes are unobservable, we can merge the nodes
into the plan subnetwork without losing information.

We can now model a driver’s plan selection with some reliability. In our Bayesian net-
work, the conditional probability table must specify the likelihood of certain maneuvers
under every possible combination of world situation and driver mental state. Under most
situations, there will be one maneuver that is clearly preferable, though there is still uncer-
tainty. For example, suppose that the driver is currently traveling below the desired speed
and that there is another car directly in front while the lane to the left is clear. Then it
is likely that driver will pass the car on the left. The complete plan selection subnetwork
is shown in Figure 2.2. This model of the driver’s decision process is based in part on the
driving model underlying the BATmobile (Bayesian Automated Taxi) project, described by
Forbes, et al. [15].

The acceleration maneuver depends only on the preferability of the current speed. Thus
the sole link to acc maneuver is from at target?. If the driver is at the target speed, then
the current speed will be maintained. If the current speed is too low, then the driver
will choose an acceleration maneuver. Likewise, if the current speed is too fast, then a
deceleration maneuver will be chosen.

The lane change maneuver also depends on the preferability of the current speed. For
instance, a car traveling at its target speed is unlikely to change lanes. However, there are
other factors in the initial world state to consider. Obviously, the current lane is important,
since a car in the leftmost lane cannot change lanes to the left. In addition, the driver will
consider any cars to the front or back. If there is a car blocking the front and the driver’s
current speed is too low, then a simple acceleration could cause a collision. The driver may
instead choose to change lanes to the left. But a decision to change lanes must also consider
the presence of cars to the driver’s left or right, or any cars coming up from the back left
or right. The links to the gen maneuver node represent these dependencies.

If the driver decides to pass, a direction must be chosen. Passing on the left is preferable
to passing on the right, but the current situation may not allow it. For instance, any cars
to the driver’s left or to the front left could block the passing attempt. The same is true on

the right side. If enough passing avenues are blocked, then the driver may decide to delay

17

the passing attempt or to perform the initial lane change and wait to complete the pass.

Agent Communication

Modeling agent communication depends greatly on the specific protocol adopted, and
the relationship between the observer and the observed. If a trusted agent directly an-
nounces particular aspects of its planning process, then we could simply instantiate the
corresponding variables. Other types of communication would require nodes to represent
beliefs we attribute to the agent, based on its communication actions. Note that we are not
modeling here the planned character of communication acts; to do so we would treat them
as we do actions in general.

The only communication allowed in our traffic model is through the driver’s turn in-
dicator, which provides a simple mechanism for a driver to announce the intended lane
change. The variables signal mz? in the fourth column of Figure 2.2 represent the state of
the driver’s turn signal during stage x of the maneuver. Clearly, both the general maneuver
and the specific direction of any passing attempt influence any signal. For instance, when
performing a left lane change, signal m07? is likely to take the value Left and signal m1? the
value Off. Of course, many drivers fail to signal their maneuvers, and sometimes they signal
erroneously. These possibilities are considered when determining the conditional probabil-
ity tables. However, drivers are usually consistent in their signaling habits. For instance,
when performing a pass on the left, someone who fails to signal the initial left lane change
is unlikely to signal the subsequent right change. The link between the two signal variables

represents this consistency.

2.2.4 Plan Execution

Once we have accounted for the agent’s plan-generation process, we need to consider
the effects of the plan’s execution, reflected in the model by the dependency of the activity
component on the plan component. This is analogous to links in event hierarchies connecting
plans to their component observable actions. In PRS [22, 29], Knowledge Areas (KAs)
specify a sequence of actions associated with a plan, corresponding to links from the plan
node to corresponding action nodes. Either of these can be cast in Bayesian networks,
representing the likelihood of the component’s appearance given the plan in the conditional
probability table for that node.

The activity subnetwork in the traffic model includes the individual transitions in lane

18

| gen maneuver? |—>| acc maneuver?

| lat act?mo [axom

yrd Y
| fwd act? mo | | fwd act? m1

Figure 2.3: Plan execution subnetwork.

and speed, which are completely unobservable. At each step, the driver can change one
lane to the left or right, or remain in the same lane. The driver can also increase, decrease,
or maintain speed. All of the plans we consider produce a two-step action sequence. For
instance, a plan to shift one lane to the left produces a left lane change followed by a “remain
in lane” act. The lat act mz variables in Figure 2.3 represent the lane changes at step =,
while fwd act mzx represents the acceleration at step x.

Our definition of the lane maneuvers completely determines the lane changes of the
action sequences. The individual shifts depend on the general lane maneuver, as well as on
the specific passing plan, but not on the acceleration maneuver. Likewise, the individual
accelerations are independent of the general lane changes and the specific passing maneuvers

if given the overall acceleration plan.

2.2.5 World Dynamics

The relationship between the observed and actual actions of the agent is similar to
that of the observed and actual world states. If we have perfect sensors, we do not need
a separate observed activity subnetwork; otherwise, we have to model sensor noise in the
links from the actual nodes. In some cases, the agent’s activity is completely inaccessible,
though we might still be able to observe effects of this activity. These effects are dictated
by the dynamics of our world, which specify how the agent’s actions alter the situation.
Therefore, we must model how subsequent world states depend on the initial world state
and the agent’s activity. It is possible that a world state depends on the entire world history,
but if the the plan is sufficiently structured (e.g., sequential actions) then we may be able
to simplify this dependency. If we express the effects model in accord with standard Al

approaches, we can restrict the effects to depend only on background and direct effects and,

19

given these, to be conditionally independent of the plan itself, as well as further removed
activity and indirect effects [44].

We can make effects conditionally independent of future actions and effects simply by
ensuring that links never point backward in time, but this could make actions dependent on
past world states. So far, we have had links move from plans to activity and from activity
to effects, so adding links in the opposite direction would go against the flow in Figure 2.1.
If, as described above, the plan is sufficient for determining activity, the current action is
conditionally independent of the previous world states given the current plan, as well as the
actions performed so far.

Depending on our domain, we may able to make a Markov assumption with respect to
activity and the effects. In such cases, the current action would be conditionally independent
of actions more than one time step back in the action sequence, given the current plan and
the action immediately previous. If the effects have a similar property, they should not
depend on any world states or actions more than one step previous. Although this would
greatly localize the dependencies, this may not always be possible, depending on the types
of observations available and the set of state variables in the model.

Some domains may allow us to make even more simplifying assumptions about the
agent’s planning process. Some simple agents may fit within a hidden Markov model [39].
In such cases, the agent performs a sequence of actions, each of which depends only on the
immediately previous action. Evidence is available in a corresponding sequence, with the
observations at a particular stage dependent only on the action at the same stage. These
independence assumptions produce a very simple belief network which can still handle the
wide range of plan recognition queries, even though the agent no longer has an explicit plan.

Since there is no directly observable activity in the traffic model, most of our inference
will come from observed effects. We must now model the dynamics of the traffic world,
beginning with the changes in the position and speed of the car. We can view the actions of
the driver to be transitions between world states. To simplify the model, we ignore observa-
tions taking place while the driver is performing an action. Thus, evidence is available only
at the completion of a component action, and there are three stages of observable variables,
including the context, as can be seen in Figure 2.4.

Finally, we must define the dependencies of these effects. Most of the observable variables
depend on the driver’s previous action, as well as their own previous values. For instance,

the driver’s lane is completely determined if we know what lane change just took place, as

20

| fwd act? m0 | | fwd act? m1 |

| lat act? m0 | | lat act?ml |
| y speed tO y speed t1 y speed t2 |
| X position tO X position t1 X position t2 |
| y position tO y position t1 y position t2 |

Figure 2.4: Observation subnetwork.

well as the lane value just before the change. Likewise, the driver’s speed depends on the
previous speed and whatever acceleration action took place, although this is clearly not a
deterministic relationship.

The presence of other cars is a bit more complex, due to the driver’s movements. For
instance, after a left change, a car that was to the front and left is now probably directly in
front. But if the driver stays in the same lane, then we must check whether there was a car
blocking the front in the previous world state. Therefore, each clearance variable depends
on the previous action, as well as all relevant clearance variables from the previous state. To
simplify the network, we ignore the presence of other cars in the evidence. We do consider
them when modeling plan selection, but since the driver’s actions do not directly affect the
other drivers’ positions, we ignore these effects. As with the context, we assume perfect

sensors, so there is no distinction between the actual and observed effects.

2.2.6 Inference with the Traffic Bayesian Network

Once we have created the belief network, we can perform recognition tasks by fixing
any observed variables and querying the network about the relevant variables. We receive
evidence only about the variables in the bottom half of Figure 2.1, though, as described
before, these may correspond exactly to actual variables in the planning model.

Once we fix the values of the known variables in the network, we can propagate the
information throughout the network and observe the posterior probabilities at the nodes of
interest. For instance, we may be interested in determining the plan chosen by the agent,
in which case we would examine the nodes in the plan subnetwork. Alternatively, we can
predict future agent activity or effects by examining the probabilities of those variables.

Once we have constructed the entire traffic maneuver network, shown in Figure 2.5,

21

|
/ N
lat act?m0 l lat act?ml l

e
[eitposton | a exit? W\\\ fwd actzml
/
[y T
X position t1
o

y speed tO
y position tO > y position t1

gen maneuver?

A

X position tO

Figure 2.5: Complete Bayesian network for traffic monitoring.

we can handle plan recognition in a wide range of useful driving situations. For instance,
suppose that as, our exit approaches, we are preparing to move into the rightmost lane
from our current position in the middle lane. However, before we can change lanes, the car
behind us in the middle lane moves into the rightmost lane. If it is preparing to pass us, we
can simply wait for it to move ahead of us before changing lanes and exiting. If, however,
the car is simply changing lanes, or perhaps preparing to exit itself, we can change lanes,
slowing down or speeding up as necessary to avoid a collision. To best plan a course of
action, we want to compute the probability distribution over the possible explanations.

Thus, in the context, we have observed front clr? t0 to be false and x position t0 to be
the middle lane. The only observed effect is that x position tl is the right lane. If we want
to infer the driver’s plan, we can examine the gen maneuver? node to see that the posterior
probability of a one-lane right shift is 0.64, while that of a pass is 0.35. The former is more
plausible since we assume that drivers prefer to pass on the left-hand side, so passing on
the right has a relatively low prior probability. The only remaining maneuver with nonzero
probability is an exit. All of the other plans have zero probability, since the observed change
in lanes violates their definitions.

If we are not interested in the driver’s plan, but only in the future lane position, then
we can examine the x position t2 node. The posterior probability that the car will still be

in the right lane is 0.65, while the probability that it will move to the middle lane is 0.34.

22

The difference between these beliefs and that of the maneuvers arises from the nature of the
passing maneuver. Even if the car decides to pass, it may not be able to do so immediately
do to surrounding cars. In such a case, it will remain in its current lane until it can complete
the maneuver. Thus, there is a slight probability that the car will stay in the right lane

even if the driver has decided to pass.

2.2.7 Representational Language for the General Framework

The traffic application presented above illustrates several aspects of our plan-recognition
framework. Our assumption of rationality on the part of the agent allowed us to model the
relationship between an agent’s plan and its mental state. By creating a probabilistic model
of a driver’s decision process, we could compute posterior probability distributions that
answer the common types of plan recognition queries. In domains where we can generate
such Bayesian networks, a recognizing agent can have the desired decision-theoretic basis
for interacting with the observed agent.

Although the traffic example is a very specific domain, the general structure of Fig-
ure 2.1 is applicable to a broad class of plan-recognition tasks. A language suitable for
specifying plan recognition domains should be able to capture the components and depen-
dency structure illustrated by the general framework. This section presents an examination
of each of the components and dependencies to analyze the wide variety of requirements of
a specification language capable of representing potential problem domains.

The modeling of the planning agent’s environment draws on all areas of knowledge rep-
resentation, since the plan-recognition model makes no restrictions on environmental com-
plexity. We thus face the possibility of an arbitrarily complex collection of features, with
arbitrarily complex dependencies among those features. These dependencies may come in
the form of deterministic functions (e.g., logical implications, geometric relationships, at
exit? in the traffic example). In general, these dependencies involve uncertainty, as in the
representation of the other drivers in the traffic example, where we used a probability distri-
bution to correctly model the environment. However, the Bayesian network representation
presented in this chapter is propositional, so it can represent cars in only the eight positions
with corresponding random variables. A more accurate model would include first-order
information about other drivers, allowing the recognizer to reason about as many cars as
may be relevant to the current planning situation.

The representation of the planning agent’s mental state often requires the same capa-

23

bilities used in the representation of the actual environment. The structure of the agent’s
beliefs often mirrors the structure of the features of the real world. In addition, agent for-
mation includes all aspects of the derivation of the agent’s beliefs, so we must model the
agent’s sensors and any noise introduced by such sensors. In the traffic example, we could
model the driver’s preferences by a finite set of goals indicating a target speed and intended
exit. However, in many domains, we must model the agent’s preferences through a utility
function defined over world states.

The representation of the planning process must reflect the vast diversity of plan selec-
tion mechanisms. We must often model hierarchies of plans and subplans, representing the
agent’s choices at different levels of abstraction. We must also represent the decision process
generating the agent’s choices, whether based on simple condition-action rules or on a com-
plex decision-theoretic analysis of the current situation. Subplans may have preconditions
specifying when their execution may begin, termination conditions specifying when their
execution must end, and various conditions specifying other changes to their execution.

The agent’s planning process may also make different levels of commitment when se-
lecting a particular subplan. In the traffic example, the plan decompositions specified a
total order over the subplans, but more general planners may specify only a partial order.
In addition, although the traffic example includes concurrent lane change and acceleration
maneuvers, in general, we cannot restrict concurrency to a fixed set of orthogonal compo-
nents.

The modeling of the world dynamics makes the same demands as the modeling of the
initial context. The features of the future world state may have an arbitrary dependency on
the current world state and the actions taken by the planning agent. We may model certain
dynamics through subplan postconditions that specify how the execution of the subplan
causes changes in the world. In the traffic example, only the low-level actions cause changes
in the world state, but in general, even subplan choices could change the initial context,
perhaps by directly altering the agent’s mental state.

The representational needs cataloged here reflect the entire span of artificial intelligence
research, so it is unreasonable to expect a single language to satisfy the needs required
over all plan recognition domains. However, even if there were such a language, capable
of representing any model of plan generation, it must also support the inversion necessary
to answer plan recognition queries. Therefore, it is not sufficient that a generative model

allows us to reason forward from an initial context through the planning process to the final

24

world state. We must also be able to reason backwards, from observations taken from the
various components, to make inferences about the unobserved components. This need for
practical inference in both prediction and explanation of agent behavior severely limits the
representational power allowable in our domain specification language.

For instance, even though the Bayesian network representation falls short of all of our
representational needs, the scalability of the framework as formulated here is questionable.
The framework restricts the dependency structure among the components to follow the
limited links of Figure 2.1, but we cannot allow the individual components to be arbitrary
Bayesian networks. Otherwise, without any restrictions on the dependency structure within
each component’s subnetwork, it will be extremely difficult to hand-generate operational
network representations for problem domains more complex than the traffic example pre-
sented here.

Instead, we need a representational language that captures the general dependency
structure of Figure 2.1, but without the full generality of Bayesian networks for component
representation. For a sufficiently restricted language, there may be algorithms capable of
automatically generating a Bayesian network representation of a domain specification in
the language. In such cases, we can still use the Bayesian network inference algorithms, as
in Section 2.2.6. However, the automatically generated networks may still be impractical,
in which case we would need inference algorithms, specific to the representational language,
capable of answering the same plan recognition queries. The work presented here is similar
in aim to a proposed plan recognition framework (currently under development) based on

probabilistic Horn abduction (PHA) [16].

25

CHAPTER 3

Probabilistic Context-Free Grammars

Section 2.1.2 discussed how CFGs can model certain plan recognition domains [43].
The production format is a natural representation for plan decompositions when an agent
executes its subplans and actions serially. However, like the more general event hierar-
chy formalism, a grammatical model requires a decision procedure to disambiguate among
multiple candidate explanations, parse trees in this case. On the other hand, probabilistic
context-free grammars (PCFGs) [17, 7] add an explicit stochastic model to the standard
CFG model, inducing a probability distribution over parse trees. The resulting distribution
supports the decision-theoretic disambiguation required in plan recognition. PCFGs have
already provided a useful method for modeling uncertainty in a wide range of structures
other than plans, including natural languages [7], programming languages [45], images [11],
speech signals [34], and RNA sequences [40]. The discussion in Sections 3.1 and 3.2 appeared
previously in a more general pattern recognition setting [38], but Section 3.3 illustrates how

we can apply PCFGs to the specific needs of plan recognition.

3.1 Specification of PCFG Language Model

A probabilistic context-free grammar is a tuple (X, N, S, P), where the disjoint sets ¥
and N specify the terminal and nonterminal symbols, respectively, with S € N being the
start symbol. P is the set of productions, which take the form E — ¢ (p), with E € N,
£ € (SUN)*, and p = Pr(E — &), the probability that E will be expanded into the string &.
The sum of probabilities p over all expansions of a given nonterminal £ must be one. The
examples in this chapter use the sample grammar (from Charniak [7]) shown in Fig. 3.1.

This definition of the PCFG model prohibits rules of the form £ — ¢, where ¢ represents

26

S — npwp (0.8) | pp — prepnp (1.0)
S = wp (0.2) | prep — like (1.0)
np — noun (0.4) | verb — swat (0.2)
np — noun pp (0.4) | verb — flies (0.4)
np — noun np (0.2) | verb — like (0.4)
vp — verb (0.3) | noun — swat (0.05)
vp — verbnp (0.3) | noun — flies (0.45)
vp — verb pp (0.2) | noun — ants (0.5)
vp — verbnppp (0.2)

Figure 3.1: A probabilistic context-free grammar (from Charniak [7]).

the empty string. However, we can rewrite any PCFG to eliminate such rules and still
represent the original distribution [7], as long as we note the probability Pr(S — ¢). For
clarity, the algorithm descriptions in this chapter assume Pr(S — €) = 0, but a negligible
amount of additional bookkeeping can correct for any nonzero probability.

The probability of applying a particular production £ — £ to an intermediate string is
conditionally independent of what productions generated this string, or what productions
will be applied to the other symbols in the string, given the presence of E. Therefore, the
probability of a given derivation is simply the product of the probabilities of the individual
productions involved. We define the parse tree representation of each such derivation as for
non-probabilistic context-free grammars [19]. The probability of a string in the language is

the sum taken over all its possible derivations.

3.1.1 Standard PCFG Algorithms

Since the number of possible derivations grows exponentially with the string’s length,
direct enumeration would not be computationally viable. Instead, the standard dynamic
programming approach used for both probabilistic and non-probabilistic CFGs [24] exploits
the common production sequences shared across derivations. The central structure is a ta-
ble, or chart, storing previous results for each subsequence in the input sentence. Each entry
in the chart corresponds to a subsequence z;---x;1; 1 of the observation string x1 --- .
For each symbol E, an entry contains the probability that the corresponding subsequence is
derived from that symbol, Pr(x; - - z;j4;—1|E). The index i refers to the position of the sub-
sequence within the entire terminal string, with ¢ = 1 indicating the start of the sequence.
The index j refers to the length of the subsequence.

The bottom row of the table holds the results for subsequences of length one, and the

top entry holds the overall result, Pr(z - - -2 |S), which is the probability of the observed

27

S —vp: 0.00072

S —np(2) vp(2): 0.000035
j=4 1| S —np(l) vp(3): 0.000256
vp—verb np pp: 0.0014
vp—verb np: 0.00216

3 vp—verb pp: 0.016
np—noun pp: 0.036
2 | np—noun np: 0.0018 vp— verb np: 0.024
pp—prep np: 0.2

np—noun: 0.02 np—noun: 0.18 np—noun: 0.2
1 | verb—swat: 0.2 verb—flies: 0.4 prep—like: 1.0 noun—ants: 0.5

noun—swat: 0.05 noun—flies: 0.45 verb—like: 0.4

=1 2 3 4

Figure 3.2: Chart for Swat flies like ants.

string. We can compute these probabilities bottom-up, since we know that Pr(z;|E) =1
if E is the observed symbol x;. We can define all other probabilities recursively as the
sum, over all productions E — £ (p), of the product p - Pr(z; - - 2;4;-1|£). Altering this
procedure to take the maximum rather than the sum yields the most probable parse tree for
the observed string. Both algorithms require time O(L3) for a string of length L, ignoring
the dependency on the size of the grammar.

To compute the probability of the sentence Swat flies like ants, we would use the algorithm
to generate the table shown in Fig. 3.2, after eliminating any unused intermediate entries.
There are also separate entries for each production, though this is not necessary if we are
interested only in the final sentence probability. In the top entry, there are two listings
for the production S —np vp, with different subsequence lengths for the right-hand side
symbols. The sum of all probabilities for productions with S on the left-hand side in this
entry yields the total sentence probability of 0.001011.

This algorithm is capable of computing any inside probability, the probability of a par-
ticular string appearing inside the subtree rooted by a particular symbol. We can work
top-down in an analogous manner to compute any outside probability [7], the probability
of a subtree rooted by a particular symbol appearing amid a particular string. Given these
probabilities we can compute the probability of any particular nonterminal symbol appear-
ing in the parse tree as the root of a subtree covering some subsequence. For example, in the
sentence Swat flies like ants, we can compute the probability that like ants is a prepositional
phrase, using a combination of inside and outside probabilities. The Left-to-Right Inside
(LRI) algorithm [24] specifies how we can use inside probabilities to obtain the probability
of a given initial subsequence, such as the probability of a sentence (of any length) beginning

with the words Swat flies. Furthermore, we can use such initial subsequence probabilities

28

s (142

vp (14,1)
PP (321)
np (2,1,3) np (4,1,3)
verb (1,1,2) noun (2,1,2) prep (3.1,2) noun (4,1,2)
swat (1,1,1) flies (21,1) like (3.11) ants (411)

Figure 3.3: Parse tree for Swat flies like ants, with (4, j,k) indices labeled.

to compute the conditional probability of the next terminal symbol given a prefix string.

3.1.2 Indexing Parse Trees

Yet other conceivable queries are not covered by existing algorithms, or answerable
via straightforward manipulations of inside and outside probabilities. For example, given
observations of arbitrary partial strings, it is unclear how to exploit the standard chart
directly. Similarly, we are unaware of methods to handle observation of nonterminals only
(e.g., that the last two words form a prepositional phrase). We seek, therefore, a mechanism
that would admit observational evidence of any form as part of a query about a PCFG,
without requiring us to enumerate all consistent parse trees.

We first require a scheme to specify such events as the appearance of symbols at desig-
nated points in the parse tree. We can use the indices ¢ and j to delimit the leaf nodes of
the subtree, as in the standard chart parsing algorithms. For example, the pp node in the
parse tree of Fig. 3.3 is the root of the subtree whose leaf nodes are like and ants, so ¢ = 3
and j = 2.

However, we cannot uniquely specify a node with these two indices alone. In the branch
of the parse tree passing through np, n, and flies, all three nodes have ¢ = 2 and j = 1.
To differentiate them, we introduce the k index, defined recursively. If a node has no child
with the same ¢ and j indices, then it has £k = 1. Otherwise, its k index is one more than
the k£ index of its child. Thus, the flies node has kK = 1, the noun node above it has k = 2,
and its parent np has k = 3. We have labeled each node in the parse tree of Fig. 3.3 with
its (¢, 7, k) indices.

We can think of the k£ index of a node as its level of abstraction, with higher values indi-

cating more abstract symbols. For instance, the flies symbol is a specialization of the noun

29

concept, which, in turn, is a specialization of the np concept. Each possible specialization
corresponds to an abstraction production of the form E — E’, that is, with only one symbol
on the right-hand side. In a parse tree involving such a production, the nodes for E and E'
have identical 7 and j values, but the k value for E is one more than that of E'. We denote
the set of abstraction productions as P4 C P.

All other productions are decomposition productions, in the set Pp = P\ P4, and have
two or more symbols on the right-hand side. If a node FE is expanded by a decomposition
production, the sum of the j values for its children will equal its own j value, since the
length of the original subsequence derived from E must equal the total lengths of the
subsequences of its children. In addition, since each child must derive a string of nonze-
ro length, no child has the same j index as F, which must then have £k = 1. Therefore,
abstraction productions connect nodes whose indices match in the 4 and j components,

while decomposition productions connect nodes whose indices differ.

3.2 Bayesian Networks for PCFGs

A Bayesian network [36, 33, 25] is a directed acyclic graph where nodes represent ran-
dom variables, and associated with each node is a specification of the distribution of its
variable conditioned on its predecessors in the graph. Such a network defines a joint prob-
ability distribution—the probability of an assignment to the random variables is given by
the product of the probabilities of each node conditioned on the values of its predecessors
according to the assignment. Edges not included in the graph indicate conditional indepen-
dence; specifically, each node is conditionally independent of its nondescendants given its
immediate predecessors. Algorithms for inference in Bayesian networks exploit this indepen-
dence to simplify the calculation of arbitrary conditional probability expressions involving
the random variables.

By expressing a PCFG in terms of suitable random variables structured as a Bayesian
network, we could in principle support a broader class of inferences than the standard PCFG
algorithms. As we demonstrate below, by expressing the distribution of parse trees for a
given probabilistic grammar, we can incorporate partial observations of a sentence as well
as other forms of evidence, and determine the resulting probabilities of various features of

the parse trees.

30

3.2.1 PCFG Random Variables

We base our Bayesian-network encoding of PCFGs on the scheme for indexing parse
trees presented in Section 3.1.2. The random variable N;;; denotes the symbol in the parse
tree at the position indicated by the (4,7, k) indices. Looking back at the example parse
tree of Fig. 3.3, a symbol E labeled (i, j, k) indicates that N;;, = E. Index combinations
not appearing in the tree correspond to IV variables taking on the null value nil.

Assignments to the variables IV;;;, are sufficient to describe a parse tree. However, if we
construct a Bayesian network using only these variables, the dependency structure would
be quite complicated. For example, in the example PCFG, the fact that No13 has the value
np would influence whether N39; takes on the value pp, even given that Ny41 (their parent
in the parse tree) is vp. Thus, we would need an additional link between Np13 and Nsoq,
and, in fact, between all possible sibling nodes whose parents have multiple expansions.

To simplify the dependency structure, we introduce random variables P;;;; to represent
the productions that expand the corresponding symbols N;j;. For instance, we add the
node Pj41, which would take on the value vp—verb np pp in the example. No13 and N3oq are
conditionally independent given P41, so no link between siblings is necessary in this case.

However, even if we know the production P;jx, the corresponding children in the parse
tree may not be conditionally independent. For instance, in the chart of Fig. 3.2, entry
(1,4) has two separate probability values for the production S —np vp, each corresponding
to different subsequence lengths for the symbols on the right-hand side. Given only the
production used, there are again multiple possibilities for the connected IV variables: Nij3 =
np and Nag; = vp, or Nig1 = np and N3o; = vp. All four of these sibling nodes are
conditionally dependent since knowing any one determines the values of the other three.
Therefore, we dictate that each variable P;j;, take on different values for each breakdown of
the right-hand symbols’ subsequence lengths.

The domain of each P;j;, variable therefore consists of productions, augmented with the j
and k indices of each of the symbols on the right-hand side. In the previous example, the do-
main of P14; would require two possible values, S — np[1, 3]vp[3,1] and S — np[2, 1]vp[2, 1],
where the numbers in brackets correspond to the j and k values, respectively, of the asso-
ciated symbol. If we know that P4 is the former, then Ni;3 = np and Nog; = vp with
probability one. This deterministic relationship renders the child IV variables conditionally
independent of each other given P;;;. We describe the exact nature of this relationship in

Section 3.2.3.

31

Having identified the random variables and their domains, we complete the defini-
tion of the Bayesian network by specifying the conditional probability tables represent-
ing their interdependencies. The tables for the N variables represent their determin-
istic relationship with the parent P variables. However, we also need the conditional
probability of each P variable given the value of the corresponding N variable, that is,
Pr(Pjr = E — Ei[j1,k1] - En[jm, km]|Nijk = E). The PCFG specifies the relative proba-
bilities of different productions for each nonterminal, but we must compute the probability,
B(E, j, k) (analogous to the inside probability [7]), that each symbol E; on the right-hand

side is the root node of a subtree, at abstraction level k;, with a terminal subsequence length
Jt-
3.2.2 Calculating

Algorithm

We can calculate the values for 8 with a modified version of the dynamic programming
algorithm sketched in Section 3.1.1. As in the standard chart-based PCFG algorithms, we
can define this function recursively and use dynamic programming to compute its values.
Since terminal symbols always appear as leaves of the parse tree, we have, for any terminal
symbol z € ¥, 3(x,1,1) = 1, and for any j > 1 or k > 1, B(x, j,k) = 0. For any nonterminal
symbol E € N, §(E,1,1) = 0, since nonterminals can never be leaf nodes. For j > 1 or
k> 1, B(E,j,k) is the sum, over all productions expanding E, of the probability of that
production expanding E and producing a subtree constrained by the parameters j and k.

For k£ > 1, only abstraction productions are possible. For an abstraction production £ —
E', we need the probabilities that E is expanded into E' and that E' derives a string of length
j from the abstraction level immediately below E. The former is given by the probability
associated with the production, while the latter is simply 3(E’,j,k — 1). According to
the independence assumptions of the PCFG model, the expansion of E’ is independent
of its derivation, so the joint probability is simply the product. We can compute these
probabilities for every abstraction production expanding E. Since the different expansions
are mutually exclusive events, the value for G(E, j, k) is merely the sum of all the separate
probabilities.

We assume that there are no abstraction cycles in the grammar. That is, there is no
sequence of productions £y — Es, ...,E;_ 1 — Ey, E; — Eq, since if such a cycle existed,

the above recursive calculation would never halt. The same assumption is necessary for

32

termination of the standard parsing algorithm. The assumption does restrict the classes of
grammars for which such algorithms are applicable, but it will not be restrictive in domains
where we interpret productions as specializations, since cycles would render an abstraction
hierarchy impossible.

For k = 1, only decomposition productions are possible. For a decomposition production
E — E\Ey--- E, (p), we need the probability that F is thus expanded and that each F
derives a subsequence of appropriate length. Again, the former is given by p, and the
latter can be computed from values of the § function. We must consider every possible
subsequence length j; for each E; such that /", j; = j. In addition, the E; could appear
at any level of abstraction k;, so we must consider all possible values for a given subsequence
length. We can obtain the joint probability of any combination of {(j, k)}j~; values by
computing [T~ B(Ex, jt, ki), since the derivation from each E; is independent of the others.
The sum of these joint probabilities over all possible {(js, k¢)}j~, yields the probability of
the expansion specified by the production’s right-hand side. The product of the resulting
probability and p yields the probability of that particular expansion, since the two events
are independent. Again, we can sum over all relevant decomposition productions to find
the value of G(E, j,1).

The algorithm in Fig. 3.4 takes advantage of the division between abstraction and de-
composition productions to compute the values G(E, j, k) for strings bounded by length.
The array kmaz keeps track of the depth of the abstraction hierarchy for each subsequence

length.

Example Calculations

To illustrate the computation of 8 values, consider the result of using Charniak’s gram-
mar from Fig. 3.1 as its input. We initialize the entries for j = 1 and £k = 1 to have
probability one for each terminal symbol, as in Fig. 3.5. To fill in the entries for j = 1
and k = 2, we look at all of the abstraction productions. The symbols noun, verb, and prep
can all be expanded into one or more terminal symbols, which have nonzero § values at
k = 1. We enter these three nonterminals at k¥ = 2, with [values equal to the sum, over all
relevant abstraction productions, of the product of the probability of the given production
and the value for the right-hand symbol at £k = 1. For instance, we compute the value
for noun by adding the product of the probability of noun—swat and the value for swat,

that of noun—flies and flies, and that of noun—ants and ants. This yields the value one,

33

COMPUTE-BETA(grammar,length)
for each symbol © € TERMINALS(grammar)
Blz,1,1] + 1.0
for j < 1 to length
kmaz{j] < 0
for each symbol E € NONTERMINALS(grammar)
B[E, j,1] «+ 0.0
ifj>1
then

/* Decomposition phase */

for each production
E — E;--- Ep (p) eEDECOMP-PRODS(grammar)
for each sequence {j;}7*, such that), j;=j

for each sequence {k;}7%; such that 1 < k; <kmaz[j]
result<— p
fort <+ 1tom

result < result-B[Ey, ji, ki)

BIE, §,1] « BIE, j, 1]+ result

/* Abstraction Phase */

while B[E', j, kmaz[j] + 1] > 0 for some E'
kmaz[j] < kmazlj] + 1
for each production E — E' (p) EABSTRACT-PRODS(grammar)
if B[E', j, kmaz[j]] > 0
then ([E, j, kmaz[j] + 1] < B[E, 7, kmaz[j] + 1] + p - B[E’, 4, kmaxzj]]

return 3, kmaz

Figure 3.4: Algorithm for computing 3 values.

34

kB |pmEar) ||k Bs@sn |k B s@E2an|r B |8ELEY

2 S | 0.02016 2 S | 0.0208 2 S |0.024 4 S 0.06
1 S | 0.0832 1 S | 0.0576 1 S | 0.096 3 np 0.4
np | 0.0672 np | 0.176 np | 0.08 vp 0.3
vp | 0.1008 vp | 0.104 vp | 0.12 2 prep | 1.0
pp | 0.176 pp | 0.08 pp | 0.4 verb | 1.0
noun | 1.0

1 like 1.0

swat | 1.0

flies 1.0

ants | 1.0

Figure 3.5: Final table for sample grammar.

since a noun will always derive a string of length one, at a single level abstraction above
the terminal string, given this grammar. The abstraction phase continues until we find S
at k = 4, for which there are no further abstractions, so we go on to j = 2 and begin the
decomposition phase.

To illustrate the decomposition phase, consider the value for 3(S,3,1). There is only
one possible decomposition production, s—np vp. However, we must consider two separate
cases: when the noun phrase covers two symbols and the verb phrase one, and when the
noun phrase covers one and the verb phrase two. At a subsequence length of two, both np
and vp have nonzero probability only at the bottom level of abstraction, while at a length
of one, only at the third. So to compute the probability of the first subsequence length
combination, we multiply the probability of the production by S(np,2,1) and B3(vp,1,3).
The probability of the second combination is a similar product, and the sum of the two
values provides the value to enter for S.

The other abstractions and decompositions proceed along similar lines, with additional
summation required when multiple productions or multiple levels of abstraction are possible.

The final table is shown in Fig. 3.5, which lists only the nonzero values.

Complexity

For analysis of the complexity of computing the 8 values for a given PCFG, it is useful
to define d to be the maximum length of possible chains of abstraction productions (i.e., the
maximum k value), and m to be the maximum production length (number of symbols on the

right-hand side). A single run through the abstraction phase requires time O(|P4|), and for

35

each subsequence length, there are O(d) runs. For a specific value of j, the decomposition
phase requires time O(|Pp|j™~1d™), since, for each decomposition production, we must
consider all possible combinations of subsequence lengths and levels of abstractions for each
symbol on the right-hand side. Therefore, the whole algorithm would take time O(n[d|P4|+
|Pp|n™~td™]) = O(|Pln™d™).

3.2.3 Network Generation Phase

We can use the § function calculated as described above to compute the domains of

random variables N;;x and P;j; and the required conditional probabilities.

Specification of Random Variables

The procedure CREATE-NETWORK, described in Fig. 3.6, begins at the top of the ab-
straction hierarchy for strings of length n starting at position 1. The root symbol variable,
Nin(kmaz[n])» can be either the start symbol, indicating the parse tree begins here, or nil*,
indicating that the parse tree begins below. We must allow the parse tree to start at any
j and k where 3(S, j,k) > 0, because these can all possibly derive strings (of any length
bounded by n) within the language.

CREATE-NETWORK then proceeds downward through the N;j; random variables and
specifies the domain of their corresponding production variables, F;;;. Each such production
variable takes on values from the set of possible expansions for the possible nonterminal
symbols in the domain of N;;;. If & > 1, only abstraction productions are possible, so
the procedure ABSTRACTION-PHASE, described in Fig. 3.7, inserts all possible expansions
and draws links from Fjj; to the random variable N;j_1), which takes on the value of
the right-hand side symbol. If k = 1, the procedure DECOMPOSITION-PHASE, described in
Fig. 3.8, performs the analogous task for decomposition productions, except that it must
also consider all possible length breakdowns and abstraction levels for the symbols on the
right-hand side.

CREATE-NETWORK calls the procedure START-TREE, described in Fig. 3.9, to handle
the possible expansions of nil*: either nil* — S, indicating that the tree starts immediately
below, or nil* — nil*, indicating that the tree starts further below. START-TREE uses the
procedure START-PROB, described in Fig. 3.10, to determine the probability of the parse
tree starting anywhere below the current point of expansion.

When we insert a possible value into the domain of a production node, we add it as a

36

CREATE-NETWORK(grammar,length,3,kmaz)
if B[S, length, kmaz[length]] > 0.0
then INSERT-STATE (N1 (jength) kmaz{length]»S)
if START-PROB(S,kmaz,length,kmaz{length]—1)> 0.0
then INSERT-STATE (N1 (jengih) kmasflength]Nil™)
for j < length down-to 1
for k < kmaz[j] down-to 1
for i < 1 to length—j + 1
for each symbol E €DOMAIN(N; ;)
if E eNONTERMINALS(grammar)
then ifk > 1
then ABSTRACTION-PHASE(grammar,E,i,j,k)
else DECOMPOSITION-PHASE(grammar, E,i,5,k)

else START-TREE((,1,j,k)

Figure 3.6: Procedure for generating the network.

ABSTRACTION-PHASE(grammar, E,i,5,k)
for each production E — E' (p) EABSTRACT-PRODS(grammar)
INSERT-STATE(P;j;,E — E'[j,k — 1] (p))
ADD-PARENT (N1, Pijk)

INSERT-STATE(Njj(5—1),E')

Figure 3.7: Procedure for finding all possible abstraction productions.

37

DECOMPOSITION-PHASE(grammar, E,i,j,k)
for each production E — EyEs - - Ey, (p) €DECOMP-PRODS(grammar)
for each sequence {j;}{" such that >, js = j
for each sequence {k;}}~; such that 1 < k; <kmaz{ji]
i€ p - T1, B[B i, ke] > 0
then INSERT-STATE(P;x,E — E1[j1, k1] - Emlim, km] (p))
start— 1
fort < 1tom
ADD-PARENT(N iar4)j, k. +Pik)

INSERT-STATE(N gtart) ok, Et)

Jekeo
starts— start + j;

Figure 3.8: Procedure for finding all possible decomposition productions.

START-TREE(f,4,j,k)
ifk>1
then if B[S, j, k — 1] > 0.0
then INSERT-STATE(P,,nil* — S[j, k — 1))
ADD-PARENT(Nyjt—1,Pijk)
INSERT-STATE(Nj(k—1),5)
else if §[S, 7 — 1, kmaz[j — 1]] > 0.0
then INSERT-STATE(P;;,nil* — S[j — 1, kmaz[j — 1])
ADD-PARENT(N;(; 1)kmafj—1)-Fijk)
INSERT-STATE(N;(j 1) kmafj—1]55)
if START-PROB(3,kmaz,j,k)> 0.0
then INSERT-STATE(P;j,nil* —nil*)
ifk>1
then ADD-PARENT(Nyjk_1),Pjk)
INSERT-STATE(N;ji(k—1),nil*)
else ADD-PARENT(N;(j_1)kmaafj—1]-Fijk)

INSERT-STATE(N;(j—1)kmaafj—1],nil*)
Figure 3.9: Procedure for handling start of parse tree at next level.

38

START-PROB(,kmaz,j k)
if =0
then return 0.0
else if k=0
then return START-PROB(8,kmaz,j — 1,kmaz[j — 1])

else return 3[S, j, k] +START-PROB(8,kmaz,j .k — 1)

Figure 3.10: Procedure for computing the probability of the start of the
tree occurring for a particular string length and abstraction
level.

parent of each of the nodes corresponding to a symbol on the right-hand side. We also insert
each symbol from the right-hand side into the domain of the corresponding symbol variable.
The algorithm descriptions assume the existence of procedures INSERT-STATE and ADD-
PARENT. The procedure INSERT-STATE(node,label) inserts a new state with name label into
the domain of variable node. The procedure ADD-PARENT(child,parent) draws a link from

node parent to node child.

Specification of Conditional Probability Tables

After CREATE-NETWORK has specified the domains of all of the random variables, we
can specify the conditional probability tables. We introduce the lexicographic order < over
the set {(4,k)|1 < j <mn, 1<k < kmazx[j]}, where if j; < jo then (j1,k1) < (jo, k2) and
if k1 < ko then (j,k1) < (j, k2). For the purposes of simplicity, we do not specify an exact
value for each probability Pr(X = z|Y’), but instead specify a weight, Pr(X = z;|Y) o 4.
We compute the exact probabilities through normalization, where we divide each weight by
the sum }; a;. The prior probability table for the top node, which has no parents, can be

defined as follows:

Pr(Nln(kmaw[n}) = S) X ,B(S,TL, kmax[n])

Pr(Nln(kmam[n]) = nil*) X Z ﬂ(S,], k)
(4,k)=(n,kmaz[n])

For a given state p in the domain of any P;;; node, where p represents a production and

corresponding assignment of j and k values to the symbols on the right-hand side, of the

39

form E — Ei[j1,k1]- - Em[jm, km] (p), we can define the conditional probability of that
state as:
m
Pr(Pr = p|Nijx = E) PH BEy, jt, ki)-
t=1
For any symbol E' # E in the domain of Njjx, Pr(P;jx = p|Nijx = E') = 0. For the

productions for starting or delaying the tree, the probabilities are:

Pr(Pyjx = nil* = S5, k'] Nije = nil*) o< B[S, ', K]
Pr(Pyj = nil* = nil*|Njp = nil*) Z B[S, j', k']
(7" k)= (5:k)

The probability tables for the N;;; nodes are much simpler, since once the productions
are specified, the symbols are completely determined. Therefore, the entries are either one
or zero. For example, consider the nodes N, j,x, with the parent node Py ;s (among others).
For the rule p representing E — E1[ji, k1] Em[jm, km), Pr(Niyjk, = Ee|Prjir = p,-..) =
1 when iy =4’ —I—Ef;% Jt» J = Je- For all symbols other than Ej in the domain of Nj,,,, this
conditional probability is zero. We can fill in this entry for all configurations of the other
parent nodes (represented by the ellipsis in the condition part of the probability), though
we know that any conflicting configurations (i.e., two productions both trying to specify the
symbol N;,;,k,) are impossible. Any configuration of the parent nodes that does not specify

a certain symbol indicates that the IV;,;,;, node takes on the value nil with probability one.

Network Generation Example

As an illustration, consider the execution of this algorithm using the [values from
Fig. 3.5. We start with the root variable Ni49. The start symbol S has a 3 value greater
than zero here, as well as at points below, so the domain must include both S and nil*. To
obtain Pr(Ny4o = S), we simply divide 3(S,4,2) by the sum of all 3 values for S, yielding
0.055728.

The domain of P49 is partially specified by the abstraction phase for the symbol S in
the domain of Ny4s. There is only one relevant production, S —vp, which is a possible
expansion since 3(vp,4,1) > 0. Therefore, we insert the production into the domain of
P49, with conditional probability one given that N4 = S, since there are no other possible
expansions. We also draw a link from Pi4o to Ni41, whose domain now includes vp with

conditional probability one given that P49 = S —vp.

40

To complete the specification of Py, we must consider the possible start of the tree,
since the domain of Ny49 includes nil*. The conditional probability of Pj4o = nil* — S is
0.24356, the ratio of 3(S,4,1) and the sum of 8(S, j, k) for (4, k) < (4,1). The link from Py49
to Ni41 has already been made during the abstraction phase, but we must also insert S and
nil* into the domain of Ni41, each with conditional probability one given the appropriate
value of Pjyo.

We then proceed to N141, which is at the bottom level of abstraction, so we must perform
a decomposition phase. For the production S — np vp, there are three possible combinations
of subsequence lengths which add to the total length of four. If np derives a string of length
one and vp a string of length three, then the only possible levels of abstraction for each
are three and one, respectively, since all others will have zero 8 values. Therefore, we
insert the production s—np[1,3] vp[3,1] into the domain of P41, where the numbers in
brackets correspond to the subsequence length and level of abstraction, respectively. The
conditional probability of this value, given that Ni4; = S, is the product of the probability
of the production, 3(np, 1, 3), and 3(vp, 3, 1), normalized over the probabilities of all possible
expansions.

We then draw links from P41 to Ni13 and Nasi, into whose domains we insert np and
vp, respectively. The i values are obtained by noting that the subsequence for np begins at
the same point as the original string while that for vp begins at a point shifted by the length
of the subsequence for np. Each occurs with probability one, given that the value of P4
is the appropriate production. Similar actions are taken for the other possible subsequence
length combinations. The operations for the other random variables are performed in a

similar fashion, leading to the network structure shown in Fig. 3.11.

Complexity of Network Generation

The resulting network has O(n2d) nodes. The domain of each Nj;; variable has O(|Z|)
states to represent the possible terminal symbols, while all other N;;; variables have O(|V|)
possible states. There are n variables of the former, and O(n?d) of the latter. For k > 1,
the P;j; variables (of which there are O(n?d)) have a domain of O(|P4|) states. For P;j;
variables, there are states for each possible decomposition production, for each possible
combination of subsequence lengths, and for each possible level of abstraction of the symbols
on the right-hand side. Therefore, the P;j; variables (of which there are O(n?)) have a

domain of O(|Pp|j™~1d™) states, where we have again defined d to be the maximum value

41

N 413

N 412

Figure 3.11: Network from example grammar at maximum length 4.

42

of k, and m to be the maximum production length.

Unfortunately, even though each particular P variable has only the corresponding N
variable as its parent, a given N variable could have potentially O(n) P variables as parents.
The size of the conditional probability table for a node is exponential in the number of par-
ents, although given that each IV can be determined by at most one P (i.e., no interactions
are possible), we can specify the table in a linear number of parameters.

If we define T' to be the maximum number of entries of any conditional probability
table in the network, then the abstraction phase of the algorithm requires time O(|P4|T),
while the decomposition phase requires time O(|Pp|n™~1d™T™). Handling the start of the
parse tree and the potential space holders requires time O(T'). The total time complexity of
the algorithm is then O(n?|Pp|n™ td™T™+ndT+n2d|Ps|T+n2dT) = O(|P|n™td™T™),
which dwarfs the time complexity of the dynamic programming algorithm for the 8 function.

However, this network is created only once for a particular grammar and length bound.

3.2.4 PCFG Queries

We can use the Bayesian network to compute any joint probability that we can express
in terms of the N and P random variables included in the network. The standard Bayesian
network algorithms [36, 33, 13] can return joint probabilities of the form Pr(X; ;i =
Z1y.. s Xipjmkm = Zm) or conditional probabilities of the form Pr(X,;; = z|X; ik =
T,y Xipjmkm = Tm), Where each X is either N or P. Obviously, if we are interested only
in whether a symbol E appeared at a particular ¢, j, k location in the parse tree, we need
only examine the marginal probability distribution of the corresponding N variable. Thus,
a single network query will yield the probability Pr(N;;, = E).

The results of the network query are implicitly conditional on the event that the length
of the terminal string does not exceed n. We can obtain the joint probability by multiplying
the result by the probability that a string in the language has a length not exceeding n. For
any j, the probability that we expand the start symbol S into a terminal string of length
jis ZZZ{MU] B(S, j, k), which we can then sum for 1 < j < n. To obtain the appropriate
unconditional probability for any query, all network queries reported in this section must

be multiplied by 7, Yp eV 5(S, j, k).

43

Probability of Conjunctive Events

The Bayesian network also supports the computation of joint probabilities analogous
to those computed by the standard PCFG algorithms. For instance, the probability of
a particular terminal string such as Swat flies like ants corresponds to the probability
Pr(Ny11 = swat, Noj1 = flies, N31; = like, Ny11 = ants). The probability of an initial sub-
sequence like Swat flies..., as computed by the LRI algorithm [24], corresponds to the
probability Pr(/Ni;; = swat, Noj; = like). Since the Bayesian network represents the dis-
tribution over strings of bounded length, we can find initial subsequence probabilities only
over completions of length bounded by n — L.

However, although in this case our Bayesian network approach requires some modifi-
cation to answer the same query as the standard PCFG algorithm, it needs no modifica-
tion to handle more complex types of evidence. The chart parsing and LRI algorithms
require complete sequences as input, so any gaps or other uncertainty about particular
symbols would require direct modification of the dynamic programming algorithms to
compute the desired probabilities. The Bayesian network, on the other hand, supports
the computation of the probability of any evidence, regardless of its structure. For in-
stance, if we have a sentence Swat flies ...ants where we do not know the third word,
a single network query will provide the conditional probability of possible completions
Pr(N311|Ni11 = swat, Noj; = flies, Ny11 = ants), as well as the probability of the speci-
fied evidence Pr(NNj1; = swat, Noj; = flies, Ny3; = ants).

This approach can handle multiple gaps, as well as partial information. For example, if
we again do not know the exact identity of the third word in the sentence Swat flies . . . ants,
but we do know that it is either swat or like, we can use the Bayesian network to fully
exploit this partial information by augmenting our query to specify that any domain values
for N311 other than swat or like have zero probability. Although these types of queries are
rare in natural language, domains like speech recognition and plan recognition often require
this ability to reason when presented with noisy observations.

We can answer queries about nonterminal symbols as well. For instance, if we have the
sentence Swat flies like ants, we can query the network to obtain the conditional probability
that like ants is a prepositional phrase, Pr(Nso; = pp|N111 = swat, Noj3 = like, N3;; =
like, Nys31 = ants). We can answer queries where we specify evidence about nonterminals
within the parse tree. For instance, if we know that like ants is a prepositional phrase, the

input to the network query will specify that N3a1 = pp, as well as specifying the terminal

44

symbols.

Alternate network algorithms can compute the most probable state of the random vari-
ables given the evidence, instead of a conditional probability [36, 10, 13]. For example, con-
sider the case of possible four-word sentences beginning with the phrase Swat flies. The
probability maximization network algorithms can determine that the most probable state
of terminal symbol variables N311 and Ny is like flies, given that Ni11 =swat, Noj1 =flies,

and N511 =nil.

Probability of Disjunctive Events

We can also compute the probability of disjunctive events through multiple network
queries. If we can express an event as the union of mutually exclusive events, each of the
form X ik, = 21 Ao+ AN X5 jrkm = Tm, then we can query the network to compute the
probability of each, and sum the results to obtain the probability of the union. For instance,
if we want to compute the probability that the sentence Swat flies like ants contains any
prepositions, we would query the network for the probabilities Pr(N;12 = prep|Ni11 =
swat, Noj1; = like, N311 = like, Ny11 = ants), for 1 < i < 4. In a domain like plan recognition,
such a query could correspond to the probability that an agent performed some complex
action within a specified time span.

In this example, the individual events are already mutually exclusive, so we can sum
the results to produce the overall probability. In general, we ensure mutual exclusivity
of the individual events by computing the conditional probability of the conjunction of
the original query event and the negation of those events summed previously. For our
example, the overall probability would be Pr(Nj12 = prep|E) + Pr(Noi2 = prep, N112 #
prep|&)+Pr(Ni12 = prep, Ni12 # prep, Noio # prep|€)+Pr(Ni12 = prep, N112 # prep, Noig #
prep, N319 # prep|E), where & corresponds to the event that the sentence is Swat flies like
ants.

The Bayesian network provides a unified framework that supports the computation of all
of the probabilities described here. We can compute the probability of any event &£, where

£ is a set of mutually exclusive events {X;, j, k. € Xy A+ A X; € X, M, with

tmtjtmt ktmt
each X being either NV or P. We can also compute probabilities of events where we specify
relative likelihoods instead of strict subset restrictions. In addition, given any such event,
we can determine the most probable configuration of the uninstantiated random variables.

Instead of designing a new algorithm for each such query, we have only to express the query

45

in terms of the network’s random variables, and use any Bayesian network algorithm to

compute the desired result.

Complexity of Network Queries

Unfortunately, the time required by the standard network algorithms in answering these
queries is potentially exponential in the maximum string length n, though the exact com-
plexity will depend on the connectedness of the network and the particular network al-
gorithm chosen. The algorithm in our current implementation uses a great deal of pre-
processing in compiling the networks, in the hope of reducing the complexity of answering
queries. Such an algorithm can exploit the regularities of our networks (e.g., the conditional
probability tables of each Njj; consist of only zeroes and ones) to provide reasonable re-
sponse time in answering queries. Unfortunately, such compilation can itself be prohibitive
and will often produce networks of exponential size. There exist Bayesian network algo-
rithms [14, 12] that offer greater flexibility in compilation, possibly allowing us to limit the
size of the resulting networks, while still providing acceptable query response times.

Determining the optimal tradeoff will require future research, as will determining the
class of domains where our Bayesian network approach is preferable to existing PCFG
algorithms. It is clear that the standard dynamic programming algorithms are more efficient
for the PCFG queries they address. For domains requiring more general queries of the types
described here, the flexibility of the Bayesian network approach may justify the greater
complexity. In such domains, the alternative would be to design and implement algorithms
aimed at each specific class of query. The Bayesian network approach, on the other hand,
provides a unified platform that supports all classes of queries (within the limits of the

specified random variables) without any necessary re-design.

3.3 PCFGs for Plan Recognition

Plan recognition domains may need the generality of queries supported by the Bayesian
network approach. A PCFG representation of a plan recognition domain would define a
correspondence between symbols in the grammar and plan events in the problem domain.
The PCFG represents the same probability distribution over parse trees that the problem
domain exhibits over plan instantiations. Then, when we observe plan events, we use the

corresponding grammatical evidence as input to a PCFG inference algorithm to compute

46

Drive — Stay Drive (0.8) Drive — Exit (0.005)
Drive — Left Drive (0.05) 2-Left — Left Left (1.0)
Drive — Right Drive (0.05) 2-Right — Right Right (1.0)
Drive — 2-Left Drive (0.01) Pass — Right Left (0.1)
Drive — 2-Right Drive (0.01) Pass — Left Right (0.9)
Drive — Pass Drive (0.075)

Figure 3.12: A probabilistic context-free grammar representing a simplified
traffic model.

the posterior probabilities necessary to answer the recognizing agent’s queries.

In our simplified traffic domain, our observations consist of the possible lane changes a
driver can make, represented by the terminal symbols Left, Right, and Stay, where the last
indicates that the driver has stayed in its current lane. The nonterminal symbols represent
the more complex actions, formed from combinations of these low-level lane changes. The
PCFG of Figure 3.12 represents one possible driver model, starting from the top-level symbol
Drive.

According to this PCFG, a driver’s plan execution consists of a sequence of episodes,
each rooted by a node labeled Drive and terminating in a sequence of low-level lane change
actions. The parse tree of Figure 3.13 represents one possible sequence, of probability
2.8125 x 1077, where the driver executes two passing maneuvers before exiting. Since
this probability distribution over parse trees corresponds to a distribution over possible
plan instantiations, we can use the PCFG query algorithms to handle the analogous plan
recognition queries. For instance, the PCFG chart parsing algorithm can compute the
probability of any observed action sequence, as well as the most probable plan instantiation
explaining that sequence.

However, in plan recognition, the recognizing agent usually interacts with the observed
agent before it finishes its execution. For instance, in the traffic example, plan recognition
is useless once planning is complete, since every plan instantiation terminates with the
observed car having exited the highway, at which point no interactions will take place with
a recognizing car still on the highway. Plan recognition has need of many other possible
queries left unaddressed by the standard PCFG algorithms. As stated in Section 3.1.2, the
standard algorithms cannot handle partial strings, but a plan recognizer rarely has complete
observations of another agent’s past actions. In addition, when agents can communicate,

a recognizing agent may gain information about subplans, corresponding to evidence of

47

Drive(1,5,1)

Drive(3,3,1)

Pass (1,2,1) Pass (3,2,1)
Drive (5,1,2)
Right (1.1.1) Left (2.1,1) Right (3,1,1) Left (4,11) Exit (5,1,1)

Figure 3.13: Sample parse tree from traffic PCFG with (i, j, k) indices labeled.

nonterminals in the parse tree, that cannot be exploited by the standard algorithms.
Therefore, the generality of the Bayesian network approach to PCFG inference is of
great advantage in plan recognition. We can use the algorithms of Sections 3.2.3 and 3.2.2
to generate a Bayesian network representation of possible plan instantiations. The PCFG
length bound now represents a bound on the length of the action sequence, which may
correspond to temporal durations as well exceeding a fixed bound on the length of the with
a fixed length of time. We can then use the algorithms of Section 3.2.4 to answer recognition
queries. For instance, if we had observed only the first passing maneuver of the parse tree
in Figure 3.13, we might query the network for the probability that the agent stays in its
current lane in the next period of time, i.e. Pr(Ns;; = Stay|N111 = Right, Naj; = Left).
Perhaps more importantly, we can answer queries about possible subplans in the next
period of time (Pr(Nsg; = Pass|Ni11 = Right, Noj; = Left)). The Bayesian network’s ability
to incorporate evidence about any available random variables allows us to answer queries
when we have evidence about subplans. For instance, if the recognizing agent knows that
the observed driver has decided to pass, we can use the network to compute the relative
likelihoods of passing on the left or right (Pr(NN3;; = Left|N11; = Right, Naoj; = Left, N3g; =
Pass)). In general, we can compute any conditional probability of any subplans or actions
occurring at a given time within the plan instantiation, given all observed subplans and

actions.

48

CHAPTER 4

Context Sensitivity

Although the Bayesian network algorithms generalize the set of answerable queries, the
independence assumptions of the PCFG model remain overly restrictive for many domains.
By definition, the probability of applying a particular PCFG production to expand a given
nonterminal is independent of what symbols have come before and of what expansions are
to occur after. In the parse tree of Figure 3.13, the probability that the driver passes on the
right in the second pass is fixed at 0.1, even though we would reasonably expect a higher
likelihood given that the first pass was also on the right. A more obvious problem arises
because the example PCFG does not keep track of the driver’s current lane. Presumably,
there is a limit to the number of left lane changes a driver can perform in succession before
reaching the boundary of the highway, but we cannot represent that restriction within the
production structure of the sample PCFG.

Of course, we may be able to correct the model by expanding the set of nontermi-
nals to encode contextual information, and thus preserving the structure of the PCFG
model. For instance, we could define the grammatical symbols to be all possible combina-
tions of subplans/actions and lane positions. We would then have expansions of the form
(Pass, leftlane) — (Right, leftlane) (Left, middlelane) (1.0). The symbol on the right-hand side
would indicate that the observed driver is executing a passing maneuver from the leftmost
lane by first performing a right lane change from the leftmost lane and then a left lane
change from the middle lane, where the lane context changes as a result of the right lane
change first executed. This production has probability one because the driver cannot pass
on the left from the leftmost lane.

However, such adjustments to the grammar can obviously lead to an unsatisfactory in-

crease in complexity for both the design and use of the model. Instead, we could use an

49

alternate model that relaxes the PCFG independence assumptions. Such a model would
need a more complex production and/or probability structure to allow complete specifi-
cation of the distribution, as well as modified inference algorithms for manipulating this

distribution.

4.1 Direct Extensions to Network Structure

The Bayesian network representation of the probability distribution provides a possible
basis for exploring such extensions to an underlying PCFG model. The networks generated
by the algorithms of this paper implicitly encode the PCFG assumptions through assignment
of a single nonterminal node as the parent of each production node. This single link indicates
that the expansion is conditionally independent of all other nondescendant nodes, once
we know the value of this nonterminal. We could extend the context-sensitivity of these
expansions within our network formalism by adding links among these production nodes.

We could introduce some context sensitivity even without adding any links. Since each
production node has its own conditional probability table, we can define the production
probabilities to be a function of the (4, j, k) index values. For instance, we can impose limits
on the duration of a subplan’s expansion by varying the production probability appearing
over different string lengths, as encoded by the j index. In such cases, we can modify the
standard PCFG representation so that the probability information associated with each
production is a function of 4, j, and k, instead of a constant. The dynamic programming
algorithm of Fig. 3.4 can be easily modified to handle production probabilities that depend
on j and k. However, a dependency on the 7 index as well would require making all three
indices parameters of 4 and introducing an additional loop to the existing algorithm to
cover all possible ¢ values. Then, we would have to replace any reference to the production
probability, in either the dynamic programming or network generation algorithm, with the
appropriate function of 7, 7, and k.

Alternatively, we may introduce additional dependencies on other nodes in the network.
A PCFG extension that conditions the production probabilities on the parent of the left-
hand side symbol has already proved useful in modeling natural language [8]. For instance,
we could extend the simple traffic PCFG from Figure 3.12 so that Left and Right are
nonterminal symbols expanded further into accelerations, as well as lateral movements (e.g.

Right — Move-Right Decelerate (0.6)). In such a grammar, a choice between accelerating or

50

Figure 4.1: Subnetwork incorporating parent symbol dependency.

decelerating as an expansion of a right lane change would depend on whether the lane change
were part of a more complicated passing maneuver or not. In this case, each production has
a set of associated probabilities, one for each nonterminal symbol that is a possible parent
of the symbol on the left-hand side. This new probability structure requires modifications
to both the dynamic programming and the network generation algorithms. We must first
extend the probability information of the [function to include the parent nonterminal
as an additional parameter. It is then straightforward to alter the dynamic programming
algorithm of Fig. 3.4 to correctly compute the probabilities in a bottom-up fashion.

The modifications for the network generation algorithm are more complicated. When-
ever we add F;j; as a parent for some symbol node Nijic’ we also have to add N;j; as a
parent of szk For example, the dotted arrow in the subnetwork of Fig. 4.1 represents the
additional dependency of Pj12 on Ni13. We must add this link because Nji9 is a possible
child nonterminal, as indicated by the link from P;13. The conditional probability tables for
each P node must now specify probabilities given the current nonterminal and the parent
nonterminal symbols. We can compute these by combining the modified 8 values with the
conditional production probabilities.

Returning to the example from the beginning of this section, we may want to condition
the production probabilities on expansions already chosen. As a first approximation to such
context sensitivity, we can imagine a model where each production has an associated set of
probabilities, one for each terminal symbol in the language. Each represents the conditional
probability of the particular expansion given that the corresponding terminal symbol occurs
immediately previous to the subsequence derived from the nonterminal symbol on the left-
hand side. For instance, a driver content to stay in its current lane in the previous time
period is more likely to be so again in the next time period. Therefore, we may wish to

condition the probability of the production Drive—Stay Drive on the event that the previous

51

!
! N221 N321

_N213) N313 N413

I
P213 P3l3 P4,13
/, /
/ 7/ /

/!y ’ ’
;e N2,1,2 ’ N 3,12 L N 4,1,2

1
,’// / / /, e
/1 7 !/ 7/ /
Iy 7 P2,12 / /’ P3,1,2 4 P41 2
I//, P I/ - "7 //
[/3 - 1/ - -

N111 N211 N 311 N 411

Figure 4.2: Subnetwork capturing dependency on previous terminal symbol.

action chosen was Stay.

Again, our § function requires an additional parameter, and we need a modified version
of the dynamic programming algorithm to compute its values. However, the network gen-
eration algorithm needs to introduce only one additional link from Nji; for each P 1)k
node. The dashed arrows in the subnetwork of Fig. 4.2 reflect the additional dependencies
introduced by this context sensitivity, using the network example from Fig. 3.11. The P
nodes are a special case, with no preceding terminal, so the steps from the original algorithm
are sufficient.

We can extend this conditioning to cover preceding terminal sequences rather than
individual symbols. For instance, when only three lanes are available, we can prevent a
driver from performing three consecutive left lane changes by setting the probability of
the production Drive—Left Drive to be zero when the preceding terminal sequence is two
consecutive Lefts. In general, each production could have an associated set of probabilities,
one for each possible terminal sequence of length bounded by some parameter h. The
0 function now requires an additional parameter specifying the preceding sequence. The
network generation algorithms must then add links to P;jx from nodes N py11,- -+, NG-1)115

if¢ > h, or from Ni11,..., Ni_1)11, if ¢ < h. The conditional probability tables then specify

52

the probability of a particular expansion given the symbol on the left-hand side and the
preceding terminal sequence.

These suggested extensions are merely patchwork modifications, addressing very specific
forms of context sensitivity. In general, the Bayesian networks currently generated contain
a set of random variables sufficient for expressing arbitrary parse tree events, so we can
introduce context sensitivity by adding the appropriate links to the production nodes from
the events on which we wish to condition expansion probabilities. We can thus account for
the dependency among a driver’s choice between passing on the left or right by introducing
links between the production nodes that could potentially represent those choices. Once
we have the correct network, we can use any of the query algorithms from Section 3.2.4 to
produce the corresponding conditional probability.

In many cases, we may wish to account for external influences, such as explicit con-
text representation in natural language problems or influences of the current world state in
planning. For instance, if we are processing multiple sentences, we may want to draw links
from the symbol nodes of one sentence to the production nodes of another, to reflect the-
matic connections. In the traffic example, we can introduce random variables representing
the positions and speeds of other cars along the highway and draw links from these new
variables to the production nodes representing the observed driver’s plan choices. As long
as our network can include random variables to represent the external context, then we can
represent the dependency by adding links from the corresponding nodes to the appropriate
production nodes and altering the conditional probability tables to reflect the effect of the

context.

4.2 Modifications to the Grammatical Model

Context sensitivities expressed as incremental changes to the network dependency struc-
ture represent only a local relaxation of the conditional independence assumptions of the
PCFG model. More global models of context sensitivity will require a radically different
grammatical form and probabilistic interpretation framework. However, the few incremental
changes already discussed suggest a wide variety of possible new grammatical formalisms,
each with different degrees of expressive power and inferential complexity.

Ignoring the stochastic component of the model for the moment, contezt-sensitive gram-

mars (CSGs) [19] can handle many of the dependencies present in plan recognition domains.

53

In a CSG, every production has an associated context representing an intermediate sequence
of symbols that must be present for the specified expansion to be possible. More precisely,
productions take the form &1, X&r — ELémér, with & € (N UZX)*. Such a production states
that we can expand the symbol X into the sequence £js at any point when X occurs with
the string &7, immediately to its left and £z immediately to its right. Many of the suggested
model extensions fit very easily into this production format. For instance, a production
of the form Stay Drive—Stay Stay Drive would represent an observed car’s staying in the
current lane conditioned on the fact that it stayed in that lane during the previous time
period.

The generality of context-sensitive productions complicates possible probabilistic exten-
sions. In the PCFG model, we could virtually guarantee a coherent probability distribution
over terminal strings by making the one restriction that productions over a particular non-
terminal symbol have a total probability of one. We can add likelihood information to
context-sensitive productions, but we cannot determine, a priori, which expansions may be
applicable at a given point in the parse (due to the different possible contexts), so a set of
fixed production values may not produce weights that sum to one in a particular context.
We instead must normalize the likelihoods from the set of productions that are currently
applicable at a given intermediate stage of the parse tree and use the corresponding normal-
ized likelihood as the probability of choosing a particular production at that point. The set
of applicable productions must consider all nonterminal symbols left unexpanded, because
the relaxation of the context-free assumption prevents the modular probability assignment
of the PCFG model.

For instance, consider the parse tree of Figure 3.13 as being generated by a probabilistic
context-sensitive-grammar (PCSG). At the stage of the parse where we have selected only
the production Drive—Pass Drive, we have an intermediate string of Pass Drive. At this
point, we must consider all context-free productions of the form Pass— & and Drive— &,
as well as the context-sensitive productions of the form Pass Drive— & Drive and Pass
Drive—Pass £. The weight of each production, normalized in some manner, would be the
production probability. Suppose that we choose the production Pass—Right Left, producing
the intermediate string Right Left Drive. At this point, there is only one nonterminal symbol
left unexpanded, but there are three possible contexts: Drive, Left Drive, and Right Left
Drive. We again perform the normalization over the set of corresponding weights to obtain

the production probabilities.

54

As in the PCFG case, this PCSG model assumes that each subsequent random produc-
tion selection is independent of the previous and future choices. Therefore, the probability
of a particular derivation sequence is uniquely determined as the product of all of the in-
dividual production choices, although the result will be sensitive to the order in which we
apply the productions. We could then define a probability distribution over all strings in
the context-sensitive language so that the probability of a particular string is the sum of
the probabilities over all possible derivation sequences for that string. However, specifying
the production weights to model a given distribution is complicated. In the simple traffic
parse tree of the example, we considered the productions of the form Drive— & at both in-
termediate stages, but weighed against different sets of candidates. In general, it is difficult
to choose a fixed weight for a given production and still guarantee the desired probability
that the production will be the chosen expansion of its nonterminal symbol.

Performing inference with this PCSG model is even less straightforward. We could
potentially modify the PCFG algorithms to create a Bayesian network with the proper
conditional dependency structure to represent a PCSG distribution. However, a PCSG
distribution is sensitive to the order of production application, so we lose the modular-
ity necessary for the chart-based representation and the dynamic programming algorithms.
More limiting is the increased complexity of the dependency structure. Even if we find a
compact set of random variables, a correct Bayesian network requires links to each produc-
tion node from all potential context nodes, and, with full context sensitivity, all symbols
that are not direct ancestors or descendants are potential context symbols. In fact, unless
we can restrict the form of the context sensitivity, the Bayesian network must represent,
at least implicitly, the joint space over all possible intermediate strings. Without the de-
composition into separate symbols allowable under PCFG independence assumptions, the

Bayesian network approach will be impractical for all but the simplest problems.

4.3 State Dependency in Grammatical Model

The impracticality of this PCSG model indicates that a more restricted grammatical
model is necessary. Looking back at the special needs of plan recognition as outlined in
Figure 2.1 (PR model from UAT paper), we see that the agent’s choice of plan depends on its
mental state. In fact, many of the discussed examples of context sensitivity are, in reality,

examples of a common dependency on the agent’s mental state. For instance, a recognizing

55

agent, having observed a pass on the right, now has a different belief about the type of the
driver being observed, specifically that the driver is of a type more likely to pass on the right
than the average driver. Thus, the recognizing agent will have a higher degree of belief in the
second pass taking place on the right because of this updated belief about the driver’s type,
not because of any direct relationship between the two passing episodes. Likewise, we can
model the proposed dependency of the probability of a production like Drive— Stay Drive on
the previous terminal symbol’s being Stay by again introducing a common parent variable
in the observed agent’s mental state, representing its satisfaction with its current lane.
Most planning languages are capable of modeling such context dependency, where context
here refers to the planning context (mental state), not grammatical context (plan/action
symbols).

Within a PCFG model of a planning agent, the probability of applying a particular
production must be independent of the current state of the planning process, given the
subplan being expanded. Therefore, as discussed briefly in the opening of this chapter,
the only way to represent the production probability’s dependency on the agent’s mental
state is to expand the space of nonterminal symbols to represent combinations of subplans
and mental states. The large space of possible mental states produces an even larger space
of nonterminal symbols. Modeling problem domains is much more difficult in this joint
space. More ominously, the complexity of inference grows exponentially with each additional

feature of an agent’s mental state.

56

CHAPTER 5

Probabilistic State-Dependent Grammars

As an alternative, we can create an explicit model of the agent’s mental state by in-
troducing a separate random variable with limited interactions with the underlying PCFG.
The resulting probabilistic state-dependent grammar (PSDG) is still capable of representing
the dependency of plan choices on mental state, as well as that of the effects on context and
plan choices, while still imposing enough structure to simplify inference and domain speci-
fication. Section 5.1 defines the components of a PSDG and the independence assumptions

needed to coherently define a probability distribution over its language.

5.1 Specification of PSDG Language Model

A probabilistic state-dependent grammar is a tuple (X, N, S, Q, P, gy, 71), where X, N,
and S are the same as in a PCFG, Q! is a time-indexed random variable representing a
state space (beyond the grammatical symbols) with domain @, and 7y and 7 specify the
probability distribution governing the process that generates the states. The productions P
take the same form as in a PCFG, E — £ (p), except that now, p is a function of the state,
@ — [0,1]. Each such production states that the conditional probability of expanding E
into the sequence ¢, given that the current state Q' = g, is Pr(q). The relevant current
state to consider when expanding a symbol whose terminal substring starts in position ¢
of the overall terminal string (index value i as defined in Section 3.1.2) is @*~!. For each
nonterminal symbol E € N, consider all rules of the form E — & (pg). We require that
> ¢pe(g) =1 for all points g € Q.

The function 7y specifies the distribution over the initial values of the state variable @,

i.e. Pr(Q° = q) = mo(q). The function 7 specifies the distribution over subsequent values

57

0) Drive — Stay (polq) =-++)

1) Drive — Left pi(g) = { e T)
2) Drive — Right (P2(9))

3) Drive — Pass (p3(q))

4) Drive — Exit (p4(a))

5) Pass — Left Right (ps5(q))

6) Pass — Right Left (ps(q))

Figure 5.1: A PSDG representation of a simplified traffic domain.

of Q. The value of Q! is conditionally independent of past values of @) given the value of

Q! and the terminal symbol chosen in the interval between ¢ — 1 and ¢:

Pr(Q' = ¢|Q° =qo,.. ., Q" ' =q_1,Ny1 =2) = Pr(Q"=q|Q" ' =q¢_1,Na1 = z)

= 7T1(Qt—1,$,Qt)

This Markov property of the state variables allows us to ignore state values before time ¢ — 1
when computing the probability distribution over Q*, once we have observed Q'~! and the
terminal symbol at position ¢. The value of the state at time ¢ is also independent of all
symbols in the parse tree with ¢ < ¢ (other than Ny;1), when we know the value of the state
and terminal symbol at time ¢.

We can often simplify the definition of the production probability functions p and the
state distribution functions 7wy and 7 by viewing the state as a conjunction of somewhat
orthogonal features representing invidual aspects of the environment, as well as the agent’s
beliefs, preferences, and capabilities. Thus, production probabilities are functions of only
those features that influence the choice in expanding a particular symbol. Likewise, the
distribution over a particular feature can depend on other certain features, without having
to depend on all. Most of this chapter refers to the state as a single variable for intel-
ligibility, but the algorithms for network generation and inference exploit factored state
representations as well.

As an illustration of the interaction between the grammar and the state variable, consider
the PSDG of Figure 5.1, presenting the set of productions from a simplified model of driving
plans. The start symbol, Drive, represents a single decision-making episode from driving
along a three-lane highway. The terminal symbols, Stay, Left, Right, and Exit, represent
actions with the obvious effects on the driving lane. The intermediate symbol Pass represents

the driver’s ability to pass another car by first changing over to the next lane (to either the

58

left or right) and then returning to the original lane once beyond the car being passed.

Figure 5.1 partially specifies the production probability functions based on a state space
Q@ representing all possible combinations of the positions and speeds of all cars within
the observed driver’s view, as well as the state of the observed driver’s own car and its
preferences. In general, we need a separate representation of the observed agent’s beliefs
about the state of the world to correctly model the decision process, if these beliefs can
deviate from the recognizing agent’s own beliefs, implicit in the model of the world dynamics
and subsequent observations. To simplify this illustration, we assume that the driver has
perfect observations, so we represent only the true state of the world and take the agent’s
beliefs to be equivalent. The state also includes information about the agent’s preferences
about driving speed, distance from other cars, intended exit, etc. Each component of the
state has a corresponding function that returns that component’s value of a given point in
the state space, e.g. the function Lane(q) returns the lane position of the observed car in
state g, whether left-lane, middle-lane, or right-lane. Figure 5.2 illustrates a possible parse
tree for a plan generated from this PSDG. The picture labeled Q° in the bottom left corner
of the diagram represents the initial state. The solid black rectangle is the driver whose
planning process we are trying to recognize. The white rectangles are the other cars on the
highway that the driver of interest must consider when planning.

The driver’s plan originates with the start symbol Drive and must choose among the
five possible expansions shown in Figure 5.1. We compute the likelihood of each production
by applying the corresponding probability function py to the current state Q°, since the
substring rooted at Drive begins at the start of the overall terminal sequence (i.e., the ¢
index is 1). In the sample parse tree of Figure 5.2, the driver has selected the production
Drive — Pass, whose probability is p3(Q®). The symbol Pass also has an i index of 1, so
we compute p5(Q°) and pg(Q°) to determine the probability of passing on the left versus
passing on the right. In the example, the driver has chosen to pass on the left, so it first
executes a Left action.

This branch of the parse tree has now reached a leaf node, so we can apply the state
transition probability, 71 (Q°, Left, Q'), to compute a distribution over possible values of Q'.
The diagram shows one possible value where the driver has moved into the leftmost lane (as
a result of selecting the Left action) and moved beyond the other two cars. The state value
Q! forms the context when expanding any symbols with 7 = 2. In this example, only the

terminal symbol Right has ¢ = 2, but in general, we must consider production probability

99

Drive

Pass

Figure 5.2: Sample PSDG parse tree from the traffic domain.

60

functions of the form Pr(Q!) in expanding the branch until we reach a leaf node. Once we
have the leaf node, we again apply the state transition probability, m (Q!, Right, @?) in this

case.

5.2 Inference on PSDGs

The benefit of the PSDG representation extends beyond simplifying domain specifica-
tion. Although we can perform inference on a given PSDG by generating the corresponding
PCFG and then using the algorithms of Section 3.2.4, the explosion in the size of the symbol
space could lead to prohibitive costs for answering queries. Fortunately, we can exploit the

independence assumptions in the PSDG model for more efficient inference.

5.2.1 Generation of Bayesian Networks for PSDGs

The Bayesian network model used in Section 3.2.4 already contains a set of random
variables sufficient for representing the production choices of the PSDG. For a network
generated for a length bound of n, we can introduce n + 1 nodes representing the state
variables Q°, Q',..., Q™. The node Q° has no parents, with 7y specifying its probability
distribution. Every state node Q* for i > 0 has the Q"' and N;i; nodes as parents, with
71 specifying the conditional probability table.

Each production node P;;; needs an additional link from node Q! because the produc-
tion probabilities now depend on the value of that state node. To specify the conditional
probability tables of these production nodes, we also need to compute the 3 function, that
is, the probability that a given nonterminal symbol derives a subtree with particular 5 and
k indices, given its parent symbol. Because of the link from Q*~!, the 3 function must now
consider all state values that are potential contexts for the productions at that point in the
parse tree. In addition, we must consider how the context changes for each of the symbols
on the right-hand side from the expansion of its previous siblings.

For instance, consider a production node, Pjs1, whose domain contains the two expan-
sions of Pass from the PSDG of Figure 5.1. In this case, there is only one possible breakdown
of substring lengths, i.e. both Left and Right have substring length 1. The probability of
the expansion Pass — Left Right, given that Niy; =Pass and Q° = g, is the product of
p5(q0) (production probability), 3(Left,1,1,qo) (probability that Left derives a subtree of
length 1 and k = 1 given context qg), and the sum over all states g1 € @ of the product

61

of m1(qo, Left,q1) (probability that ¢; is the resulting context after expanding Left in go)
and ((Right,1,1,¢;) (probability that Right derives a subtree of length 1 and k& = 1 given
context q1).

Although we can alter the dynamic programming algorithm of Figure 3.4 to include
state information, the summation over intermediate states is of much greater concern. In
this simple example, we can compute the probability of an intermediate state g; by directly
applying the 7 function. However, if the right-hand side of the production included nonter-
minal symbols, instead of the terminal symbols Left and Right, we would have to compute
the transition probabilities indirectly, requiring another dynamic programming algorithm.
More importantly, we only had to compute a summation over one intermediate state q;, but
each additional symbol on the right-hand side requires another summation over the entire
state space. In fact, the time complexity of the revised (3 algorithm for a string length of n
and for a maximum hierarchy depth of d is O(|Q|™+!|P|n™d™), where we assume that the
maximum number of symbols on the right-hand side, m, is less than the maximum string
length, n. Fortunately, we incur this cost only once, during the generation of the Bayesian

network, so in most cases, we can afford the additional complexity.

5.2.2 Dynamic Bayesian Network Representation of PSDGs

However, regardless of the complexity of the network generation algorithms, the resulting
Bayesian network represents a probability distribution over sequences only within some
length bound. For domains where we do not know the maximum sequence length, we run
the risk of having to regenerate a new network on the fly, where the complexity of the
generation algorithm may be unacceptable. In addition, even if we know the maximum
sequence length and can generate a Bayesian network covering all the cases encountered in
the queries, the resulting network may be too large to answer the queries with satisfactory
timeliness. These difficulties make it impossible to generate a single, operational network
that covers all possible queries in real-world problem domains.

Fortunately, most plan recognition domains do not require the full range of queries
covered by these Bayesian networks. Temporal constraints make most queries irrelevant.
For instance, the sequence of our observations roughly obeys temporal ordering, so we will
not receive new direct evidence about random variables arbitrarily far in the past. It is
also unlikely that we will want to compute posterior probabilities over possible subplans

and actions beyond some fixed time into the past or future. In other words, we confine our

62

interest in the agent’s planning process to a window of fixed duration.

The query DAG formalism citeDarwiche97 supports the generation of a specialized struc-
tures that represent the same distribution as the Bayesian network, but that answer a re-
stricted set of queries more efficiently than possible with the more general network structure.
In a plan recognition domain where we know what fixed set of queries the recognizing agent
requires, we could generate DAG representation of the PSDG distribution to avoid some
of the complexity of the static Bayesian network representation. Unfortunately, the query
DAG generation process is similar to the Bayesian network compilation process, which is
prohibitively costly for even simple PSDGs. Therefore, it is unlikely that a query DAG
approach would significantly alleviate the complexity problem.

Dynamic Bayesian networks (DBNs) [27] make specific restrictions on the set of possible
queries. If we are modeling some sequential stochastic process, then a DBN represents a
window of a fixed number of random variables, as does our static network representation.
However, the DBN also represents the probability distribution between successive phases of
the processes evolution, so the window can move to represent future variables as well. We
can use existing DBN inference algorithms to enter evidence and answer queries about any
of the random variables within the current window. When we move the window, the DBN
algorithms maintain an exact representation of the underlying distribution, incorporating
all of the evidence received so far, even of variables beyond the window.

For a PCFG or PSDG distribution, we can view the position from left to right as
providing the temporal ordering of the underlying process. We can thus view any symbols
generated along the same branch (i.e., with the same 7 index) as belonging to the same time
slice. A DBN representation must include a specification of the distribution within a given
time slice, so we have to model the interaction of all of the symbol and production variables
with the same 7 index. To allow the DBN inference algorithms to move the window, we
must model the dependency of the random variables in one time slice on the variables in
the previous slice. Both the intra- and inter-slice specifications take the form of Bayesian
networks, so much of our work from Section 5.2.1 carries over to the DBN generation

algorithms as well.

Random Variables for DBN Representation of PSDG

With a DBN representation of the distribution over parse trees, we can no longer use

the chart-based indexing scheme, because we may not know j, the length of the substring

63

rooted at a particular node, until some time into the future. However, although the fixed-
length window of the DBN prevents the representation of entire subtrees, we can represent
entire branches if we include variables to represent an entire path from root node to leaf
node. Therefore, we do not use a bottom-up labeling scheme, since we do not know the
length of a given path beforehand, but must work top-down instead. The £ index represents
the distance of a given symbol from the root node, which always is the start symbol of the
grammar. The root node has £ = 1, and all other symbol nodes has an ¢ index of one more
than their parent nodes. If we view a particular branch as a hierarchy of pending subplans,
then the ¢ index indicates the level of the hierarchy of a subplan, with 1 corresponding to
the top level plan.

For now, we assume no cycles exist within the productions, allowing us to define d as
the largest possible £. We relax this assumption to permit limited recursion in the next
subsection. We also index random variables by time ¢, resulting in a set of symbol variables
N} and production variables Pf. The time index ¢ has a particular relationship with the
¢ and j indices of the static networks, namely if N;;; = A, then there is some £ such that
N} = A for all t such that ¢ < ¢ < i+ j. In other words, while the current time is within
the subsequence derived from A, then A appears at the symbol node £ — 1 steps away from
the root node. In the example from Figure 5.2, the top-level Drive has ¢ = 1, as do all
root nodes, so N! =Drive for all ¢ within the range of this parse tree. In this example, the
terminal string has length 2, so N = NJ =Drive. Tts child node, Pass, has £ = 2, but it
too spans the entire execution, so No = N2 =Pass. Its children have £ = 3 and span only a
single time each, so Ni =Left and NZ =Right.

For a PSDG, we must also include a state variable Q! to represent the sequence of
contexts. The probability table for Q takes its values from 7. Subsequent Q' nodes have
Q! as a parent, as well as any Ng nodes that have terminal symbols in their domain. As
an alternative, we can introduce a new node X! representing the terminal symbol at position
t in the final sequence (Ny1 using the (4,7, k) indices). The state nodes then depend on
only this new ! node and the previous state node Q*~!. We can define the conditional
probability table for these Q' nodes using m1. The X! node depends on all P} nodes that
have productions with terminal symbols on their right-hand side, and we remove all terminal
symbols from the domains of the NE nodes.

The value of production node P} indicates the production chosen to expand the symbol

in N}, as well as what symbol on the right-hand side is being currently expanded as N} 1 OT

64

Figure 5.3: DBN representation for PSDG of Figure 5.1 over two time slices.

currently executed as . More precisely, if P} = (X — Y1Y, -+ Y, b), then N} must be X.
If the right-hand symbol Y}, (indexed by the position indicator b from the production node’s
value) is a terminal symbol, then %! = Yj; otherwise, the child symbol node Ny 1 = Y.
We can define the position indicator b in terms of the (i,7j,k) indices of V: i < t <
i+ j. With this position indicator, the child symbol nodes (including %) take on values
deterministically given the value of their parent production node.

For instance, a DBN representation of the simple PSDG of Figure 5.1 would begin with a
root node of N{ with a domain of {Drive, nil}. The domain of P} is {(1,1),(2,1),(3,1),(4,1),(5, 1),nil},
where the ordered pair (a,b) indicates production a at position b of the right-hand side.
Only production 3 produces a nonterminal symbol, leading to a N4 node with a domain
of {Pass,nil}. The domain of node Ps is then {(5,1),(5,2),(6,1),(6,2),nil}, allowing us to
differentiate between the two components of a passing maneuver. None of the productions
in this set produce nonterminal symbols, so there are no more N nodes and d = 2. The
terminal symbol node ¥! has a domain of {Stay,Left,Right,Exit,nil}. The nodes for time 1
appear to the left of the DBN in Figure 5.3.

It is straightforward to generate the conditional probability tables for these nodes from

65

the PSDG. We compute the probability that Pel takes on the value (a,1) by applying the
corresponding p, function to the values of the parent state node Q°. The values (5,2) and
(6,2) have zero probability because we cannot move on to the second stage of the passing
maneuver until the first is complete. The root node Ni =Drive with probability one. The
other symbol nodes, Ni and X!, are completely determined given their parents’ values.

The symbol and production variables for time 2 have a more complicated dependency
structure because of their relationship to the variables at time 1, although the domains of
the variables are unchanged. For instance, N] =Drive if its expansion has not terminated
after time 1. The expansion of N} terminates if the value of P} is (X — Y1Y3---Y,,,, m) and
if either Y;,, € ¥ or if the expansion of N} 1 = Y, terminates. In other words, an expansion
of a symbol terminates at time ¢ if there are no productions in an intermediate state below
that symbol. In terms of the (4,7, k) indices, the expansion of symbol N;j; terminates at
time ¢ + j — 1. The expansion of a symbol N, }f =nil is terminated by definition.

We can simplify the dependency structure for time 2 by introducing boolean random
variables Té5 that are true iff the expansion of IV, f terminates. Each TE node has Pf and Tlf 1
as a parent, except for Tj, which has only Pj as a parent. The conditional probability table
of each T} node represents the deterministic relationship of the definition of termination.
In our example, T% is false iff P} is (5,1) or (6,1), where there is still an additional symbol
left to expand. Termination at the level above, 17 is false iff P} is (3,1) and T} is false. We
can now define the root node Nf“ as taking on the value of Drive iff T} is false, indicating
that the expansion of Drive is still incomplete.

The production nodes P? also depend on the values of these termination nodes. For
instance, if the expansion of symbol le 1 does not terminate, then the value of production
node PZH does not change from the value of P} because we are still expanding the same
symbol on the right-hand side. If the expansion of N} 1 does terminate, then the value of
Pﬁ'l takes the value of Pf and move the position indicator to the next symbol on the right-
hand side. If P} was already at the last symbol on the right-hand side, then the expansion
of N, f has terminated and we must choose a new production for Pg“ based on whatever
symbol now appears le“, where we compute the probabilities as for ¢ = 1, by applying
the production probability functions to the relevant state, Q?.

For the example DBN of Figure 5.3, many of the dependencies created by the automatic
generation algorithm sketched so far are unnecessary, but they are included here for illus-

trative purposes. The node P? depends on its corresponding symbol node N2, the previous

66

production node P, and its child’s termination node Tj. If T} is false (during a passing
maneuver), we simply copy the value of P|' into P2. Otherwise, we would normally move
on to the next position on the right-hand side, but in this case, there is only one symbol on
the right-hand side of all of the productions in domain of P}, so we have to choose a new
production based on N?. However, if the production of P} has terminated, then the entire
parse tree has been completely expanded and N2 =nil, so P2 is nil as well.

The node P} depends on its symbol node N2 and the previous production node P;.
There is no dependency on any termination node because, at the bottom of the hierarchy,
all children are terminal symbols, for whom termination would always be true. If P} is
(5,1) or {6,1), then at time 2, we move on to the second stage of the expansions, so P7 will
be (5,2) or (6,2), respectively. For any other values of P}, the parse tree has completed, so

N2, and thus P2, will be nil.

Recursion in PSDGs

We no longer have a length bound over sequences in the DBN representation, unlike the
static Bayesian network representation. However, we do need to fix the maximum depth,
d, of the symbol hierarchy. Otherwise, we would have to generate new DBNs to introduce
new symbol and production variables as needed. If the productions introduce any possible
cycles, then there is no bound on the length of parse tree branches. Therefore, we cannot
allow any recursion in the productions unless we alter our definition of the £ index.

Fortunately, if we assume that we do not have to answer queries arbitrarily far into
the past, we can allow recursive productions of the form X — Y,Ys5---Y,,, 1X, where the
Yy # X. The Y, children are treated as before, with £ being one more than the ¢ value of
the X on the left-hand side. However, the X on the right-hand side now has the same ¢
value as the X on the left-hand side. Therefore, after the expansion of Y;,_1 at N} 1 has
terminated, we move on to the final symbol, X, which is expanded from N, E'H. We choose

PEH, so we no longer have any record that the X derived from

a new production for X at
the production X — Y1Y5---Y,,_1X. In addition, because we keep X at the same £ value,
we have no record of how many levels of nesting have taken place.

As long as we have no need of this lost information, even this limited form of recursion
provides a more expressive PSDG language. We can now expand the grammar of Figure 5.1,

which can capture only a single episode of a driver’s decision-making, to include recursive

productions that model a driver performing a sequence of such episodes. Figure 5.4 provides

67

0) Drive — Stay Drive (po(q))
1) Drive — Left Drive (pi(q))
2) Drive — Right Drive (p2(q))
3) Drive — PassDrive (p3(q))
4) Drive — Exit (pa(q))
5) Pass — Left Right (ps(q))
6) Pass — Right Left (ps(q))

Figure 5.4: A probabilistic state-dependent grammar with recursive pro-
ductions.

one possible model that repeats the original decision-making procedure until the driver
chooses to exit the highway. The complete DBN generation algorithm is presented in

Figures 5.5, 5.6, 5.7, and 5.7.

PSDG Inference Using DBNs

The generation algorithm creates a DBN of as many time slices as specified. The nodes
of time 1 represent the initial state of the PSDG process, while the slices for time ¢ > 1 have
the same dependency on time t — 1. Once we have this DBN representation, we can use
the standard DBN algorithms for incorporating evidence, computing posterior probabilities,
and moving the time window into the future. We have the same generality of queries within
the time window as we did within the static Bayesian networks of Section 3.2.4.

Unfortunately, the complexity of DBN inference is likely to be impractical for most
PSDGs. Even though the DBN inference algorithm focuses on only the fixed-length time
window, it needs to maintain a belief state sufficient to capture all of the evidence incorpo-
rated in the past. This belief state obviously cannot explicitly represent all the evidence.
Instead, the DBN inference algorithm represents the belief state in terms of the random
variables of a single time slice, but with an altered dependency structure that must capture
the effects of removing all the nodes from times previous. Nodes that were conditionally in-
dependent given these past nodes are dependent now that we no longer explicitly represent
their parents.

Thus, the sparsely connected time slices of the original DBN belie the high connectivity
of the belief state. In fact, inter-slice connections along each level of the hierarchy and upon
the state variable lead to a fully connected belief state in most cases. In other words, the

belief state is equivalent to the joint distribution over all possible combinations of state and

68

GENERATE-DYNAMIC-BELIEF-NET-SLICE] (grammar,d)
for each state variable Q¥
for each value ¢ in the domain of @,
INSERT-STATE(QY, q)
for each parent state variable Qg of QO
ADD-PARENT(Q?, Q7))
for each configuration qp of parent state variables of Q9
for each domain value ¢ in the domain of @,
Pr(QY = q|Qp = ap) + mq. (¢, qp)
INSERT-STATE(N7, S) ; Pr(N{ = S) «+ 1.0
INSERT-STATE(N{, nil) ; Pr(N{ = nil) + 0.0
for/{+ 1tod+1
ADD-PARENT(P} |, N})
for each symbol X € N},
for each expansion a = X — Y;---Y,, (p) EPRODUCTIONS(grammar)
for each state variable), on which p depends
ADD-PARENT(P} |, Q%) ; INSERT-STATE(P} |, (a,1))
ifY1¢ N
then INSERT-STATE(NN}, Y])
else ADD-PARENT(S!, P;_1) ; INSERT-STATE(XL, V})
for each configuration q of parent states Qy
Pr(Pﬁl—la <aa 1> ‘Nél—l = Xa Qr = q) <« Pr(q)
ADD-TERMINATION-NODES(grammar, £, d, 1)
if £ < d then ADD-SYMBOL-NODES(grammar,?, 1)
for each z € X!
for each (a = X — Yj---Y,,,b) € the domain of any parent P} of 3!
ifr=Y
then Pr(3Z! = z|P} = (a,b)) «+ 1.0
else Pr(S! = z|no P} = (a,b)) + 0.0

Figure 5.5: Pseudocode for algorithm generating the initial variables of a
DBN representation of a given PSDG distribution.

69

GENERATE-DYNAMIC-BELIEF-NET-SLICE2(grammar,d)
for each state variable Q}
for each value ¢ in the domain of @,
INSERT-STATE(QL, q)
if transition probability of @), depends on terminal symbol
then ADD-PARENT(QL, })
for each parent state variable Q;'f, (t being 0 or 1) of Q}
ADD-PARENT(Q;, Q)
for each configuration qp of parent state variables of Q}
for each z € ¥
for each domain value ¢ in the domain of @,
Pr(Q; = q|Q;‘) = dp> Sh=1) m1Q, (4p, T, q)
ADD-PARENT(N2Z,T}) ; INSERT-STATE(NZ, S)
Pr(NZ = S|T}) < 0.0 ; Pr(NZ = S|-T}) + 1.0
INSERT-STATE(NZ, nil) 5 Pr(N2 = nil|T}) < 1.0 ; Pr(NZ = nil|=1) < 0.0
for /< 1tod+1
ADD-PARENT(P} |, N7_,) ; ADD-PARENT(P? ;, P} ;) ; ADD-PARENT(P} |, T})
for each symbol X € NZZ—l
for each expansion a = X — Y7 ---Y,, (p) EPRODUCTIONS(grammar)
for each state variable (), on which p depends
ADD-PARENT(P? |, Q})
forb+ 1tom
ify, #X
INSERT-STATE(P? |, (a,b))
ifY,e N
then INSERT-STATE(NZ,Y})
else ADD-PARENT(X2, P7) ; INSERT-STATE(Y?,Y})
for each configuration q of parent states Qg
Pr(P7y,{a,b) N7y = X, T}, Py = (X' = ¥{---Y,,m) ,Qr = q)
< Pr(q)
Pr(P7y,(a,b) N7y = X, T}, P}y = {a,b—1),Qr = q) + 1.0
PT(PZZfl’ (a,b) |N£271 =X, _'Tél’Pélfl =(a,b),Qr =q) < 1.0
ADD-TERMINATION-NODES(grammar, £, d, 2)
if £ < d then ADD-SYMBOL-NODES(grammar, ¢, 2)
for each z € %2
for each (a = X — Y;---Y,;,b) € the domain of any parent P} of ¥?
ifz=Y,
then Pr(¥? = z|P? = (a,b)) «+ 1.0
else Pr(3? = z|no P} = (a,b)) + 0.0

Figure 5.6: Pseudocode for algorithm generating the variables at time 2 of
a DBN representation of a given PSDG distribution.

70

ADD-TERMINATION-NODES(grammar, £, d, t)
ADD-PARENT(T}, P})
itl<d
ADD-PARENT(TY, T}, ;)
for each (a = X = Yy -+ Yy, b) € P}
/* Do not execute ~T} , cases if £ = d: */
ifa=m
then Pr(T{|P; = (a,b) , T}, ;) < 1.0
Pr(T}|P; = (a,b) ,—T},;) < 0.0
else Pr(T}| P, = (a,b) , T}, ;) < 0.0
Pr(T}|P; = (a,b) ,—T},,) < 0.0

Figure 5.7: Pseudocode for procedure generating the termination variables
for a DBN representation of a given PSDG distribution.

ADD-SYMBOL-NODES(grammar, £, t)
ADD-PARENT(N}, P}_;)
for each Y € N}
for each (a =X - Y- Yy, b) € P},
ifYy =Y,
then Pr(N} =Y |P}_, = (a,b))leftarrowl.0
else Pr(N} =Y |P}_; = (a,b)) «+ 0.0

Figure 5.8: Pseudocode for procedure generating the nonterminal symbol
variables for a DBN representation of a given PSDG distribu-
tion.

71

parse tree branches. This space is far too large to allow belief state specification, let alone

evidence propagation.

5.2.3 PSDG Inference through Direct Manipulation of the Belief State

The high connectivity of the DBN belief state arises from its reliance on conditional
independence as its structuring property. Fortunately, the PSDG process exhibits weaker
forms of independence as well, which we can exploit for specialized inference algorithms.
If we re-examine the relationship of the production nodes Pzt on the previous time slice,

we notice that there are two possibilities: either NV, Z_ll

has not terminated, or NE_II has
terminated but we have not finished the production at P{t_1 = (X =>Y1Yy--- Y, b),b<m.
In the former case, P} = Pet_l, while in the latter, P} = (X - YiY2---Y,,,0+1). In
both cases, the relationship is deterministic. If neither case holds, then we are choosing a
new production based on N} and Q'', independent of the symbols and productions of the
previous time slice.

The algorithms presented in this section exploit this particular independence property.
The Bayesian network representation of our beliefs over symbols in a given time slice grows
too large because there is insufficient conditional independence within the PSDG model.
If we use a specialized representation of our beliefs, we can exploit the specific PSDG
independence in maintaining a compact summary of our posterior beliefs over symbols in
the current time slice, conditioned on all of our past observations. The resulting belief state
operates similarly to the DBN window in that it contains sufficient probabilistic information
to answer plan recognition queries given the current evidence and to create a revised belief

state upon receiving new evidence.

Completely Observable States

As a first step, we first analyze the case where we are interested in posterior probabil-
ities given a sequence of observations of the state variable, £ = Q°,...,Q". The queries
of interest are either plan prediction probabilities, Pr(Pf|£'!) or plan explanation proba-
bilities, Pr(Pf|£), from which we can easily derive the corresponding symbol probabilities.
Figure 5.9 lists the conditional probability tables that form B?, the belief state for time ¢,
including the probabilities over states, symbols, productions, and termination, conditioned
on the evidence received. Inference also requires various other probabilities, e.g., symbol

probabilities conditioned on termination and termination probabilities conditioned on par-

72

Field Contents

By = Pr(&1ET?)
BL(6,X) = Pr(Ni=Xx|em)
Bh(6 (b)) = Pr(Pf = (a,0))
BL(z) = Pr(Xf =zl

B () = Pr(Tye')
B’fl’|N(£’X) = Pr(T}ETL, N} = X)

Figure 5.9: Components of belief state for support of PSDG inference.

ticular symbols. The space complexity of the belief state is O(d|P|m), dominated by the

distribution over production states, Bb.

Belief State Initialization Figure 5.10 provides the pseudocode for the belief state
initialization process. The initial belief state begins with B}, = Pr(£°), easily obtained from
the prior probability function my. We can then work top down, starting with N which takes
on the value of the start symbol (Drive in the example from Figure 5.4) with probability one.
Then, for each level ¢ of the hierarchy, we compute the probability distribution over the
production node Pel. The probability that the production node is (a, 1), for production a
with symbol X, on the left and with probability function p,, is the product of the probability
that N} = X, given state Q° and the production probability p,(Q°). Using the PSDG from
Figure 5.4, the probability that Pl = (0,1) would be po(Q°), while the probability that
Ps = (5,1) would be Pr(Nj = Pass|Q°)p5(Q°). At time 1, no production node can have a
value of (a,b > 1), since we are expanding the first symbol on the right-hand side.

For each production node P} that has a probability p of taking on the value (a,1), we
add p to the probability that the child symbol is the first symbol on the right-hand side. If
this symbol X is a nonterminal, then we add p to the probability that IV, el 1 = X; otherwise,
we add p to the probability that X! = X. In the example, the probability that Nj = Stay
would be po(QP), since Stay appears at level 2 only if the production node Pl = (0,1),
whose probability we have already computed.

The definition of termination determines the values of the termination probabilities,
thus completing the specification of the initial belief state B!. In the example, termination
takes place only when P! = (4,1); otherwise, additional symbols remain unexpanded on
the right-hand side. Therefore, the probability that T} (and 7} given that N =Drive) is
true is p4(Q°). We know that T} is true with probability zero when NJ =Pass, because all

of the passing maneuvers involve two steps. However, Na = nil with probability 1 —p3(Q°),

73

INITIALIZE-BELIEF-STATE(grammar, B, d, q)
By + mo(q)
BX(1,8) « 1.0
Bk (1,nil) < 0.0
for {2 tod
/* Production and symbol beliefs */
for each symbol X such that By (£ —1,X) > 0.0
for each productiona =X — Y1 ---Y,, (p)
Bp(£—1,(a,1)) + By (£, X) Pr(q)
ifY1eN
then B} (£,Y1) += Bh(£ —1,({a, 1))
else B1%(Y;) += BL(¢{ — 1,({a,1))

CowmpuTE-T (grammar, B, d, 1)

Figure 5.10: Pseudocode for initializing PSDG belief state under the as-
sumption of completely observable states.

in which case T} is true with probability one, so the marginal probability that T} is true is
1—p3(Q°). Figure 5.10 provides a pseudocode representation of the belief state initialization

algorithm.

Computation of Intermediate State Probabilities Given the belief state at time t—1,
we can compute the desired prediction probabilities over plan events at time ¢, posterior
explanation probabilities over plan events at time ¢ — 1, and the new belief state for time
t. For all three sets of probabilities, we first need to compute a probability distribution
over the observed Q'~! given the past evidence. We can easily compute the probability of
the observed state conditioned on possible values of X'~ ! using the transition probability
function:

Pr(Q ' =q 18 %,Q 2 = g0, X" ' = 2) = M (-2, 2, q1—1) (5.1)

We can then use this result to compute posterior probabilities over ()y:

Pr(Q" ' =q1]"3,Q" 2 = q—2) = > _ mi(q1—2, %, 1) BE () (5.2)
TEY

74

With the example observations of Figure 5.2, we would thus first compute the probability of
the observed state Q' given the initial state Q° and a possible terminal symbol, either Left,
Right, Stay, or Exit. Once we had these four probabilities, we can determine the probability
of the observed Q' given only Q° using Equation 5.2. In general, the time complexity of
computing this probability distribution is O(|X] - |Q)).

Once we observe Q! and compute the probability of the evidence Q'~' given each
possible terminal symbol (from Equation 5.1), we can then proceed bottom-up through
the subplan hierarchy to compute the probability of the evidence conditioned on the pos-
sible states of the nonterminal symbol nodes, similar to a generalization of the transition
probability function 71. These probability values are reused many times in subsequent

computations, so we define the function 74 to simplify notation:

(6, X,T) = Pr(Q'|E", N} = X,T}) (5.3)

W%(EaXa_'T) = Pr(QtlgtilaNE:Xa_'Tg) (54)

In our simple traffic example, 73 (2, Pass, =T') corresponds to the probability of the observed
state Q! given that a passing maneuver occurred in state Q° without terminating.

We can compute such probabilities recursively by starting with the base definition for all
terminal symbols x € ¥, for which the function definition reduces to simply the transition

probability:

(6, T) = m(Q 1,z,Q" (5.5)
sz, =T) = 0 (5.6)

We can build up the values for nonterminal symbols X € N by considering all the possible
values (a = (X = Y1 ---Y,,),b) at Pg_l, restricting ourselves to the case where b = m when
conditioning on termination:

Z(a,m) B%(ea <aam>)ﬂ-5(€ +1, YmaT)B%N(E +1, Ym)

i _
melts 1) = BE (6 X By (6, X)

(5.7)

We can compute Equation 5.7 using only values from our belief state B! and values of 9
already computed for child symbols. For Y,,, € 3. we take BtT‘ Nl+1,Y,) =1

In our example, 73(2, Pass,T) must consider the two possible terminating production
states (5,2) and (6,2). For each case, Y,, is a terminal symbol, so the numerator of Equa-
tion 5.7 is Bh(2, (5,2))m1 (Q°, Left, Q1)+ Bh(2, (6,2))m (Q°, Right, @), representing our cur-
rent beliefs in the two production states, weighted by the likelihood of the observed state

75

following the execution of the specified action. The denominator simply normalizes the
function over the possible nonterminal symbols terminating at that level of the hierarchy.

We also need the probability conditioned on nontermination:

X, ~T) = | Y Bht{a,t)mh(t+1,%,-T) (1 Bhy(€+1,Y))
(ab<rm)

+ Y Bp(t{a,b))m5(£ +1,Y, T)Br (£ +1,Y3)
(a,b<m)
/(1= Bhyw (6, X)) By (6, X)] (5:8)

For Y, € ¥, we again take B%N(é, Y)=1

In the traffic example, there are two possible productions a involved in 73 (2, Pass, =T).
For production 5, the first summation involves two possible values for b. However, both
symbols on the right-hand side are terminal symbols, so B%‘ ~(3,Y) = 1, and the overall
summation is zero. In the second summation, we only consider the case when the observed
driver is in the first step of the passing maneuver, so b = 1. In this case, Y}, =Left is a
terminal symbol, so the summation reduces to B%(2,(2,1))m(QY, Left, @), which is then
combined with the normalizing denominator for the final result. At each level of the hier-
archy ¢, computing the expressions of Equations 5.7 and 5.8 requires time O(|P|m), where
m is the maximum production length. If d is the depth of the hierarchy, this portion of the
dynamic programming phase takes time O(|P|md).

We also need to compute the probability of the evidence conditioned on termination at

a particular level of the hierarchy, regardless of the production or symbol:

PrQ ey = | X0 By (6 X)m (6 X, T) By (6 X)+
XEN

-1
> > Bk, (a,b)m(Q2, Y4, QY | /BLH(€) (5.9)

(a,b)| Y€ k=0

Computing the first summation of Equation 5.9 requires time O(|N|), while the second,
which handles the case where Né_l =nil, requires time O(|P|m{), for a given level of the
hierarchy £. At level 2 of our example hierarchy, the first summation has only Pass to con-
sider. The second summation must consider production states (0,1), (1,1), (2,1), and (4,1)
at level 1 of the hierarchy, because all of these production states produce terminal symbols,
making NJ =nil. To compute the values over the entire hierarchy requires time O(|P|md?),

which dwarfs the time complexity of the first portion of the dynamic programming phase

76

(Equations 5.7 and 5.8). Figure 5.11 provides a pseudocode description of the dynamic
programming algorithms for computing 7, and the other intermediate probabilities, as well

as the explanation probabilities described in the next subsection.

Computation of Explanation Probabilities We can use these dynamic programming
results to obtain the posterior probability distribution over symbols and productions at
time ¢t — 1 conditioned on evidence up to and including time ¢. This probability distribution
is useful for answering explanation queries, where we want to interpret the agent’s past
behavior in light of the new evidence. For a given level of the hierarchy, there are two
possibilities for termination of the current child. In the following expression, we can ignore

the nonterminating case if a terminal symbol is involved:

Pr(N; ! = X[€'7Y) = B X) [7hH(e X, T) By (4, X)

b (e, X, -T) (1 - By (6, X))] /Bb (5.10)

Each such posterior probability is computed in constant time since all the quantities involved
are stored in our belief states, including Bé) which we compute using Equation 5.2.

In our example, we can use Equation 5.2 to compute the probability of a passing maneu-
ver given our observations of Q° and Q'. The first term within the brackets is zero, because
it is impossible that a Pass took place at time 1 and terminated, so B%‘ ~(2,Pass) = 0. With
only the second term remaining, the entire expression reduces to By (2, Pass)73 (2, Pass, =T')/ Bé,
which we can compute immediately given the belief states for times 1 and 2, as well as our
dynamic programming results. Such probabilities can form the basis for a recognizing
agent’s interpretation of the observed agent’s past behavior.

Tt will turn out to be useful to have the probabilities Pr(Tlf—1|5t*1, TE71), the posterior

£+1
probability of termination at level £ given termination at the lower level £ + 1:

Y tamy Bp (4, (@, m))mh (€ + 1, Vi, T)Btﬂ}v(z +1,Y,)
Pr(Q-1E-2, T/ 1B (0 + 1)
BEL (¢, nil)
BL (e 4 1)

Pr(T, HEVL T =
(5.11)

In the traffic example, we would compute Pr(T}|Q° Q',T3) by considering all of the
productions expanding Drive. Productions 0, 1, and 2 are recursive, so we can never be
in the production state indicating the last symbol (where the recursion occurs). The form
of recursion discussed in Section 5.2.2 requires that, once we finish expanding the symbol

before the recursion, we would instead assign the production state to be a new expansion

7

EXPLANATION-PHASE(grammar, B, d, qo, q1,1t)
/* Compute probability of evidence */
for eachz € &
BE? += m1(qo0, 2, q1) BS ()
/* Compute values of my */
for ¢ < d down-to 1
for each symbol X such that B4 (¢, X) > 0.0
for each productiona =X — Y7 ---Y,, (p)
if Y, #X
ifY,, e N
then m, (£, X,T) += Bp (£, (a,m))my (€41, Y, T) B (€ +1,Y)
w5 10, X, =T) += By ' (¢, (a,m))ws (€ + 1, Y, =T)
(1= Byn(f+1,Yn))
else 775_1(65 X, T) += B}tD_l(ﬁa (a,m))71(q0, Y, q1)
forb+—1tom—1
ifY,e N
then i '(¢, X, -T) += B5 (¢, (a,b))ns ' (£ +1,Y}, -T)
(1— B4+ 1,%3)
Ty (6, X, ~T) += B (4, (a,0))m5 (0 +1,Yy, T)(Byy (£ + 1,Y))
else 7571 (¢, X, -T) += B5 (¢, (a, b)) 7t (g0, Y5, q1)
mo(l, X,T) /= B:j;“lv(e, X)Bi (e, X)
my 1 (6,=T) /= (1= By (6, X)) By (4, X)
/* Compute values of Pr(Q~!|£-2,T/~1) */
Pr(Q"! = q|&%, Ty) += By H(6, X)my (6, X, T) By (6, X)
foreachk+ 1tol—1
for each (a,b) such that Y, € &
Pr(Qt_l = q1|gt_27TZ_l) += B}:J_l(ka <aa b>)7‘l'q(q0, Y, ql)
Pr(Q! = qi€2,TLY) /= BY(0)
/* Compute values of Pr(Tg_1|5t_1,Tet_:11) */
for each production a with m symbols on the right-hand side
ifY,eXx
then Pr(Tg_1|5t_1,T£_|f11) += B¢, (a,m))m1 (g0, Yin, q1)
else Pr(T£71|5t’1,TZ_;11) += BL (¢, (a,m))mh (0 + 1,Ym,T)B§Tu{,(€ +1,Y,)
if ¢ <then Pr(T; '|E-1, T/)) /= Pr(Q"'E2, T} 1)BL (€ +1)
Pr(T} M e, T) += By N (4nil) /B (£ + 1)
Pr(T;7H|EVY) « Pr(TyHEY L, T)) B (0 + 1)
else Pr(Tg_l\Et_l,Tltll) /= Bé?
Pr(T; M€Y, Ty) += BYy ' (€, nil)

Figure 5.11: Pseudocode for computing explanation probabilities under the
assumption of completely observable states.

78

of Drive. Thus, B5(1,(a,2)) = 0 when a = 0, 1, or 2. This belief is zero for a = 3 as well,
since we cannot be in the second stage of a passing maneuver at time 1. Therefore, the only
nonzero term corresponds to the exiting maneuver, where the numerator of the first term is
B(1,(4,1) m (Q°, Exit, Q'). The second term is zero, because N} =Drive with probability
one.

Notice that from these probabilities, we can compute the necessary belief state probabil-
ities Pr(Té‘l\Et_l) in the same bottom-up iteration. For £ = d, this probability is identical
to the probability obtained from Equation 5.11, and for all other ¢:

Pr(T/'EY) =Pr(Ty M E L, Ty) B (0 + 1) (5.12)

In the traffic example, the production at level 2 of the hierarchy only terminates if NJ =nil;
otherwise, we must be in the first stage of a passing maneuver. To compute Pr(T}|Q°), we
multiply our result from Equation 5.11 with our belief in termination at level 2, B(2).
We can compute all of these posterior termination probabilities in one bottom-up pass
through the hierarchy requiring time O(d|P|). Figure 5.11 includes a pseudocode description
for this algorithm for the computation of the posterior termination probabilities. The
pseudocode omits the computation of the posterior symbol probabilities, which a recognizing

agent computes only as needed, and which it can directly compute using Equation 5.10.

Computation of Prediction Probabilities For plan prediction at time ¢ > 0, assume
that we have computed all of the explanation probabilities over the symbols and productions
at time t — 1. For a production node value of (a,b), we denote the production probability
function for a as p,. We first consider the case where b = 1, i.e. we are in the first stage
of the expansion. This is the only case where the value of the production node is not
completely determined by the belief state of the previous time slice. The first term covers
the case where we have chosen the production in the current time slice, the second the case
where we are simply carrying over the value from the previous time slice because the child
had not terminated, and the third the case where we have chosen the production in the

current time slice through recursion:

Bp((,{a,1)) = pa(Q")Pr(Nj = X[, T,) By () +

p,l(Qt_1 Z B}_l(ﬁ, (a,m — 1))7@_1(6 +1,Y-1,T) -
(aym)|Ym=X
Byn(€+1,Yn 1)/Bg (5.13)

For instance, upon observing the car in Figure 5.2 move into the leftmost lane, the
recognizing agent can determine the likelihood that the driver will now choose to stay in
the left lane. Only the third term of Equation 5.13 is nonzero for the belief of interest,
B%(1,(0,1)), since production 0 can fire at time 2 only if recursion takes place. The third
term involves the production probability function py and a summation over productions 0,
1, and 2, although our belief in productions 0 and 2 should be zero upon observing the left
lane change. Production 3 also involves recursion, but B%| ~ (2, Pass) = 0.0 since the passing
maneuver cannot have terminated at time 1. Production 4 does not involve recursion, so
the overall production probability reduces to po(Q")Bp(1, (1,1))m (Q°, Left, Q')/B3.

If we are in the middle of an expansion, we no longer have to worry about matching
the current state against the conditions of the production, because the current value is
completely determined. There are two cases, depending on whether the child symbol’s

expansion had terminated or not:

Bh(t,(a,b>1)) = [BL(¢ (0,) (€ +1,%,~T) (1- B (€ +1,%)) +
Bf;l(ea <a, b— 1>)7T§_1(€ + la va*la T)B’E]{[(E + la vafl)] /

By (5.14)

The recognizing agent in our traffic example can use Equation 5.14 to determine whether
the observed driver will perform the second stage of a passing maneuver at time 2. The
first term is zero for the desired B%(1,(3,2)), because it is impossible that the driver had
begun performing the second stage at time 1, so Bh(1,(3,2)) = 0.0. The overall belief thus
reduces to Bh(1,(3,1))m(Q°, Left, Ql)/Bé.

All of the symbol variables have deterministic relationships on other random variables.
The top-level symbol variable N} is nil only if the top-level expansion of the start symbol

has terminated at the previous time slice:
BY(1,8) =1 —Pr(Tt |7 (5.15)

The probability on the right-hand side is the posterior probability of termination at the top
level, and we have already computed this quantity during the explanation phase. All other
symbol variables are determined by the production variables at the level above, since if the
parent production has a value of (a,b), where production a has a right-hand side Y7 --- Y},
then the child symbol must be Yj:

BY(t>1,X) = > Bp(t—1,{(a,b)) (5.16)
(a,b)|Vp=X

80

By(z) =), Y Bp(t{ab) (5.17)

¢ (ab)|Yy=z

For instance, the recognizing driver could compute the probability that the observed driver

stays in the leftmost lane in time 2 by querying the symbol probability, B%(Stay). In this

case, there is only one possible production state that produces a Stay action, B%(1,(0,1)).
Equation 5.13 uses Pr(N} = X|£t71, Tlf*l), the probability of symbol X in the current

time slice, given termination, in the previous time slice, of the production at the same

level. We compute such probabilities top-down, beginning with the start symbol, which has

probability zero if its production terminated in the previous time slice:
Pr(N! = S|t 1t =0 (5.18)

We then proceed through the hierarchy finding the probability over production states given
termination of its child in the previous time slice. The formula is similar to that for the
unconditional production probability (Equations 5.13 and 5.14), except that we no longer

include the nonterminating cases:

Pr(P} = (a=X — £,1) |5t—1,Tg;11)

= pa(Q T Pr(INg = X|€ T) Pr(Ty T ET, Tyy) +

Z pa(Qt_l)ﬂ-%_l(é +1, Ym—laT)B;”_l(ga <a‘7 m— 1))/BtQ (519)
(a;m)[Ym=X

We have already computed the required probability Pr(Tg_1|5t*1,Tg_|f11) during the expla-

nation phase. For intermediate production states:

Pr(P{ = (a,b> 1) €71, Ty)) = w5 (E+ 1Y 1, T)Bp (4 (a,b = 1)) By y (£ +1,Yy1)

/Pr(QHE?, Ty) (5.20)

Again, we have already computed the probability Pr(Q!—!|£?2, Tg;f) during the explana-
tion phase. We can use these production probabilities to compute the desired distribution
over symbols, conditioned on production termination during previous time slice:
Pr(Nj=X,e> 1717 = Y Pr(Pp, = (a,b)|E, T} (5.21)
(a,b)|Yo=X
The computation of symbol probabilities conditioned on termination occurs coinciden-
tally with the computation of the unconditional prediction probabilities and incurs no ad-

ditional time cost, since it performs no new computations. In computing the unconditional

81

probabilities, we have to compute Equation 5.13 once for each production at each level of
the hierarchy, and each such computation takes constant. In addition, we have to compute
Equation 5.14 O(m) times for each production at each level of the hierarchy, but each com-
putation takes only constant time, using only probabilities already stored in the grammar,
belief state, or the mo function. Therefore, the time complexity of the computing the prob-
abilities of all production states is O(d|P|m). Since each production state contributes to
the summation for exactly one symbol X € N, we can compute these symbol probabilities
within the same algorithm for computing the production probabilities. Thus, we incur no
additional time cost in computing symbol probabilities beyond that incurred for the pro-
duction probabilities. Figure 5.12 presents a pseudocode description of these algorithms for

the computation of prediction probabilities.

Computation of New Belief State The prediction phase specifies most of the compo-
nents of the belief state B’. It remains only to specify the termination components. It is
straightforward, from the definition of termination, to compute the required probability of

termination given the symbol in a single bottom-up pass through the hierarchy:

Byn(,X)= . Bp(t,{a,m)Byy(+1,Yn)/By((,X) (5.22)

<a:X_>...,m>
In the traffic example, we can compute the probability that the production at level 2 of
the hierarchy terminates at time 2, given that the observed driver is performing a pass-
ing maneuver. Having already eliminated production 6 from possibility, we reduce belief
B%|N(2, Pass) to B%(2,(5,2))/B%(2,Pass).
We can use this conditional result to compute the termination probability independent

of symbol:

BL(¢) = (Z BtTN(e,X)va(e,X)> + Bl (£, nil) (5.23)
XeN

We can compute these probabilities in a single bottom-up pass through the hierarchy re-
quiring time O(d|P|). Figure 5.13 provides a pseudocode description of this termination
probability algorithm.

Overall, the explanation, prediction, and belief revision algorithms for a single time step
have time complexity O(|X| - |Q| + d|P|m). If we do not compute a probability distribution
over the future state, we ignore the first term and the time complexity is simply O(d|P|m).

The revised belief state B’ is sufficient for answering queries about the symbols at time

82

PREDICTION-PHASE(grammar, B, d, q,t)
B4 (1,8) < 1.0 — Pr(TF gt
B4 (1,nil) < 1.0 — Bt (1, 5)
for / + 2 tod
/* Production and symbol beliefs, including beliefs conditioned on termination */
for each symbol X such that B (£ —1,X) > 0.0
for each productiona =X - Y7 ---Y,, (p)
Byt~ 1,(a,1)) < pa(@") Pr(NL, = X[, TIH) By (¢~ D+
w4 (61, -T) (1 - Biyf(6Y1)) B (€ - 1,(a,1))/ B+
Pa(@) Eamyymex T (Y1, T) By (£, Yin1)-
By (£ —1,(a,m —1))/Bf,
Pr(PL, = (a,)€1 TE) « pa(@ Y Pr(NE, = X|€+1, TE))
Pr(T; €7 T + pa(Q71) Yoy vimmx -
5 (0, Y1, T) By n (€, Ym—1) Bp ' (€ — 1, (a,m — 1))/ By,
for b+ 2tom
Bh(£—1,(a,b)) « |75 (6, %, ~T) (1 - Biy(6,Y5)) -
BL Y —1,(a, b))+
(6 Yo, T) Bl (6, Y0) B (€ = 1, (a,b— 1) | /BY
Pr(Pp_1,{a,b) |EL, T} «
7571 (6, Y5, ~T) (1= BE A (6,Y5)) BE ' (€ =1, (a, b))+
w5 (6, Yy, T) By (6, Y5) B (=1, (a,b—1))] /BY
for b+ 1tom
ifY, e N
then BY ((,Y,) += BL(¢ —1,(a,b))
Pr(N, = V|4 T}) += Pr(Ppq = (a,b) |E,TFY)
else BL(Y,) += BL(¢ — 1,({a,b))

CompuUTE-T (grammar, B, d, t)

Figure 5.12: Pseudocode for computing prediction probabilities under the
assumption of completely observable states.

83

CompPUTE-T (grammar, B, d, t)
for £ < d —1 down-to 1
for each symbol X such that B (¢, X) > 0.0
for each productiona =X — Y7 ---Y,, (p)
Y, #X
ifY,, e N

then Bl (6, X) += Bj(£, (a,m)) By (£ +1,Y,) /By (¢, X)
else B%|N(€,X) += BL(¢, (a,m))/Bk (£, X)

BY(€) += Bl (6, X) By (6, X)

Figure 5.13: Pseudocode for computing termination probabilities under the
assumption of completely observable states.

t, as well as supporting the computation of future belief states, so we no longer need the

probability values stored in belief state B* 1.

Partially Observable States

We now relax the assumption that we observe the value of the state variable Q*. Instead,
we observe that QY € R!, for some subset R; C (). In most cases, this subset is the set of
state elements that are consistent with the observed features. For instance, in our traffic
example, we can observe the position and speed of the observed car, as well as the position
and speeds of the other cars on the highway. However, we cannot observe aspects of the
observed driver’s mental state. In this case, R; is the set of state values ranging over the
possible unobserved state features and consistent with the observed features.

Our evidence variable £ now becomes the sequence of responses Q° € R, ..., Q" € R".
When we knew the exact value of Q, production choices at time ¢ 4+ 1 were either chosen
based on Q! (if termination occurred at time t), or determined by the value of the production
node at time ¢ (if termination did not occur). We no longer know the exact value of Q?, so
in the terminating case, the production choice for time ¢ 4+ 1 is dependent on the parents
of Q!, which are the terminal symbol variable X! and the previous state variable Q.
However, because we no longer now the exact value of Q'~! either, we must also consider

its dependency in turn on X*! and Q'2, which is also unknown. In the end, we must

84

record the entire sequence of observations to have sufficient information to compute any
exact symbol probabilities.

We clearly need a different belief structure to avoid the unreasonable space requirements
of such an approach. We can regain the independence that simplified the algorithms for
completely observable states by focusing on each point in R’ separately. In other words,
instead of a single belief state conditioned on the evidence, we maintain separate belief states
for each possible value for Q! € R!. In the traffic example, there would be a unique belief
state corresponding to the distribution over events given a particular configuration of the
unobserved mental state. We then add a corresponding argument to all of the functions of
Figure 5.9. For instance, BY (¢, X, q) would return the probability Pr(N} = X|£82,Q 1 =
q). This new belief state has a space complexity of O(|R!|d|P|m).

We can modify the inference algorithms for completely observable state to consider all of
the possible state values within R*~! (and R'~2 for the explanation phase). For instance, we
can initialize the set of belief states by calling INITIALIZE-BELIEF-STATE(grammar, B(q), d, q),
for all ¢ € R%. Figures 5.14 and 5.15 present pseudocode descriptions of similarly modified
algorithms for performing the same explanation and prediction tasks as the algorithms for
completely observable states. We call both for all state values R'~!. The algorithm for
ComPUTE-T is identical to that from Figure 5.13, except for the additional g argument
(again ranging through all values in R'~!) introduced into the belief state, as well as into
the procedure itself.

Because the belief states are conditioned on individual points of the state space, they
no longer have the prediction probabilities stored explicitly. However, we can easily obtain

the marginal probabilities wanted for plan recognition queries. For instance:
Pr(Vf = XIE) = Y BY(6,X,9)Bl() (5.24)
qeRt—l

The time complexity of the inference algorithms for time ¢ with partial observations is

O(|R=1?d|P|m).

5.2.4 Implementation of PSDG Algorithms

The implemented algorithms of Section 5.2.3 supported practical inference in two do-
mains, described in Section 6.2. With a PSDG representation of a given problem domain, a
recognizing agent can perform its own decision process based on a probability distribution

over the possible subplans and actions of the observed agent. The compact belief state

85

EXPLANATION-PHASE(grammar, B, d, q1,1t)
/* Compute probability of evidence */
for each gg € R*~2
for eachz € ¥
Pr(Q'! = 1|€473,Q'2 = qo) += m1(q0,%,q1)B% ' (2,)
Bh(q) += Pr(Q" = q1[€"%,Q" = o) BG *(90)
/* Compute values of mp */
for / < d down-to 1
for each symbol X such that B4 (¢,X) > 0.0
for each production a =X - Y;---Y,, (p)
iV, # X
ifY,, e N
then 757 (qo, ¢, X, T, q1) +=
B (¢, (a,mY qo)m5 " (q0, £+ 1, Yo, Ty q1) B p (£ + 1, Yo, o)
75 (g0, 4, X, T, q1) +=
Bf;l(éa <a’ m> ’ ‘IO)W;_I (QO, £4+1,Y, T, Q1)'
(1= Byt +1,Ym), q0)
else ﬂ.;_l (q07 E, X: T7 ql) += B;?_l (ea <a7 m>) qO)Trl (qu Ym: 111)
forb+—1tom-—1
ifY, e N
then 757! (qo, ¢, X, -T,q1) +=
B (4, {a, by, qo0)ms (g0, £+ 1,Ys, —T, q1)(1 — Btﬂz{z(f +1,Y3),90)
Féil(qo, 0,X, T, q) +=
B}t;l(ga <a7 b> aqO)/’T;_l(QO: £+]-; }fb; T7 q1)(B§’_|1{f(€ +]-; }fb)a qO)
else 7, (g0, &, X, ~T, 1) += Bp ' (£, {a,b))m1 " (90, Y5, q1)
772((107 Ea X: T; ql) /: B;'_U{r(ga X} qO)B}tV_I(Ea Xa (10)
Wé_l(quE:Xa =T, ql) /: (1 - B;'_U{T(K’ X): qO)B}tV_l(& X, CIO)
Pr(Q' =q|&72,Q % = o, T, ") += B ' (¢, X, q0)m5 " (a0, 6, X, T, q1)-
B;]{[(za X: qO)
foreachk+ 1to /-1
for each (a,b) such that ¥, € &
Pr(Q" ' =qi|€%,Q"2 = g0, T{ ") += By ' (k,(a,b) ,q0)7mq(d0, s, ¢1)
Pr(Qt—l — q1|gt—37Qt—2 — qO,Tétfl) /: Béfl(e, qo)
ifY,,eX
then Pr(T; '|€'-1, T/, Q"' = q1) +=
B}‘_l(ga {(a,m),q0)m1 (g0, Yrm, QI)BZ)_I (q0)
else Pr(T;71|€t_1,TZ;11, QI t=q) +=
B}f?_l(ea (a,m), QO)W;_I(QOJ £+ 1,Y,T,q1)
B;'_U{r(e +1, Yma qO)Bé)_l(qO)
if £ < d then Pr(T; 'E3Q"! = ¢, T})) /=
Pr(Q ! = |8, TIT By (£+ L, qo)
Pr(T, &Y, T, Q1 = 1) += By '(¢,nil,qo) /B (€ + 1, qo)
Pr(T; €7, Q ! = q) += Pr(Ty '3, Q ! = q1, Ty)-
Pr(T, /€71, Q" = q1)
else Pr(Tf_1|5t_1,Tf;11,Qt_1 =q) /= Bh(q)

Pr(T{ ' EL, T, Q1 = qu) += Biy ' (4nil, qo)

Figure 5.14: Pseudocode for explanation phase of PSDG inference algo-
rithm without completely observable states.

86

PREDICTION-PHASE(grammar, B, d, q1,t)
BY(1,8,q1) «+ 1.0 —Pr(T{7'|EV L, Q1L = 1)
B (1,nil,q1) < 1.0 — B4(1, S, q1)
for { +— 2 to d
/* Production and symbol beliefs, including beliefs conditioned on termination */
for each symbol X such that B (¢ —1,X,q1) > 0.0
for each productiona =X — Y7 ---Y,, (p)
Bff’(g -1,{(a,1),q1) +=
Palqn) Pr(N}_, = XIETL T, Q71 =) B (€ — 1,q1)
for each gy € R'~2
Bf;(@ —1,(a,1),q1) +=
5 (g0, 4, Y1, =T, q1) (1 - Btﬂ]{/(& YlaQO)) By —1,(a,1),q0)-
Bg '(q0)/Bh(q1)
B}_—,(f - 17 <a’7 1> 7QI) +=
Pal1) X (amyvinex By 1€ —1,{a,m — 1), q0)75 (g0, €, Yim—1,T, 1)
By (6 Ym-1,00) Pr(Q"" = 1 €'7%,Q"7% = q0) BG ' (0) /B (1)
Pr(P}_; = (a,1) |8t_1,Tg_1,Qt_1 =q) +=
pa(q) Pr(Nf_y = X|E'72, Q"1 = g1, T;7)) Pr(Ty =4 [€ 1, 171 Q! = q)
+Pa(Q") Xiamyvinex Bp (€ —1,(a,m — 1), q0)75 " (g0, ¢, Yin 1, T, q1)
By (0, Yim-1,90) Pr(Q"" = ¢|€'7%,Q" = q0) BG ' (¢0)/ By (a1)
forb+ 2tom
BL(¢ —1,{(a,b)) +=
t—1 _ pt-1 t—1¢p
[71-2 (QO,anba_'Ta QI) (1 BT\N(K,Y;NQO)) BP (E 15<a7 b) 7QO)'
Bé)_l(QO) + 75 (g0, £, Y3, T, (h)BtT_p%;(fa Y, qo)
By (€~ 1,(a,b—1),40)BG ' (¢0)| /Bl (ar)
Pr(Pp_1,{a,b) [E71,T)7Y) +=
[Wéil(qmea Y;n —1T, CI1) (1 - B’H}if(ea Yi)a qO)) B}t;l(z - 1’ <Cl, b) aQO)'
Bé_l(qﬂ) + ﬂé_l(QOa éa Y, T, QI)B’_tT_U{](ea Ys, QO)'

By (€~ 1,(a,b—1),90)BG (g0 /Bh(ar)
for b+ 1tom
ifY,e N

then B?V(ea Yrba ql) += B}t?(g -1, <CL, b> ’ql)

Pr(Ng = V|E72,Q = q1,T; 1) +=
PT(PZ—I = <a7 b> |St727 Qtil = Q17Tét_1)
else BL(Y,,q1) += BL(¢ —1,{a,b) ,q1)
CowmpuTE-T(grammar, B,d, q1,1)

Figure 5.15: Pseudocode for prediction phase of PSDG inference algorithm
without completely observable states.

87

allows the recognizing agent to summarize its entire sequence of observations while incur-
ring time and space complexity costs that are only sublinear in the space of possible plan
instantiations.

However, the time and space complexity is quadratic in the number of state instantia-
tions consistent with our observations. This cost is potentially prohibitive, since the number
of such state instantiations grows exponentially with the number of unobserved state vari-
ables. Section 7.1.2 discusses some methods for limiting this cost, but this complexity is
clearly the limiting factor when determining the tractability of the PSDG approach in a
given domain. Of course, we must first develop the PSDG specification of the domain before
we consider its tractability. The next chapter analyzes the representational power of the

language model.

88

CHAPTER 6

Modeling Domains with PSDGs

The inference algorithms of Section 5.2.3 exploit the particular independence assump-
tions of the PSDG definition, but the defined model is useful only in domains where those
assumptions hold. As a first step toward characterizing the utility of PSDGs, Section 6.1
demonstrates the representational equivalence of the PSDG and PCFG models. Section 6.2
presents PSDG representations of two plan recognition domains, traffic monitoring and air
combat. The solutions to these specific problems illustrate many of the domain features
representable within the PSDG language. Section 6.3 compares the PSDG model against
other recognition languages to clarify what generality it sacrifices in domain representation

and what efficiency it gains in inference.

6.1 Equivalence of PSDGs and PCFGs

6.1.1 Finite State Space

It is not immediately obvious whether the state variable of the PSDG model extends the
space of representable distributions beyond that covered by the original PCFG representa-
tion. In fact, for finite state spaces, we can represent every PSDG distribution with a corre-
sponding PCFG. As a proof, this section presents a construction of a PCFG (X!, N', S’, P')
representing an identical probability distribution to a given PSDG (3, N, S, Q, P, mg, m1)-
Since the PCFG cannot include any state information, we must merge the random variable
() into the space of symboals.

To maintain the context-free assumption, each new symbol must include enough state
information to render its expansion independent of its ancestors and siblings. Therefore,

we assign N' = @ x N x @, so that each symbol in N’ is a tuple (g;, X, qy), indicating

89

that the PSDG symbol X will be expanded starting in initial state ¢; and ending in final
state ;. The PSDG expansion of X is conditionally independent of all previous expansions
given the initial state ¢;, and all future expansions of X’s nondescendants are conditionally
independent of the subtree below X given its final state g;. We similarly assign the set of
terminal symbols ¥/ = @Q x ¥ x Q. Given these new symbol sets, we can convert a state-
dependent production of the form X — Y1Y5---Y,, into a set of context-free productions

of the form:

(90, X, gm) — (90, Y1, q1) (91, Y2, 2) - =+ {Gm—1, Ym: Gm) (D)
We must add such a production for every possible sequence of intermediate states, gg,q1,- - - \¢m
e QmtL,

To determine each production probability p, we must first specify the probability that the
expansion of symbol X in initial state g; will produce a final state of gy, for each new symbol
(gi, X,qr). The PSDG already defines the transition probability function 7 (g;,x,qs) for
terminal symbols z € 3. We can extend the definition of this transition probability function
over nonterminal symbols as well. For a nonterminal symbol X € n, we define the transition
probability by considering all possible expansions of X and all possible intermediate state
sequences that could provide the context for the symbols on the right-hand side. The
probability of each such production and state sequence is the product of the production
probability and the transition probabilities of the symbols on the right-hand side. However,
for each symbol on the right-hand side, we must consider the possible initial states generated
from the expansion of the previous sibling symbol (or, for the first symbol on the right-
hand side, the initial state specified by the parent symbol). We must therefore sum over all
possible intermediate state sequences over the expansion of the right-hand side:

(g, X,q) = > pla)-
X—=Y1-- Y, (p)

Yoo > mlen Y, a)mian, Y2, q2) - m(@m-1, Yimoay) (6.1)
NneEQ gm-1€Q

The production probabilities in the PCFG rule base P’ follow a similar form, resulting in

complete productions of the form:

(90, X, qm) — (q0,Y1,q1) (q1,Y2,92) - (dm—1, Y, @m)

(p(qz') (ﬁ 7T1((1t—1,YtaQt)> /71(qo, X, qm)>

t=1

To complete the specification, we add productions that expand the PCFG start symbol S’
into the possible configurations of the PSDG start symbol S, for all possible initial and final

90

states g;,qr € Q:
S" = (gi, Sy ay) (molgi)mi (g S,)

It is straightforward to show that the probability of a given PSDG parse tree 7, with
a terminal sequence of length n, is identical to the corresponding parse tree from this
constructed PCFG. If we define p;;; to be the probability function for the production P
expanding the symbol at position (i, j, k) of 7, we can express the probability of that tree

as:

Pr(7) = m(Q") (H pz’jk(Qi_l)) (ﬁ m(Q"", Ny, Qi)> (6.2)

Vs

The corresponding PCFG parse tree 7/ begins with the production
"= (Q"8,Q)

with probability mo(Q%)71(Q°, S, Q™). Below the root node, there is a 1-1 correspondence
between the symbol nodes of the two parse trees with identical (7,7, k) indices, where if
Nijx = X in the PSDG parse tree, then Ny = (Q* 1, X, Q"7 1) in the PCFG parse tree.
The probability of the overall parse tree is:

Pr(r') = mo(Q%)m (Q%, S, Q") (H Pr(P;j) (6.3)

i,5,k

Each probability in the product consists of a production probability p;;(Q* ') and a prod-
uct of child transition probabilities 1 (Q%~1,Y;, Q*17t=1), all divided by the parent tran-
sition probability 71 (Q*~!, X, @“*/~1). Over all (i, 4, k), the transition probability of each
symbol occurs exactly once in the numerator, while the transition probability of each non-
terminal symbol occurs exactly once in the denominator. We can thus simplify Equation 6.3
as follows:
n
Pr(r') = mo(Q°) (H pz’jk(Qi_l)> (H m(Q"", N, Qi)> (6.4)
ik i—1
Therefore, the constructed PCFG represents the same probability distribution over parse
trees as the given PSDG@G, although, the constructed PCFG is much larger than the original
PSDG. The PCFG symbol spaces N’ and ¥’ have a space complexity of O(|Q|?|N|) and
O(|Q|?|%|), respectively. More ominously, the PCFG production space P’ has a space
complexity of O(|Q|™T!|P|), where m is the maximum production length of the PSDG.

91

S = aS (pai(ge qy) = pa)

S — bB (pa2(gz,qy) =1—pa)
B — bB (pBi1(gz,9y) = pB)
B - C (pB2(¢s:qy) =1—pB)
cC —

1 ifg, >0
cC p01 qz, Qy
0 otherwise

C - D (po2 qm,qy = 1—pc1(Qz,Qy))

1 ifg,>1
pp1(qz, 3y) .
0 otherwise

D — d (Pp2(4z,9y) = 1 — Pp1(4eyay))

o
d
a
-l
/5

Figure 6.1: Productions for PSDG representing a probability distribution
over the language {a”bYc*d¥,y > 0}.

6.1.2 Infinite State Space

If we allow the state space to be infinite, then PSDGs can represent distributions beyond
those allowed by the PCFG model. For instance, the language {a"bYc*d¥,y > 0} cannot
be represented by a context-free grammar [19], so it likewise cannot be represented by a
PCFG. However, if we define the state space Q = ZT x ZT to record the values of z
and g, then we can use the productions and production probabilities of Figures 6.1, where
pa,pB € (0,1) are constants representing the likelihood of adding an additional a or b,
respectively. In other words, the probability that this PSDG generates a string whose
initial sequence of a symbols has length z is p%(1 — pa), while the probability that the
subsequent sequence of b symbols has length y is p%_l(l — pB). The PSDG is completely
deterministic after the selection of production B — C. The productions for C' and D use
the state variable (gs,¢qy) € @ as a counter recording how many ¢ and d symbols are left
to generate. We initialize the counter to be 0 by defining 7((0,0) = 1.0. Figure 6.2 shows
the transition probability function m; that adjusts the counter as needed, resulting in a
probability distribution where Pr(a®b¥c*d¥) = p%(1 — pa) p%_l(l — pB)-

Therefore, if we allow an infinite state space, we can represent distributions unrepre-
sentable under the PCFG model. However, even if we can represent a distribution with

a PSDG, inference is feasible only when our observations leave us with a finite number of

92

G =z ar | m1(qi, 7, q¢)
(4rrqy) o (gz+1,qy) 1.0
(Qwa Qy) b (Qwa qy + 1) 1.0
(@z:qy) ¢ (g2 —1,4y) 1.0
(qz; Qy) d (Qwa Qy 1) 1.0

Figure 6.2: Transition probability function for PSDG representing the lan-
guage {a®b¥c*d¥,y > 0}.

possible states; otherwise, we must maintain an infinite set of belief states. If we view the
state variable as a vector of separate substate variables, either hidden or observed, then
inference is feasible only if all of the hidden substate spaces are finite. The size of the
observable substate spaces has no effect on the complexity of inference, as long as we do

not need to compute a distribution over the future values of these substates.

6.1.3 Implications of Relationship between PCFG and PSDG Models

Although allowing an infinite space does extend the possible PSDG distributions beyond
those representable by PCFGs, the requirement of finite belief states limits the practicality
of inference with such distributions. However, even in problem domains where the PSDG
representation has a finite space, a PSDG domain specification provides advantages over an
equivalent PCFG. The PCFG construction algorithm presented in the proof of Section 6.1
produces a production set of size O(|Q|™"!|P|). The PCFG inference algorithms all have
time complexity polynomial in the size of the production set, so for all nontrivial distribu-
tions, direct application of the PSDG inference algorithms, which are at most quadratic in
the state space, is more efficient than construction of an equivalent PCFG and application
of PCFG inference algorithms.

It is theoretically possible that domains exist where we can construct (by some other
method) an equivalent PCFG for which inference is more efficient than the PSDG algo-
rithms. However, although the equivalent PCFG may have a different production struc-
ture, its symbol structure must still represent the same set of plans and states as the
original PSDG to support the same range of recognition queries. Unless the expansion of a
particular plan is independent of state, we can write context-free productions only for non-
terminal symbols that represent both the given plan and the relevant context. Otherwise,

the probability of the production would be dependent on any omitted state variables and,

93

subsequently, on the other symbols in the parse tree that depend on common state vari-
ables. Therefore, the PCFG domain representation can match the efficiency of the PSDG
representation only when the plan selection process has extremely limited and localized
state dependency. The state transition probability distribution poses a similar problem for
the PCFG representation. Of course, even in domains where the PCFG representation is
more efficient, the separation between the plan and state spaces in the PSDG model can
provide a more suitable modeling language, since the dependency structure more closely
mirrors that of most planning domains. In such cases, we can use the PSDG model to
simplify the initial specification of the domain model, and then convert the PSDG to an

equivalent PCFG for inference.

6.2 Examples of PSDG Domain Representations

The PSDG domain specifications of this section illustrate the utility of the language
as a modeling tool. Section 6.2.1 presents a more sophisticated PSDG representation of
the traffic monitoring example, illustrating how many common plan dependencies fit within
the state-dependent production structure. Section 6.2.2 demonstrates how we can specify
a PSDG for an air combat domain using a previously generated specification in a different

language.

6.2.1 Traffic Monitoring
State Variables for Traffic PSDG

To extend the PSDG of Figure 5.4 to a more precise model of the observed driver, we
must first explicitly specify the state space, described briefly in Section 5.1. Most of the
features under consideration correspond to the state of the cars on the highway. For the
observed car, we record its lateral position (Xpos in units of feet), position along the length
of the highway (Ypos in units of .01 miles), speed (Speed to the nearest 5 mph), and turn
indicator status (Signal, either left, right, or off). We also maintain an array of features
corresponding to the speeds of the cars around the observed driver. One row of the array
contains the speeds for those cars to the immediate front of the observed driver, with three
columns indexed by the lane positions of those cars. Another row contains the speeds for
the cars immediately behind the observed driver, again indexed by lane. The third row

corresponds to the cars roughly even with the observed driver. If there is no car in a given

94

position, the corresponding feature takes on a null value. Thus, there are at most eight other
cars to consider, three rows by three lanes, but not counting the observed car itself. All of
these features are observable, so we can easily expand this array and incur only negligible
additional cost in inference. For clarity, we identify the elements of the array as YX-car,
with Y being either F, M, or B indicating the position in front of, even with the middle of,
or behind of, respectively, the observed car, and with X being either L, M, or R indicating
the left, middle, or right lane.

We must also consider the unobservable preferences of the observed driver. One prefer-
ence represents the driver’s intended exit (Exit), the point at which it will leave the highway.
We assume that the recognizing agent knows the possible exit points along the highway;
otherwise, the state space would include all possible points, equivalent to the domain of
Ypos. Another feature represents the driver’s desired speed (DesiredSpeed), the speed (to
the nearest 5 mph) at which the observed driver will travel, if not prevented by the current
highway conditions. We also include an additional feature, Type, with values normal, cau-
tious, and aggressive, indicating the driver’s tolerance for the presence of other cars when
making lane changes. For instance, a driver with Type=aggressive is less concerned about
cutting off the cars behind it when changing lanes. The sizes of the state spaces of these
unobservable features do have a significant impact on the time and space complexity of
inference, so there is a serious tradeoff in the size of the domain of Type variable versus the
accuracy in representing the different types of driving behaviors. The discussion of PSDG
inference in this traffic monitoring example analyzes this tradeoff in more detail.

The state variable @ is simply the conjunction of all of the features described. We can
specify the prior probability distribution over the state by specifying a prior probability
distribution over each of the features separately, if the features are independent. The
complete PSDG specification in Appendix A assumes that the prior probabilities over the
features are independent of each other, although we could imagine (and easily implement) a
dependency between a driver’s desired speed and its Type. The prior probability distribution
over the observed variables is irrelevant once we observe their initial values, since all of the

query probabilities are conditioned on the initial observations.

Symbols for Traffic PSDG

The state space of the Xpos variable measures the lateral position to the nearest foot,

so we can no longer use the terminal symbols of Figure 5.4, where lane changes were atomic

95

actions. A more useful model breaks the lane changes into the smaller changes in lateral
position. With such a model, a recognizing agent could predict a lane change based on an
initial movement away from the center of the lane and thus possibly avoid a collision that
could take place when the lane change is completed. We introduce new terminal symbols
Movel, MoveR, and NoMove to represent the corresponding low-level actions.

We must introduce additional terminal symbols to account for the dynamics of the Speed
state variable. Drivers choose acceleration maneuvers in conjunction with their lateral
movements, so we could modify the terminal symbols to represent a conjunction of the
two types of maneuvers (for instance, (Movel, Accelerate)). However, we can treat the two
maneuvers as completely orthogonal, inasmuch as the set of state variables affected by the
lateral movements ({Xpos}) does not overlap the set of variables affected by accelerations
({Speed}). The acceleration terminal symbols, Accelerate, Decelerate, and NoAccelerate,
can now appear as separate leaf nodes. Now, the episode between successive observations
must contain two terminal symbols. The first corresponds to the lateral movement, when
we process the world dynamics of the affected Xpos variable. The second corresponds the
acceleration component, when we process the world dynamics of the affected Speed variable.

The Signal variable requires a third component to represent the driver’s use of the turn
indicator. We could eliminate this third component with the atomic lane changes of the
PSDG in Figure 5.4, since we could model the dynamics of the Signal variable as dependent
on the driver’s choice of lane change. For instance, we could include a rule stating that
a driver of Type=cautious signals left with probability 0.999 when executing action Left.
However, when we move to the low-level lateral movement actions, then we can no longer
express the dependency of the signal on the higher-level lane change choices. Therefore, we
introduce new terminal symbols, Signall, SignalR, SignalOff, that are explicitly dependent
on the choice of lane changes. Fach episode between successive observations now has three
terminal symbols, but we still maintain the orthogonality with respect to affected state
features.

We must alter the set of nonterminal symbols to generate the separate component ter-
minal symbols. The lateral maneuvers remain the primary focus of the planning process,
so we keep the core set of nonterminals of Figure 5.4: Drive, Stay, Left, Right, Pass. We add
double lane changes, 2Left and 2Right, to model the potential decision to shift two lanes (for
instance, if the desired exit approaches when the driver is in the leftmost lane). The non-

terminal symbol ChooseAcc can generate any of the three terminal acceleration symbols, so

96

in cases when the choice of acceleration is independent of the choice of lane change, we can
write a production of the form Left — Movel ChooseAcc SignalL. With such productions,
we can avoid having to write expansions of Left with all of the possible acceleration choices,
achieving a more modular production structure.

However, a driver is not always free in its choice of acceleration, since passing usually
requires an accompanying acceleration. Two new symbols, LeftAcc and RightAcc, represent
left and right lane changes, respectively, but with the additional stipulation that the accel-
eration symbol be Accelerate. In other words, we include productions of the form LeftAcc
— Movel Accelerate SignalL. We can then enforce the acceleration in passing maneuvers
through productions of the form Pass — LeftAcc RightAcc.

In this model, the choice of acceleration maneuver is independent of choice of lane change
for all but the passing maneuver. If we found this assumption of independence to be invalid,
we may choose to remove the ChooseAcc subplan and express the dependency through direct
productions of the form Left — Movel Accelerate SignallL. The limited dependency does not
justify creating such a set of productions for the acceleration component. However, the
signaling component is clearly dependent on the choice of lane change, so it would be
unreasonable to create a separate subplan ChooseSignal to be expanded independently. The
production formats listed here make the choice of signaling maneuver explicit.

The shift away from atomic lane changes introduces many complications, including the
two phases of the lane change: waiting for safe conditions to make the lane change, and
then actually moving the car from one lane to the other. The new symbols StartLeft,
StartRight, StartLeftAcc, and StartRightAcc correspond to the former phase, while the other
lane change symbols, Left, Right, LeftAcc, RightAcc, correspond to the latter. The discussion

of the productions makes the nature of these phases more precise.

World Dynamics for Traffic PSDG

Most of the relationships expressed by the world dynamics are straightforward, given the
definitions of the state variables and terminal symbols. For instance, the value of Xpos at
time ¢+ 1 will be to the left of its value at time ¢, given an interposing Movel action. There
is uncertainty in the exact change in value, as expressed by the probability distribution in
the complete PSDG of Appendix A. The value of Ypos at time ¢ 4+ 1 has a deterministic
relationship on its previous value and the value of Speed at time ¢. We could introduce a

dependency on the choice of acceleration, but such an alteration offers only a minimal gain

97

in accuracy, since we already model the Speed variable with the obvious dependency on
acceleration choice, as well as the previous value of Speed.

The current model ignores any dependency between the observed driver’s actions and the
movements of the other cars on the highway. We could model such a dependency without
a significant increase in complexity, since the movements of the other cars are observable.
However, because the other cars are observable, the more accurate model would not provide
any advantage in predicting their movements. The more accurate model would allow the
recognizing agent to reason backwards from the movement of another car to a prediction of
the observed car’s low-level action. On the other hand, the observed car’s position, speed,
and turn indicator, all of which are observable, are much better indicators of the low-level
action, so there is little advantage in using the more accurate model.

The three unobserved state variables, DesiredSpeed, Exit, and Type, represent the ob-
served driver’s preferences, which we model here as time invariant. Therefore, the values
of these variables remain constant throughout the entire plan instantiation. There may be
cases where this assumption is invalid, but at worst, the dynamics of these state variables
depend on highway conditions and not on actions taken. For instance, we could imag-
ine that a driver might be more (or less) willing to accept a slower driving speed after a
prolonged period of heavy congestion. However, it is more likely that the driver’s speed
preference is unchanged, even though it accepts the slower driving speed mandated by the
traffic conditions. It is difficult to imagine a scenario where the driver’s maneuvering would

have any effect on its preference for speed or exit point.

Top-Level Productions for Traffic PSDG

The main difficulty in domain specification lies in specifying the production structure of
the PSDG. The top-level decision, among expansions of Drive, has the most complex pro-
duction probability function. All of the expansions of Drive (plus the analogous expansions
for new symbols 2Left and 2Right) appearing in Figure 5.4 appear in the complete PSDG,
as we again model the driving process as a continuous sequence of independent episodes,
terminating with an Exit.

We must then encode the observed driver’s decision procedure within the production
probability functions. In choosing among the possible subplans for a given episode, a driver
evaluates the overall highway situation, considering all of the observable conditions, as well

as considering its desired speed and intended exit point. We can view the set of probability

98

functions for all expansions of Drive as a decision tree, with the state features, as well as
the particular expansion under consideration, as the inputs. For instance, the preference
over exit points takes precedence over all other needs, so the topmost branch point of the
decision tree would evaluate whether the current value of Ypos indicates proximity to Exit.
If so, then the production of Drive — Exit has probability one, while all other productions
have probability zero.

If the driver is not exactly at the desired exit, but only approaching very near to it,
then it must move over to the rightmost lane. In such a case, it chooses a maneuver based
on the value of Xpos. If the driver is already in the rightmost lane, then the production
Drive — Stay Drive has probability one. If the driver is in the middle or leftmost lane, the
expansion to a Right or 2Right, respectively, has probability one.

If the driver is nowhere near its desired exit, then it chooses its maneuver based on the
speeds of the other cars around it. If the observed driver has no car blocking its front,
it will most likely choose to stay in its current lane. The conditions for an unobstructed
front require either having no car in front, or a car traveling at a speed faster than the
driver’s desired speed. We can establish whether these conditions hold by examining the
state variable corresponding to the speed of whatever car is in front of the observed driver,
as well as DesiredSpeed. If the driver’s front is unobstructed, then the production Drive —
Stay Drive has a high probability.

Otherwise, the observed driver first determines which lane will best support its desired
speed, by comparing the average speeds of the cars it sees in the other lanes, using the
array of car speed variables. The driver attempts to move into the lane where the average
traveling speed is closest to DesiredSpeed, favoring lanes to the right when breaking ties, so
the production probability function has a high probability for the maneuver that moves the
driver into that lane. If the observed driver’s current lane has the most suitable traveling
speed, then the production probability function has a high probability for the expansion
Drive — Pass Drive, since the observed driver will most likely pass the car obstructing its

front if it wishes to stay in its current lane and still reach its desired speed.

Passing Productions for Traffic PSDG

A driver executing a passing maneuver must first wait for the other cars to give it room to
execute its pass (Pass — Stay Pass), at which point it has two possible methods for passing

(Pass — StartLeftAcc StartRightAcc, or Pass — StartRightAcc StartLeftAcc). However, in

99

the process of waiting for room to pass, the driver may find itself approaching its intended
exit. If it does, it will abort its passing maneuver and prepare to exit. We model this
possible premature termination with a production Pass — Stay that terminates the passing
maneuver, whereupon the driver will expand the subsequent Drive according to its exiting
requirements.

We again define the production probability function as a decision tree, using all of the
features of the state space as inputs. If the value of Ypos is close enough to that of Exit,
the termination production has probability one, while all other productions have probability
zero. The termination production also has probability one if the front of the car is no longer
obstructed, since there is no need for the observed driver to pass. Under any other state
configuration, the termination production has probability zero. We eliminate impossible
maneuvers, like passing on the left from the leftmost lane, by defining the production
probability function to be zero for the corresponding productions under the appropriate
conditions.

In all other situations, the driver evaluates the possibility of passing on either the left
or right. If another car is present to its left (right), then passing on the left (right), has
low probability. The observed driver also considers the presence of any cars ahead of it
and to its left (right). If another car is present at that position, a driver of type cautious
will not pass to the left (right), but drivers with a type of either normal or aggressive will
consider passing on the left (right) as long as the car present is traveling faster than their
own current speed. The observed driver likewise considers cars behind it and to its left
(right). Again, a driver of type cautious will not pass to the left (right) if another car is at
that position. A driver of type normal will consider passing to the left (right) as long as the
interfering car is traveling slower than Speed. A driver of type aggressive does not consider
the presence of cars behind it when deciding whether to pass.

If these criteria do not eliminate passing on either left or right, the production probability
function has a high probability for passing on the left, though the exact value depends on
the driver’s Type. If the passing criteria eliminate passing on the right but not the left,
passing on the left has an even higher probability. If the criteria eliminate passing on the
left but not the right, then passing on the left has a very low probability, but passing on
the right may still not have a very high probability. A driver with Type=cautious stays in
its current lane with probability 0.5, waiting for a future opportunity to pass on the left.

On the other hand, a driver with Type=aggressive is largely indifferent between passing on

100

the left and on the right, so passing on the right will have a high probability. If the criteria
eliminate both passing maneuvers, then the driver chooses to wait (Pass — Stay Pass) with

high probability, again depending on the value of Type.

Lane Change Productions for Traffic PSDG

The four lane changes (left, right, left with acceleration, right with acceleration) have
analogous productions, so this section presents the standard left lane change as the ex-
ample. The productions for the other lane changes have the obvious differences, with the
lane changes with acceleration replacing occurrences of ChooseAcc with Accelerate as re-
quired. The left lane change always begins with StartLeft, representing the driver’s waiting
for conditions to allow a safe lane change. As with the passing maneuver, we use a termina-
tion production (StartLeft — Stay), which has probability one if the driver’s intended exit
approaches.

The observed driver’s choice between waiting (StartLeft — Stay StartLeft) and beginning
its left lane change depends on the same criteria used in evaluating the safety of passing
on the left, again considering the speeds of the cars in the lane to its left, as well as its
own speed and aggressiveness. If the state does not meet these criteria, the production
probability function has a high probability for the waiting expansion. If the state does meet
the criteria, then the function has a high probability for the expansion StartLeft — Movel
ChooseAcc Signall Left. It also has a smaller probability for the unsignaled variant of this
production (SignalOff instead of SignalL).

The Left subplan has two possible expansions, ignoring the signaling component for now.
During the lane change, the driver chooses the production Left — Movel ChooseAcc SignallL
Left. Once Xpos reaches the middle of the target lane, the lane change maneuver terminates
with the production Left — Stay. Dividing the lane change into two subplans, StartLeft and
Left, permits a simple definition of lane change termination where the production probability
function does not need to know the specific target lane. Instead, the StartLeft subplan
initiates the Left subplan only after performing a Movel to first move away from the center
of the current lane. The production probability function for the expansions of Left choose
the termination production only when Xpos coincides with the center of any lane. Of course,
under this termination condition, the driver must be at the center of the target lane, since
moving left from its current lane moves it into the center of the target lane before that of

any other lanes.

101

As with the expansions of StartLeft, we must consider the possible signaling maneuvers.
If Signal=left, then the expansion with SignalL has a much higher probability than that
with SignalOff or SignalR, since it is unlikely that a driver would change from the correct
turn indicator position. If Signal=off, then there is a high probability for the expansion
with SignalOff, but the expansion with SignalL has a significant probability, since a driver
may correct its signal in the middle of the lane change. If Signal=right, the expansion with
SignalR has the highest probability, since the driver is unlikely to notice such a mistake.

In the current model, Stay has only one possible expansion: Stay — NoMove ChooseAcc
SignalOff. This model does not account for a driver’s signaling until it actually initiates its
lane change. We could model a driver’s anticipatory signaling by introducing new nontermi-
nal symbols StayR and StayL whose expansions replace SignalOff with SignalR and SignallL,
respectively. We could then replace the Stay subplans of the lane change expansions with
these signaling variants, with a probability representing the driver’s likelihood of signaling

prior to initiating its lane change.

Acceleration Productions for Traffic PSDG

There are three possible expansions for ChooseAcc: ChooseAcc — X, where X can
be Accelerate, Decelerate, or NoAccelerate. The production probability function weighs the
relationship of the driver’s current speed to its desired speed, as well as the speeds of the
cars to its immediate front and back. If its front is obstructed by a car traveling slower
than Speed, the driver chooses Decelerate to avoid a collision. If the driver does not have to
worry about such a collision and if its Speed<DesiredSpeed, it chooses Accelerate with high
probability. If Speed> DesiredSpeed (as is possible after a passing maneuver), the driver
chooses Decelerate, as long as any car behind it is traveling slower than Speed. Otherwise,
the observed driver maintains its current speed to avoid a collision. The driver also chooses

NoAccelerate when it is at its desired speed.

Inference with Traffic PSDG

Once we have the complete domain specification of Appendix A, we can use the algo-
rithms of Section 5.2.3 to answer queries. For instance, suppose we observe a driver traveling
at 65 mph in the middle lane and approaching a car traveling at only 60 mph, with no other
cars nearby. We would enter the appropriate evidence for Q°, with Xpos=10, Ypos=0.00,
Speed=65, FM-car=60, and YX-pos=nil for the other positions. The PSDG recognition

102

system determines the probability of this evidence as 6.06 x 104 according to the prior
probability function. We can now query the system about the unobserved variables. We
find that the probability distribution over Exit is identical to the prior uniform distribution,
because the intended exit does not depend on any of the other state variables. However,
the observed Speed raises the probability that the observed driver’s speed is 65 mph from
the initial 0.15 to 0.75.

The system also computes a posterior probability distribution over possible plans at time
1 using the plan prediction procedure. For instance, if we want to know the probability
that the driver has decided to stay in its current lane, we can examine the probability
that the production node P! takes on the value Drive — Stay Drive, for which the system
returns 0.15. The Stay production is unlikely because of the low likelihood that the observed
driver’s desired speed is below the 60 mph traveling speed of the car in front of it. In this
case, the production Drive — Right Drive has the highest probability at 0.75, because the
driver sees no cars in the right lane and chooses it as the optimal lane location. The Pass
production has probability 0.1 in this case, and the system also provides the distribution
over production node Pj, indicating that a pass on the left has probability 0.92 given that
a pass takes place (probability 0.092 overall).

A recognizing driver’s more immediate concern is the distribution over any imminent
moves the driver may make, and we can query the terminal symbol node ! to find that the
probability that the observed car is performing a MoveR is 0.747, while the probability of a
Movel is 0.089. Thus, the probability that the car does not move in the current time slice
0.164, greater than the 0.15 probability of Drive — Stay Drive because even if the driver
intends to change lanes, it may not begin executing the change immediately.

The system provides similar probability distributions over the acceleration and signal
components of the planning process. The entire prediction phase over the three components
takes 3-4 seconds on a SUN Sparc machine. A recognizing driver is not likely to have
that much time between successive observations, but Section 7.1.2 proposes a method for
reducing that time to less than a second.

Once the recognizing agent does receive its next set of observations, it provides the
system with the corresponding values for !, initiating the explanation phase. For instance,
suppose we observe our driver move to the right (Xpos=8) while accelerating (Speed=70).
The other state variables remain unchanged, except that the driver has moved a little

further down the highway, so that Ypos=0.03. The system computes new probabilities over

103

the plan symbols at time 1, beginning with the terminal symbols. The posterior probability
distribution over £! now indicates with certainty that the observed driver has performed
a MoveR. As a result, the system determines that the Stay subplan has zero probability.
The probability of Drive — Right Drive increases to 0.92, while the probability of a passing
maneuver drops to 0.08. The high likelihood of passing on the left versus passing on the
right justifies the lower degree of belief in the passing explanation.

Having completed the explanation phase, the system commences to predict possible plan
states for time 2. In this case, the observed driver has just initiated a right lane change,
so it will continue to move to its right until it reaches the right lane. The system therefore
carries the explanation probabilities over plans at time 1 over to time 2, because none of
those plans will have terminated. It then determines that the driver will perform another
MoveR at time 2 with probability one, because both the single lane change and passing
explanations require moving to the right.

The system also computes a posterior distribution over the values of the unobserved
variables. The observed driver’s rejection of the Stay plan increases our belief that Desired-
Speed;60. For instance, the system determines that Pr(DesiredSpeed = 70|E) = 0.21.
In addition, the driver began its lane change immediately, slightly lowering our belief that
Type=cautious to 0.088. The current Ypos is not near any exit, so our belief over Exit re-
mains unchanged. If we were to observe this same scenario at some later time when the
driver is near the first exit (Ypos=3.5), then our belief that Exit=4 would increase to 0.73,
while our belief in the passing explanation would decrease further to 0.046.

We now jump ahead in our original example from time 1 to time 4, when the observed
driver has completed its right lane change with Xpos=3, Ypos=0.14, and Speed=70. The
YX-car variables are all null, except for MM-car, which is 60 mph, representing the car
that was initially obstructing the observed car. The system’s prediction phase considers
two possibilities: the driver has completed a single lane change and is choosing a new
maneuver, or it has to complete the passing maneuver chosen at time 1. In the former case,
the driver chooses to the Stay subplan with probability one, because there are no cars in its
path. However, it may choose to accelerate if DesiredSpeed> 70, but after three successive
observations of Speed=70, the system determines the probability of such a state to be 0.03.
If the driver is in the midst of a passing maneuver, it will most likely wait to be clear of the
car being passed before moving back to the middle lane. Therefore, the overall probability

of a NoMove action is 0.976, with MoveL the only alternative. However, a recognizing driver

104

would believe that an eventual return to the middle lane will occur with probability 0.073,
even though immediate movement is more unlikely.

The system computes probabilities over the low-level actions, while still maintaining a
distribution over the more complex plans and intermediate plan states. The former beliefs
form the basis for more immediate reactions, like recognizing that the observed driver in
the example may choose a Movel action at time 5 with probability 0.024 and cut off the
car being passed. The beliefs over higher-level plans support long-range strategizing. For
instance, consider the case of a third car approaching the observed driver in the right lane at
a speed greater than 70 mph. The driver of this third car may compute the high probability
of the Stay subplan at time 5 and decide to shift to the leftmost lane to avoid both of the
other cars, even though it is possible that the observed car will return to the middle lane
and leave the rightmost lane clear. The PSDG representation of the traffic domain thus
supports many of the queries desired by driving agents in their interactions with other cars

on the highway.

6.2.2 Air Combat

The traffic monitoring example demonstrates how we can generate a PSDG domain
specification from scratch. In many domains, we may have a pre-existing domain specifica-
tions in some other language. For instance, the air combat domain has provided a fertile
problem area for plan recognition research [42], since a pilot making decisions about its
own actions must consider the possible goals and actions of an enemy. An observed pilot’s
decision process combines goal-driven and reactive behaviors in fulfillment of overall mission
goals, and the recognizing pilot must make its decisions within rigid time constraints, so the
problem demonstrates many of the key issues that arise in more typical plan recognition
problems.

The pilot’s top-level goal, Execute-mission, appears at the top of the operator hierarchy
representing a subset of air combat maneuvers. The execution of a particular plan requires
the execution of some combination of its child plans. The choice of the exact combination
depends largely on the world state, which covers the positions and speeds of any planes and
missiles in the area, as well as information about the capabilities (weapons, radar, etc.) of
each plane. For instance, a pilot can execute an Evade plan to avoid an oncoming missile by
choosing either Beam-left or Beam-right, depending on the relative position of the plane and

the missile. These subplans ultimately invoke some combination of the low-level turning

105

actions.

Existing Air Combat Domain Specification

The agent tracking research to this domain represents these plan relationships with
productions in the Soar architecture citeNewell to perform recognition. For instance, the
following Soar production proposes a Get-steering-circle subplan in the course of executing

a Launch-missile subplan:

(sp launch-missile*suggest-proposal*get-steering-circle*bogey

(goal <g> “state <ts>)

(<ts> "operator-stack <1lm>)

(<1m> "agent <team> "actual launch-missile “bogey <me> ~last <team>)

(<team> “type team “paradigmatic)

("“state <s> “name bandit)

(<s> "“selected-missile <m> “missile-info <mi>)

(<mi> ~“object <mo>)

(<mo> “type <m> “lar-achieved <me> -"steering-circle-achieved <me>)
-{ (<ts> ~“operator-stack <mm>)

(<mm> “actual model-missile “agent.paradigmatic “bogey <me>

“missile-info <mo>)

(<g> “operator <o> +)
(<o> “name <gsc>)
(<gsc> "actual get-steering-circle "missile-info <mo> “bogey <me>

“agent <team> + & “child-of <1lm>))

The first line (following sp) is simply the name of the production. The next few lines
preceding — are the conditions of the production, with free variables represented in the
form <z>. Each condition begins with an object identifier, possibly a previously bound
variable, and is followed by slot names (preceded by the caret). The conditions specify
either a particular value to match against the slot contents, or a free variable to be bound
to the value of the slot contents. For instance, the first condition looks for a goal construct

(subsequently bound to free variable <g>) and binds free variable <ts> to the contents of the

106

state slot. This first condition is true for any goal <g> that has a state slot. Productions
include such conditions to access nested slots of interest. The condition on <mo> is more
interesting because it requires that the lar-achieved slot contain <me>, indicating that
the observed pilot has reached the launch acceptability region (LAR) with respect to its
opponent (bound from the bogey slot in the <1m> condition). This condition also requires
that the steering-circle-achieved slot not contain <me>, where the - preceding the slot
name indicates negation. Likewise, the - preceding the last two conditions (within the
braces) indicates the negation of those conditions.

The lines after — are the results of firing this production, in the form of actions specifying
the creation, modification, or deletion of objects. The first line alters the previous bound
<g> construct to contain a new operator slot filler <o>. The second line specifies that
this new filler have new object <gsc> as its name slot filler. The <gsc> object represents
the details of the new operator of type Get-steering-circle (indicated by the actual slot
filler), aimed at enemy <me>. There are additional details to this production, most notably
involving teams, but we can summarize this production as a proposal of the Get-steering-
circle subplan, conditional on an existing Launch-missile subplan where the observed pilot

has achieved LAR, but not steering circle, with respect to its enemy.

PSDG Generation from Soar Productions

There are obvious similarities between the purpose of this Soar production and the
PSDG production definitions. However, the PSDG model restricts productions more than
the Soar production format. For instance, the above Soar production could include con-
ditions involving ancestor subplans further up than Get-steering-circle’s immediate parent
Launch-missile. In addition, there are no restrictions on the number or type of objects re-
ferred to in the action portion of the production. In other words, any Soar production can
introduce multiple, simultaneous subplans, remove existing subplans, or otherwise modify
existing state within a single production.

Fortunately, most of the Soar productions in the air combat domain specification do not
include such conditions or actions. We can therefore translate such productions into PSDG
productions. We first create state variables to represent those production conditions not
included in the plan hierarchy. For instance, the example production refers to conditions
lar-achieved and steering-circle-achieved. These slots become state variables in the

PSDG representation. We must also include lower level state variables to represent the

107

relative position of the observed pilot and its enemy, because the definitions of LAR and
steering circle depend on that position and the observed pilot’s low-level flying actions affect
that position. We can thus specify the dynamics of flying actions in terms of these low-level
position variables. The values of the LAR and steering circle variables are then completely
determined given the position.

Once we have elicited the state variables, we generate the plan selection rules. The
example Soar production corresponds to a PSDG production of the form Launch-missile —
&o Get-steering-circle &1. The &y and &; strings correspond to the other possible children
of Launch-missile. We must generate PSDG productions for all of the possible sequences
of these children. Although the Soar productions in the air combat domain specification
do not provide an explicit ordering on the children, the conditions on each production
do implicitly serialize much of the execution. For instance, the Soar production gener-
ating the operator for Lock-missile, another child of Launch-missile, requires the condition
steering-circle-achieved. Since only the operator Get-steering-circle achieves this con-
dition, Lock-missile must follow Get-steering-circle in the expansion of Launch-missile. We
can thus generate the possible sequences of children necessary for the PSDG productions
by examining the pre-conditions of each child and determining what siblings establish those
pre-conditions.

Many Soar productions specify the removal or termination of an existing operator upon
achieving certain conditions. We could, in theory, represent such a production by a PSDG
expansion of the corresponding nonterminal symbol into the empty string. Unfortunately,
the current PSDG definition does not allow such productions. It is unlikely that any simple
modification to the PSDG inference algorithms could handle such productions, since the
existing algorithms rely on time slices spanning a single terminal symbol. Such time slices
could include an arbitrary number of expansions into the empty string, making it difficult
to maintain a compact representation of all possible productions. However, Section 7.1.1

proposes a possible solution for such productions.

Comparison of PSDG and Original Domain Specification

Appendix B contains the PSDG specification of the air combat domain. It considers the
restricted case when there is a single observed pilot interacting with at most one other enemy
plane. Therefore, the conditions on agent, bogey, and other agent-identification slots are

irrelevant to the PSDG specification. We could extend the PSDG representation to handle

108

multiple agents by including additional sets of state variables for each such agent, although
we could only do so for a fixed number of agents. In the traffic example, the YX-car variables
represented other possible cars on the highway. We could introduce analogous variables to
the air combat PSDG, although each pilot requires a more complex representation than the
single variable used to model the cars.

The Soar specification also supports the reflexive reasoning necessary when the observed
pilot is trying to analyze the behavior of the recognizing pilot as well. Thus, in the agent
tracking approach, the observed pilot models its enemy as performing the same planning
process as itself, and the enemy pilot models the observed pilot as modeling the enemy pilot
as performing the same planning process as itself, etc. Such a relationship is beyond the
world dynamics representable within the PSDG language. The PSDG domain specification
models the observed pilot’s enemy with a static probabilistic behavior model, essentially
choosing actions from a fixed distribution. Section 7.1.3 discusses possible methods for
relaxing the assumption of a fixed distribution, but achieving true reflexivity is beyond the
scope of this dissertation.

Within this restricted one-on-one air combat domain, the PSDG does provide a prob-
abilistic extension beyond the deterministic reasoning of the Soar representation. We can
thus account for possible deviations from the behaviors included within the Soar domain
specification by introducing additional PSDG productions that have low probability. How-
ever, it is difficult to gauge the utility of this probabilistic extension because there is no basis
for choosing the production probabilities within the original Soar domain specification. The
PSDG productions taken directly from the original specification have an arbitrarily chosen
high probability, while the deviation productions have an arbitrarily chosen low proba-
bility. Thus, the PSDG representation will not provide any advantage over the original
specification in the expected case. However, if we extended the modeling effort invested
in developing the Soar domain specification to assess more accurate probabilities over the
plan hierarchy, a PSDG specification could provide an advantage when considering unlikely

explanations that require responses beyond the expected case.

109

6.3 The PSDG Formalism in Relation to Other Representa-

tional Languages

These two examples of domain specification demonstrate the utility of the PSDG rep-
resentation within these specific instances. Both problem domains illustrate many of the
dependencies present in most plan recognition problems. However, there are significant
limitations to the representational power of the PSDG model, as demonstrated by the
occasional simplifying assumption employed in the domain specification process. This sec-
tion compares the PSDG language against existing languages, including some not expressly
designed for plan recognition, in an effort to more precisely categorize the strengths and

weaknesses of the proposed formalism.

6.3.1 Event Hierarchies

If we ignore the stochastic component, the rules allowed under the PSDG model form
a subset of the rules allowed under the event hierarchy formalism [26]. The symbols of
the grammar, N U X, become the action types classifying event instances. As in the CFG
translation of event hierarchies [43], a production of the form X — Yj---Y}, corresponds

to the decomposition rule:
Ve.instance(e, X) = instance(S(1,e),Y1) A--- Ainstance(S(m,e),Yn) A k(e)

where S(t,e) names subaction ¢ of event instance e, and k(e) expresses constraints on the
decomposition.

Although the PSDG production format can capture the relationship between X and
its child subplans, the decomposition rule of the event hierarchy language has significantly
more representational power. For instance, in the general event hierarchy framework, the
order of the subactions does not necessarily correspond to a temporal ordering. However,
the grammatical productions do indicate a temporal ordering, so x(e) must state that the
time interval representing the duration of S(¢,e) must end exactly when the time interval
for S(t + 1,e) begins. Therefore, a PSDG cannot explicitly represent partial orders, but
must instead create productions for each possible total order consistent with the partial
order. In addition, the x(e) constraint expression can include conditions on any aspect of
the knowledge base. The PSDG productions are conditioned on only the current state,
so that they cannot represent constraints on past or future states, nor on other subplans

(beyond specifying the decomposition itself).

110

However, inference with an event hierarchy of this general form incurs the high com-
plexity cost of deductive inference. The PSDG inference algorithms exploit the restricted
language to attain more efficient inference. Other plan recognition approaches that use rep-
resentations in first-order logic make similar restrictions to allowable dependencies. Such

approaches can often achieve levels of efficiency comparable to the PSDG model.

6.3.2 Plan Recognition Bayesian Networks

However, the PSDG model does provide the obvious advantage (discussed in Section
2.1.3 of a probabilistic model beyond the first-order logic of these other plan recognition
formalisms. The language of plan recognition Bayesian networks (PRNs) [9] is also more
general than that of the PSDG model while still supporting probabilistic inference. How-
ever, to perform inference within the PRN language, we must generate a Bayesian network
representing all of the observed evidence variables, as well as all of the related unobserved
plan and state variables. Once we have this network, we can answer queries about all of
these unobserved variables, similar to those answerable with the PSDG Bayesian network
inference algorithms of Sections 5.2.1 and 5.2.2, but beyond those answerable with the belief
state manipulation algorithms of Section 5.2.3.

Unfortunately, as was the case with the static PSDG networks, the PRN representation
of a PSDG will be too complex unless we restrict ourselves to either simple grammars or
short periods of execution. Otherwise, the PRN must explicitly represent an impractical
number of variables over the entire run. In addition, as was the case with even the DBN
representation, the PSDG model does not have the properties of conditional independence

that the Bayesian network inference algorithms can easily exploit.

6.3.3 Grammatical Models

The History-Based Grammar (HBG) [3] provides a rich model of context sensitivity by
conditioning the production probabilities on (potentially) the entire parse tree available at
the current expansion point. If we include the state variable within the grammar itself,
then PSDGs are a special case of the general equivalent classes the HBG representation
uses in establishing the dependency structure. However, as is the case with most gram-
matical representations aimed at natural language problems, the existing HBG algorithms
compute only parse tree probabilities. Without a more efficient means for answering the

common classes of recognition queries, grammatical representations like HBGs, PEARL [32],

111

and probabilistic parse tables [5], although more general than the PSDG model, remain

unsuitable for plan recognition.

6.3.4 Stochastic Programs

Koller et al. introduced a new language, stochastic programs [28], for modeling stochastic
processes. Their language is also more general than the PSDG formalism. The stochas-
tic programming language extends a general purpose functional programming language to
include an explicit probabilistic component, providing a powerful means of representing a
broad range of stochastic processes. The basis for the probabilistic component is the ex-
pression flip(a), returning value true with probability « and false with probability 1 — a.
Koller et al. demonstrate how one can model any PCFG with a stochastic program by
writing a separate procedure for each nonterminal that uses the flip construct to choose
among its possible productions. For the given production, we execute the corresponding
procedure for any nonterminal symbol appearing on the right-hand side and output any
terminal symbols that appear.

A stochastic program representation of a PSDG could introduce state variables, using
the flip construct to represent the prior probability distribution 7. We could then modify
the expansion selection of the PCFG stochastic program to branch on the values of the
state variables, although it is not clear how to represent the effect of the world dynamics
on the state variables within the PCFG program structure. However, if we could represent
the world dynamics correctly, the stochastic program would represent the same probability
distribution as the original PSDG and the inference algorithms for stochastic programs can
answer a broad class of queries about aspects of the program specification. However, it is not
clear that the inference algorithms for stochastic programs would exploit the independence

properties specific to the PSDG language.

6.3.5 Evaluation of Representational and Inferential Power of PSDG Lan-
guage Model

An examination of the PSDG model with respect to the plan recognition requirements
cataloged in Section 2.2.7 illustrates its specific strengths and weaknesses. For modeling the
planning agent’s environment, the PSDG state variable specification supports arbitrarily
complex probabilistic dependency structures. We can thus specify any joint distribution

over possible state instantiations, providing great flexibility in modeling the external world.

112

Of course, increasing the complexity of the dependency structure among the unobserved
variables greatly increases the complexity of inference, so there are practical limitations to
modeling the environment. The propositional nature of the state representation introduces
a theoretical limitation as well. The fixed set of state variables prevents us from specifying
first-order models of the world (e.g., the other cars on the highway).

The same PSDG state variable structure represents the planning agent’s mental state.
Again, we can specify arbitrarily complex probability distributions over the joint space
of possible mental state propositions. We can thus capture probabilistic sensor models
to capture uncertain noise present in agent formation. However, the finite state variable
representation is insufficient for representing an infinite space of possible utility functions. If
we can model the planning agent’s preferences by a finite set of goals (e.g., the driver’s target
speed, intended exit), then the PSDG state variable representation is again sufficient. In
addition, we may be able to discretize the space of utility functions, as in the Type variable
of the driver model. As long as there is a finite set of utility function classes sufficient for
distinguishing relevant behaviors, then we can again use the PSDG state variables to model
the required preference structure.

The PSDG production structure easily represents hierarchies of plans and subplans,
through abstraction and decomposition productions. The production probabilities summa-
rize the plan selection process by specifying a probability distribution over plan choices,
conditioned on the context. This production format is clearly suited for modeling agents
that plan according to simple condition-action rules. However, even if the agent performs
a complex decision-theoretic analysis in making its choice, we can still summarize this pro-
cess through PSDG production probabilities. For each possible state, we could simulate the
decision-theoretic analysis off-line to obtain the probability of a given production.

The PSDG can also represent subplan preconditions by specifying a probability zero for
productions selecting a particular subplan in a context that does not meet its preconditions.
The PSDG cannot explicitly specify termination conditions, although it can specify such
conditions implicitly through the relative probabilities of productions continuing a subplan
versus those moving on to the next subplan. For instance, in the traffic example, the
productions for Left offer the choice of staying in the current lane and halting the maneuver,
or moving a small distance to the left and continuing the Left maneuver. The Left maneuver
is complete when the car is fully within its new lane. We can model this completion

by specifying a probability of one for the production Left — Stay when the termination

113

condition holds. Similar production structures can represent an agent’s willingness to abort
a plan under certain conditions, even if the plan is not complete.

Although the conditional production probabilities allow great flexibility, the production
structure itself does place a serious restriction on the representational power. Grammatical
productions require a total order over the subplan steps in a decomposition. The PSDG
cannot explicitly represent partial orders, nor can it represent concurrent actions (beyond
orthogonal component actions like lane changes and acceleration maneuvers).

The PSDG state transition probabilities easily model the dynamics of the external world
state. The conditional probabilities are sufficient to represent any joint distribution over
future world states, conditioned on the past state and the low-level action taken. However,
the state transition probabilities cannot represent the effects of subplan choices on future
states.

The PSDG inference algorithms support a broad class of interesting queries. The
Bayesian network representations support the computation of arbitrary posterior proba-
bilities, expressed in terms of the network variables. For prediction, we can compute the
probability of plans, actions, and states given arbitrary collections of evidence about other
plans, actions, and states. Unfortunately, network inference is impractical in most cases.
The specialized PSDG inference algorithms can compute posterior probabilities of plans
and states, given observations of past states. These algorithms can also compute explana-
tion probabilities over plans chosen before our latest observations of the state. However,
the algorithms assume observations of only the state variables; they cannot exploit direct
evidence about plans.

The comparison of the PSDG language models against existing models emphasizes the
limited representational power of the proposed formalism with respect to these other lan-
guages. However, the PSDG language model exploits its specialized independence assump-
tions to support probabilistic inference in problem domains where other languages would
not. Thus, the PSDG representation exchanges generality for efficiency of inference, while

still meeting many of the specification requirements of interesting problem domains.

114

CHAPTER 7

Conclusion

7.1 Extensions to PSDG Model

The limitations of the PSDG language and inference algorithms suggest several areas
for improvement. It should be possible to address some of these areas through minor
modifications to the model that do not significantly increase the complexity the inference
algorithms. Other areas may require a greatly altered, or possibly completely new, model.
This section presents possible extensions to the original PSDG model that address many of

the issues raised by the discussion of the previous chapter.

7.1.1 Generality of PSDG Representation

Most of the limitations of the PSDG model in relation to existing languages involve the
restricted nature of the representation. For instance, the Soar productions for the air com-
bat domain often specify actions terminating a particular operator. To accommodate such
productions, we could augment the PSDG language to include state-dependent termination
rules. For example, we could introduce the production Get-steering-circle — & with proba-
bility one if steering-circle-achieved is true and zero otherwise. We could not consider such
a production when first expanding Get-steering-circle because it would produce no terminal
symbols, thus disrupting our division of time slices. However, if we first select a recursive
production of the form Get-steering-circle — ¢ Get-steering-circle, then upon termination of
the expansion of £, we can test the value of steering-circle-achieved. If true, the expansion
of Get-steering-circle terminates as well; otherwise, we choose a new expansion according to
the original PSDG model.

This new production type alters the probabilities for the termination nodes T}. In the

115

original formalism, the values of these nodes was completely determined given the produc-
tions. This new extension would require the termination nodes to depend on the relevant
state variables. However, because termination node T@t would depend on the subsequent
state variable Q'™! (we terminate only if the current action achieves the desired conditions),
we still have the weak form of interslice independence on which the inference algorithms
rely. Therefore, a modified version of the existing PSDG inference algorithms should be
able to handle the extension without incurring much additional complexity.

It would also be useful to relax the restriction that the state transition probability
depend only on the terminal symbols. In the traffic example of Section 6.2.1, we introduced
the signal component of the low-level action because we could not represent the appropriate
dependency of the state of the turn indicator on the higher-level lane change subplans. It is
trivial to alter the specification of the transition probabilities to allow such dependencies.

Unfortunately, when the states can depend on arbitrary nonterminal symbols, we can no
longer localize their dependency to the terminal symbol node X!, The resulting dependency
of the state variables on other levels of the hierarchy can possibly introduce additional
dependencies among the symbol nodes at these levels of the hierarchy when we no longer
explicitly represent our observations for those state variables. Within the existing PSDG
model, we need to consider the dependency only between parent-child pairs, providing the
basis for the compact representation of the belief state. It is unlikely that we could add
nonterminals to the state transition probabilities without requiring the belief state to include
probabilities over the entire joint plan space.

One severe limitation of the production format is the restriction of serial execution. It
is difficult to represent partial orders or concurrency among subplans. Of course, we can
introduce multiple productions to represent all possible total orders, or treat consecutive
terminal symbols as concurrent (as in the lateral movement, acceleration, and signal com-
ponents in the traffic example). The former is clearly inefficient, while the latter is possible
only when the components affect distinct sets of state variables.

The PSDG model would require significant modifications to handle such extensions
more directly. However, ignoring the representational difficulty for the moment, the general
framework of the existing PSDG algorithms could, in principle, support inference with such
a representation language. The belief state as currently specified represents the probability
distribution over symbols and productions within a current time slice. The current set of

random variables group the symbols by level in the hierarchy because the lack of concurrency

116

ensures mutual exclusivity among symbols at the same level. However, we could easily
reconfigure the belief state to represent symbol and production probabilities with separate
variables for each symbol, where symbols at the same level of the hierarchy could now exist
concurrently. The loss of mutual exclusivity would undoubtedly create a more complicated
dependency structure, possibly making inference intractable, but the PSDG belief state

formulation should support an exploration of these more general action configurations.

7.1.2 Complexity of PSDG Inference

In some problem domains, the PSDG inference algorithms may be intractable. The
main difficulty arises from the inference algorithms’ maintenance of separate belief states
for each possible point in the joint space of the unobserved variables. In the example
domains of Section 6.2, this joint space was small enough to support efficient inference.
However, in domains with more complex models of the observed agent’s mental state, usually
unobserved, the complexity of inference could be prohibitive.

On the other hand, the PSDG algorithms are very efficient with respect to the production
space, so we can tolerate complexity in the production structure more easily than in the
space of unobserved states. As a result, we can often reduce the cost of inference by
translating uncertainty about states into uncertainty about productions. For instance, in
the traffic example, we can eliminate the Exit state variable by altering the expansions of
Drive. Instead of explicitly considering whether the observed driver is near its intended exit,
the production probability considers whether it is near any exit. If so, the driver chooses to
prepare to exit here with a probability based on a uniform distribution over the remaining
exits. In other words, if Ypos indicates that the driver is near the first exit (at mile 4),
then there is a 0.2 probability that the driver will begin exiting, which will require a new
nonterminal symbol PrepareExit to move the driver into the rightmost lane and exit when
reaching the ramp.

This modification does not change the underlying probability distribution, since the
driver’s intended exit affects its decisions only when the intended exit approaches. Likewise,
the driver’s actions do not affect the choice of its intended action. We can still compute
the same distribution over the driver’s intended exit by computing the distribution over the
symbol PrepareExit. If the probability is zero, then we are not near any exits, so we assume
a uniform distribution over the remaining exits. Otherwise, the probability of PrepareExit is

the probability that the next exit is the driver’s intended exit, with a uniform distribution

117

over the other remaining exits.

However, we cannot use this approach to eliminate the Type and DesiredSpeed state
variables. Both of these variables affect the driver’s choices at many stages of the planning
process and in different ways at each stage, unlike Exit, which has a fixed effect at a single
point in the decision process. To eliminate the Type variable, while still maintaining coher-
ently normal, cautious, or aggressive behavior, we have to introduce separate plan variables
for each of these possible Type values. Thus, there would be symbols like Aggressiveleft,
representing the behavior of an aggressive driver when performing a left lane change. The
resulting growth in the symbol and production space offsets any savings from reducing the
space of unobserved states.

Another potential solution is to maintain belief states for all possible values of individual
state variables. In the traffic example, we would have three separate belief states indexed by
Type, five additional belief states indexed by Exit, and ten belief states indexed by Desired-
Speed. The inference algorithms could combine the belief states for a particular point in the
joint space by assuming that the separate state variables are independent. The resulting
algorithms would require exponentially less time and space than the exact inference algo-
rithms. However, because these separate state variables are actually dependent, the query
responses would be only an approximation of the real values. Research in approximation in
the modeling of stochastic processes shows that the error incurred by such approximations
is bounded [4], but the size of the error is highly domain-dependent, so more work is needed
to better understand the possible utility of such an approximation.

As an alternative, we can restrict the generality of the world dynamics and other state
interactions. Although the PSDG model highly constrains the plan symbol structure to the
production format, the production and state transition probabilities are arbitrary functions.
We may be able to achieve more efficient inference over a restricted subset of PSDGs.
For instance, the unobserved state variables in the traffic PSDG are time-invariant, so
their values do not change at each new time slice. In such cases, we can reduce the time
complexity of the inference algorithms to be linear in the joint unobserved state space,
instead of quadratic. However, it is unlikely that further restrictions could reduce the
complexity to be sublinear in the size of the joint unobserved state space without overly

restricting the representation.

118

7.1.3 PSDG Domain Specification

The PSDG formalism cannot perform the reflexive modeling required when the recog-
nizing agent’s decision affects the observed agent’s planning process. For example, in the
clearly adversarial domain of air combat, existing agent tracking research uses a recursive
approach to explicitly model the observed agent’s beliefs about the recognizing agent. The
PSDG inference algorithms treat the domain specification as fixed throughout the entire
recognition process. In domains where the observed agent may modify its behavior, the
recognizing agent could profit from dynamically altering its PSDG model. There currently
exist PCFG learning algorithms [24] that can generate the productions and production
probabilities based on labeled parse trees. Analogous algorithms could generate PSDG
productions, states, and probabilities based on labeled parse trees. In a dynamic plan
recognition session, it is unclear what source would provide the labels, but such algorithms
could update state transition probabilities at the very least. A PSDG learning algorithm
would also simplify the initial domain specification process. In domains where the observed
agent’s behavior depends significantly on the recognizing agent’s decisions, even a dynamic
PSDG specification may be too weak to model this reflexive dependency. However, such
dependencies cause difficulties for existing plan recognition approaches, although the work

on learning domain specifications offers a potential solution [30, 2].

7.2 Contributions

The general plan recognition framework presented in Chapter 2 provides the basis for
the contributions of this dissertation. The goal of this research has been to develop a
probabilistic language for modeling problem domains, following the outline of Figure 2.1.
This general outline represents the key components of all plan recognition problems, but
an operational mechanism requires a restricted language. In the search for such a language,
this line of research began with the generality of the Bayesian network representation.

Hand-coding Bayesian networks is impractical as a general approach to plan recogni-
tion, so we considered the more restrictive language of the PCFG model. The algorithms
presented in Chapter 3 automatically generate a Bayesian network representing the distri-
bution over all parses of strings (bounded in length by some parameter) in the language of
a PCFG. Using the standard Bayesian network inference algorithms, we can compute the

conditional probability or most probable configuration of any collection of our basic random

119

variables, given any other event which can be expressed in terms of these variables. Al-
though answering queries in Bayesian networks is exponential in the worst case, our method
incurs this cost in the service of greatly increased generality. Our hope is that the enhanced
scope will make PCFGs a useful model for domains that require more flexibility in query
forms and in probabilistic structure, while also extending the usefulness of PCFGs in nat-
ural language processing and other pattern recognition domains where they have already
been successful.

However, the PCFG model, even with the extensions considered in Chapter 4, is un-
suitable for most plan recognition domains. The analysis of the PCFG model’s limitations
provided the motivation behind the central contribution of this dissertation, the PSDG
model presented in Chapter 5. This new representation language supports many of the
features desirable when modeling plan generation. The underlying plan grammar is capable
of representing the plan/action hierarchy through the production structure, although the
decomposition production format requires a total order over subplans. The state variables
can capture the agent’s mental state, as well as the external context from which that mental
state derives. The state variables allow us to model the dependency of plan selection on the
agent’s beliefs, preferences, and capabilities through conditional production probabilities.
The state variables also represent the world dynamics, allowing us to model the dependency
of future plan contexts on the agent’s current action, though not on higher-level subplans.

The PSDG model supports the generation of a Bayesian network representation of an
underlying distribution, and we can use such networks to compute conditional probabilities
over any combination of plan/state variables. However, the generated networks are likely to
be intractable for all but the simplest PSDGs. The PSDG-specific inference algorithms scale
much more efficiently than the Bayesian network algorithms, supporting practical inference
in more significant planning domains, as demonstrated by the example domain specifica-
tions of Chapter 6. The PSDG-specific algorithms answer a more restricted set of queries,
incorporating evidence about only the state variables, but still computing posterior distri-
butions over both plan and state variables. The design choices inherent in the PSDG model
and inference algorithms sacrifice the generality of some existing recognition approaches,
but the efficiency gains derived from those assumptions will allow practical plan recognition

in domains where those existing languages do not.

120

BIBLIOGRAPHY

121

1]

2]

[4]

[9]

[10]

[11]

BIBLIOGRAPHY

Jerome Azarewicz, Glenn Fala, Ralph Fink, and Christof Heithecker. Plan recognition
for airborne tactical decision making. In Proceedings of the Fifth National Conference
on Artificial Intelligence, pages 805811, 1986.

Mathias Bauer. Acquisition of abstract plan descriptions for plan recognition. In
Proceedings of the Fifteenth National Conference on Artificial Intelligence, pages 936—
941, Madison, WI, 1998. AAAT Press.

Ezra Black, Fred Jelinek, John Lafferty, David M. Magerman, Robert Mercer, and
Salim Roukos. Towards history-based grammars: Using richer models for probabilistic
parsing. In Mitch Marcus, editor, Proceedings of the Fifth DARPA Speech and Natural
Language Workshop, pages 31-37, Feb 1992.

Xavier Boyen and Daphne Koller. Tractable inference for complex stochastic processes.
In Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence,
pages 33-42, San Francisco, 1998. Morgan Kaufmann.

Ted Briscoe and John Carroll. Generalized probabilistic LR parsing of natural language
(corpora) with unification-based grammars. Computational Linguistics, 19(1):25-59,
1993.

Sandra Carberry. Incorporating default inferences into plan recognition. In Proceedings
of the FEighth National Conference on Artificial Intelligence, pages 471-478, Boston,
1990. AAAT Press.

Fugene Charniak. Statistical Language Learning. MIT Press, Cambridge, Mass., 1993.

Eugene Charniak and Glenn Carroll. Context-sensitive statistics for improved gram-
matical language models. In Proceedings of the Twelfth National Conference on Arti-
ficial Intelligence, pages 728-733, Menlo Park, Calif., 1994. AAAI Press.

Eugene Charniak and Robert P. Goldman. A Bayesian model of plan recognition.
Artificial Intelligence, 64(1):53-79, November 1993.

Fugene Charniak and Solomon Eyal Shimony. Cost-based abduction and MAP expla-
nation. Artificial Intelligence, 66:345-374, 1994.

Philip A. Chou. Recognition of equations using a two-dimensional stochastic context-
free grammar. In Proceedings of SPIE: Visual Communications and Image Processing
1V, pages 852-863, Bellingham, Wash., 1989. International Society for Optical Engi-
neering.

122

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

Adnan Darwiche and Gregory Provan. Query DAGs: A practical paradigm for imple-
menting belief-network inference. Journal of Artificial Intelligence Research, 6:147-176,
1997.

Rina Dechter. Bucket elimination: A unifying framework for probabilistic inference. In
Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence, pages
211-219, San Francisco, 1996. Morgan Kaufmann.

Rina Dechter. Topological parameters for time-space tradeoff. In Proceedings of the
Twelfth Conference on Uncertainty in Artificial Intelligence, pages 220-227, San Fran-
cisco, 1996. Morgan Kaufmann.

Jeff Forbes, Tim Huang, Keiji Kanazawa, and Stuart Russell. The BATmobile: To-
wards a Bayesian automated taxi. In Proceedings of the International Joint Conference
on Artificial Intelligence, pages 1878-1885, 1995.

Robert P. Goldman, Christopher W. Geib, and Christopher A. Miller. An extended
model for probabilistic plan recognition. Draft.

Rafael C. Gonzalez and Michael S. Thomason. Syntactic Pattern Recognition: An
Introduction. Addison-Wesley, Reading, Mass., 1978.

Barbara J. Grosz and Candace L. Sidner. Plans for discourse. In Philip R. Cohen,
Jerry Morgan, and Martha E. Pollack, editors, Intentions in Communication, pages
417-444. MIT Press, Cambridge, MA, 1990.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, Reading, Mass., 1979.

Marcus J. Huber and Edmund H. Durfee. Observational uncertainty in plan recognition
among interacting robots. In Working Notes: Workshop on Dynamically Interacting
Robots, pages 68-75, Chambery, France, 1993.

Marcus J. Huber, Edmund H. Durfee, and Michael P. Wellman. The automated map-
ping of plans for plan recognition. In Proceedings of the Tenth Conference on Uncer-
tainty in Artificial Intelligence, pages 344-351, 1994.

Francois F. Ingrand, Michael P. Georgeff, and Anand S. Rao. An architecture for
real-time reasoning and system control. IEEE Ezpert, 7(6):34-44, December 1992.

Anthony Jameson. Numerical uncertainty management in user and student modeling;:
An overview of systems and issues. User Modeling and User-Adapted Interaction, 5(3-
4):193-251, 1995.

Frederick Jelinek, John D. Lafferty, and R. L. Mercer. Basic methods of probabilistic
context free grammars. In P. Laface and R. DeMori, editors, Speech Recognition and
Understanding, pages 345-360. Springer, Berlin, 1992.

Finn V. Jensen. An Introduction to Bayesian Networks. Springer, New York, 1996.

Henry A. Kautz and James F. Allen. Generalized plan recognition. In Proceedings of
the Fifth National Conference on Artificial Intelligence, pages 32-37, 1986.

123

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Uffe Kjeerulff. A computational scheme for reasoning in dynamic probabilistic networks.
In Proceedings of the Eighth Conference on Uncertainty in Artificial Intelligence, pages
121-129, San Mateo, CA, 1992. Morgan Kaufmann.

Daphne Koller, David McAllester, and Avi Pfeffer. Effective Bayesian inference for
stochastic programs. In Proceedings of the Fourteenth National Conference on Artificial
Intelligence, pages 740-747, Menlo Park, Calif., 1997. AAAT Press.

Jaeho Lee, Marcus J. Huber, Edmund H. Durfee, and Patrick G. Kenny. UM-PRS:
An implementation of the procedural reasoning system for multirobot applications. In
Proceedings of the AIAA/NASA Conference on Intelligent Robotics in Field, Factory,
Service, and Space, pages 842-849, March 1994.

Neal Lesh and Oren Etzioni. Scaling up goal recognition. In Proceedings of the Fifth
International Conference on Principles of Knowledge Representation and Reasoning,
pages 178-189, 1996.

Dekang Lin and Randy Goebel. A message passing algorithm for plan recognition.
In Proceedings of the Twelfth International Joint Conference on Artificial Intelligence,
pages 280-285, 1991.

David M. Magerman and Mitchell P. Marcus. Pearl: A probabilistic chart parser.
In Proceedings of the Second International Workshop on Parsing Technologies, pages
193-199, 1991.

Richard E. Neapolitan. Probabilistic Reasoning in Fxpert Systems: Theory and Algo-
rithms. John Wiley and Sons, New York, 1990.

Hermann Ney. Stochastic grammars and pattern recognition. In P. Laface and R. De-
Mori, editors, Speech Recognition and Understanding, pages 319-344. Springer, Berlin,
1992.

Stephen J. Payne and T. R. G. Green. Task-action grammars: A model of the mental
representation of task languages. Human-Computer Interaction, 2:93-133, 1986.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Mateo, CA, 1987.

David V. Pynadath and Michael P. Wellman. Accounting for context in plan recogni-
tion, with application to traffic monitoring. In Proceedings of the Eleventh Conference
on Uncertainty in Artificial Intelligence, pages 472-481, San Francisco, 1995. Morgan
Kaufmann.

David V. Pynadath and Michael P. Wellman. Generalized queries on probabilistic
context-free grammars. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 20(1):65-77, 1998.

Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applications
in speech recognition. Proceedings of the IEEE, 77(2):257-286, February 1989.

Yasubumi Sakakibara, Michael Brown, Rebecca C. Underwood, I. Saira Mian, and
David Haussler. Stochastic context-free grammars for modeling RNA. In Proceedings

124

[41]

[42]

[43]

[44]

[45]

of the 27th Hawaii International Conference on System Sciences, pages 284-293, Los
Alamitos, Calif., 1995. IEEE Computer Society Press.

Milind Tambe. Recursive agent and agent-group tracking in a real-time, dynamic
environment. In Proceedings of the First International Conference on Multi-Agent
Systems, pages 368-375, 1995.

Milind Tambe and Paul S. Rosenbloom. Event tracking in a dynamic multi-agent
environment. Computational Intelligence, 12(3):499-521, 1996.

Marc Vilain. Getting serious about parsing plans: A grammatical analysis of plan
recognition. In Proceedings of the Eighth National Conference on Artificial Intelligence,
pages 190-197, Boston, 1990. AAAT Press.

Michael P. Wellman. The STRIPS assumption for planning under uncertainty. In Pro-
ceedings of the Eighth National Conference on Artificial Intelligence, pages 198-203,
Boston, 1990. AAAT Press.

C. S. Wetherell. Probabilistic languages: A review and some open questions. Computing
Surveys, 12(4):361-379, 1980.

125

APPENDICES

126

APPENDIX A

PSDG Representation of Traffic Domain

A.1 Nonterminal Symbols

Drive start symbol, the driver’s top-level plan

Pass passing maneuver

StartLeft initiates left lane change when conditions allow

StartRight initiates right lane change when conditions allow

Left moves car one lane to the left

Right moves car one lane to the right

StartLeft Acc initiates left lane change with acceleration when conditions allow
StartRight Acc initiates right lane change with acceleration when conditions allow
Left Acc moves car one lane to the left and increases speed

Right Acc moves car one lane to the right and increases speed

2Left moves car two lanes to the left

2Right moves car two lanes to the right

Stay keeps car in current lane

ChooseAcc high-level plan for determining change of speed

127

A.2 Terminal Symbols

MoveL. moves car to the left
MoveR moves car to the right
NoMove car does not move laterally
Accelerate car increases speed
Decelerate car decreases speed
NoAccelerate car maintains current speed
MoveL. moves car to the left
MoveR moves car to the right
NoMove car does not move laterally
SignalL, signals to the left

SignalR signals to the right
SignalOff no signal

Exit car leaves highway

A.3 State Variables

Xpos lateral position of observed car, in {0, 1,...,19} units of feet, right lane corresponds

to Xpos of 0-6, middle lane 7-12, left lane 13-19. Observed.

Ypos position of observed car along highway, in {0.00,0.01,0.02,...,19.98,19.99,20.00}

units of miles. Observed.

Speed speed of observed car (not counting lateral movement), in {40,45,...,90,95} units

of mph. Observed.
Signal state of observed car’s turn indicator, in {off, left, right}. Observed.

FL-car speed of car in left lane to the front of observed car, with same domain as Speed.

Observed.

128

FM-car speed of car in middle lane to the front of observed car, with same domain as

Speed. Observed.

FR-car speed of car in right lane to the front of observed car, with same domain as Speed.

Observed.

ML-car speed of car in left lane and even with observed car, with same domain as Speed.

Observed.

MM-car speed of car in middle lane and even with observed car, with same domain as

Speed. Observed.

MR-car speed of car in right lane and even with observed car, with same domain as Speed.

Observed.

BL-car speed of car in left lane and behind observed car, with same domain as Speed.

Observed.

BM-car speed of car in middle lane and behind observed car, with same domain as Speed.

Observed.

BR-car speed of car in right lane and behind observed car, with same domain as Speed.

Observed.
Exit intended exit of observed car, in {4.00,8.00,...,20.00}. Unobserved.
DesiredSpeed preferred driving speed of observed car, in {50, 55,...,95}. Unobserved.

Type cautiousness of observed driver, in {normal, cautious, aggressive}. Unobserved.

A.4 Productions

The production probability functions for the expansions of a given nonterminal symbol
use a similarly structured decision procedure, so we list only a single probability function
covering the productions for a nonterminal symbol, but with an additional argument prod
to specify which production is currently under consideration. The accelerating versions of
the lane change symbols use the same production probability functions as the symbols with

unspecified accelerations, although with corresponding changes to the prod argument.
1. Drive — Stay Drive (pg)

129

. Drive — StartLeft Drive (pg)

. Drive — StartRight Drive (pg)
. Drive — 2Left Drive (pg)

. Drive — 2Right Drive (pg)

. Drive — Pass Drive (pq)

. Drive — Exit (pg)

if (Xpos < 7) /* Right lane */
lane = 2;

else if (Xpos < 13) /* Middle lane */

lane = 1;
else /* Left lane */
lane = 0;

if (Ypos >= exit) /* If at exit, then exit right now */
if (prod == 7) /* Exit */
return(1.0);
else
return(0.0);
else if (prod == 6) /* Exit under no other circumstance */
return(0.0);
else if (Ypos > Exit-0.5) /* Within exiting area of desired exit */
switch (prod) {
case 0: /* Stay */
if (lane == 2)
return(1.0);
else
return(0.0);
case 2: /* Right */
if (lane == 1)
return(1.0);
else

return(0.0);

130

case 4: /* 2-Right */
if (lane == 0)
return(1.0);
else
return(0.0);
default:
return(0.0);
}
else if ((F(lane)-car is null) ||
(F(lane)-car >= DesiredSpeed)) /* Front is unobstructed */
switch (prod) {
case 0: /* Stay */
return(0.9);
case 1: /* Left */
if (lane !'= 0)
return(0.05);
else
return(0.0);
case 2: /* Right */
if (lane != 2)
return(0.05);
else
return(0.0);
case 3: /* 2-Left */
if (lane == 2)
return(0.05);
else
return(0.0);
case 4: /* 2-Right */
if (lane == 0)
return(0.05);
else

return(0.0);

131

default:
return(0.0);
}
else {

/* Compute average traveling speed in each lane */

for (X=L,M,R) {
k = speeds[X] = 0;
for (Y=B,M,F)
if (YX-car is not nul) {

k++;

speeds[X] += cars[Y][X];
if (k == 0)
speeds[X] = DesiredSpeed;
else
speeds[X] /= k;
}
/* Choose target lane with most desirable traveling speed */
TargetLane = lane;
for (X=R,M,L) /* Favoring lanes toward the right */
if (abs(speeds[X]-DesiredSpeed) <
abs(speeds[TargetLane] -DesiredSpeed))
TargetLane = X;
switch (prod) {
case 0: /* Stay */
return(0.0);
case 1: /* Left */
if (TargetLane == lane - 1)
return(1.0);
else
return(0.0);

case 2: /* Right */

132

10.

11.

if (TargetLane == lane + 1)
return(1.0);
else
return(0.0);
case 3: /* 2-Left */
if (TargetLane == lane - 2)
return(1.0);
else
return(0.0);
case 4: /* 2-Right */
if (TargetLane == lane + 2)
return(1.0);
else
return(0.0);
case 5: /* Pass */
if (TargetLane == lane)
return(1.0);
else
return(0.0);
}

Pass — Stay (pp)

Pass — Stay Pass (p,)

Pass — LeftAcc RightAcc (pp)
Pass — RightAcc LeftAcc (pp)

if (Xpos < 7) /* Right lane */
lane = 2;

else if (Xpos < 13) /* Middle lane */

lane = 1;
else /* Left lane */
lane = 0;

133

if (Ypos > Exit-0.5)
return((prod==8)71.0:0.0);

else if ((F(lane)-car is null) ||
(F(lane)-car >= DesiredSpeed)) /* Front is unobstructed */
return((prod==8)71.0:0.0);

else if (prod == 8)

return(0.0);

else if ((lane == 0) && (prod == 10))

return(0.0);

else if ((lane == 2) && (prod == 11))
return(0.0);
else {
LeftFree = (((B(left of lane)-car is null) ||
((Type !'= cautious) && (B(left of lane)-car < Speed))) &&
(M(left of lane)-car is not null) &&
(F(left of lane)-car is null) ||
((Type == normal) && (B(left of lane)-car > Speed)) ||
(Type == aggressive)));
RightFree = (((B(right of lane)-car is null) ||
((Type != cautious) && (B(right of lane)-car < Speed))) &&
(M(right of lane)-car is not null) &&
((F(right of lane)-car is null) ||
((Type == normal) && (B(right of lane)-car > Speed)) ||
(Type == aggressive)));
if (LeftFree) {
if (RightFree)
switch (prod) {
case 9: /*x Stay */
return(0.01);
case 10: /* Pass on left */
switch(Type) {
case normal:

return(0.95);

134

case cautious:
return(0.98);

case aggressive:
return(0.9);

}

case 11: /* Pass on right */

switch(Type) {

case normal:
return(0.04);

case cautious:
return(0.01);

case aggressive:

return(0.09);

else
switch (prod) {
case 9: /*x Stay */
return(0.005);
case 10: /* Pass on left */
switch(Type) {
case normal:
return(0.993);
case cautious:
return(0.994) ;
case aggressive:
return(0.99);
}
case 11: /* Pass on right */
switch(Type) {
case normal:
return(0.002) ;

case cautious:

135

return(0.001);
case aggressive:

return(0.005) ;

}
else if (RightFree)
switch (prod) {
case 9: /* Stay */
switch(Type) {
case normal:
return(0.2);
case cautious:
return(0.5);
case aggressive:

return(0.1);

case 10: /* Pass on left */
return(0.01);
case 11: /* Pass on right */
switch(Type) {
case normal:
return(0.79);
case cautious:
return(0.49);
case aggressive:

return(0.89);

}

else
switch (prod) {
case 9: /* Stay */

switch(Type) {

136

12.

13.

14.

15.

case normal:
return(0.99);

case cautious:
return(0.999);

case aggressive:
return(0.9);

}

return(0.005) ;

case 10: /* Pass on left */

switch(Type) {

case normal:
return(0.009);

case cautious:
return(0.0009) ;

case aggressive:

return(0.03);

case 11: /* Pass on right */
switch(Type) {
case normal:
return(0.001);
case cautious:
return(0.0001);
case aggressive:

return(0.07);

StartLeft — Stay (pg)
StartLeft — Stay StartlLeft (py)
StartLeft — Movel ChooseAcc Signall Left (pg;)

StartLeft — Movel ChooseAcc Signal Off Left (pg;)

137

16. StartLeft — Movel ChooseAcc SignalR Left (py;)

if (< 7) /* Right lane */
lane = 2;

else if (Xpos < 13) /* Middle lane */

lane = 1;
else /* Left lane */
lane = 0;

if (Ypos > Exit-0.5)
return((prod==12)71.0:0.0);
else if (prod == 12)
return(0.0) ;
else
switch (Type) {
case normal:
if ((M(left of lane)-car is null) &&
((B(left of lane)-car is null) ||
(B(left of lane)-car < Speed)))
switch (prod) {
case 13: return(0.1);
case 14: return(0.85);
case 15: return(0.049);
case 16: return(0.001);
}
else
switch (prod) {
case 13: return(0.9);
case 14: return(0.095);
case 15: return(0.0049);
case 16: return(0.0001);
}
case cautious:
if ((M(left of lane)-car is null) &&
(B(left of lane)-car is null))

138

switch (prod) {

case 13: return(O.
case 14: return(O.
case 15: return(O.

case 16: return(O.

}

else

switch (prod) {

case 13: return(O.
case 14: return(O.
case 15: return(O.
case 16: return(O.
}

1);

85) ;
049) ;
001);

9);

095) ;
0049) ;
0001) ;

case aggressive:

if ((M(left of lane)-car is null) &&

((B(left of lane)-car is null) ||

(B(left of lane)-car < Speed)))

switch (prod) {

case 13: return(O.
case 14: return(O.
case 15: return(O.
case 16: return(O.
}

else

switch (prod) {

case 13:
case 14:
case 15:

case 16:

}

return(O0.
return(O.
return(0.

return(O0.

1);
85) ;
049) ;
001);

9);

095) ;
0049) ;
0001) ;

17. StartRight — Stay (ps;)

139

18. StartRight — Stay StartRight (ps;.)

19. StartRight — MoveR ChooseAcc SignalL Right (ps;)
20. StartRight — MoveR ChooseAcc Signal Off Right (ps;,)
21. StartRight — MoveR ChooseAcc SignalR Right (ps)

if (< 7) /* Right lane */
lane = 2;

else if (Xpos < 13) /* Middle lane */

lane = 1;
else /* Left lane */
lane = 0;

if (Ypos > Exit-0.5)
return((prod==17)71.0:0.0);
else if (prod == 17)
return(0.0) ;
else
switch (Type) {
case normal:
if ((M(right of lane)-car is null) &&
((B(right of lane)-car is null) ||
(B(right of lane)-car < Speed)))
switch (prod) {
case 18: return(0.1);
case 19: return(0.85);
case 20: return(0.049);
case 21: return(0.001);
}
else
switch (prod) {
case 18: return(0.9);
case 19: return(0.095);
case 20: return(0.0049);
case 21: return(0.0001);

140

case cautious:
if ((M(right of lane)-car is null) &&
(B(right of lane)-car is null))
switch (prod) {

case 18: return(0.1);
case 19: return(0.85);
case 20: return(0.049);
case 21: return(0.001);
}

else

switch (prod) {

case 18: return(0.9);
case 19: return(0.095);
case 20: return(0.0049);
case 21: return(0.0001);
}

case aggressive:
if ((M(right of lane)-car is null) &&
((B(right of lane)-car is null) ||
(B(right of lane)-car < Speed)))
switch (prod) {

case 18: return(0.1);
case 19: return(0.85);
case 20: return(0.049);
case 21: return(0.001);
}

else

switch (prod) {

case 18: return(0.9);
case 19: return(0.095);
case 20: return(0.0049);
case 21: return(0.0001);

141

22. Left — Stay (p;)

23. Left — MoveL ChooseAcc SignalL Left (p;)
24. Left — Movel ChooseAcc SignalOff Left (p;)
25. Left — MovelL ChooseAcc SignalR Left (p;)

if (Xpos < 7) /* Right lane */
lane = 2;

else if (Xpos < 13) /* Middle lane */

lane = 1;
else /* Left lane */
lane = 0;

if ((Xpos == 16) || (Xpos == 10) || (Xpos == 3))

if (prod == 22)
return(1.0);
else
return(0.0);

else if (Signal == left)
switch (prod) {
case 22: return(0.0);
case 23: return(0.999);
case 24: return(0.0009);
case 25: return(0.0001);
}

else if (Signal == off)
switch (prod) {
case 22: return(0.0);
case 23: return(0.0099);
case 24: return(0.99);

case 25: return(0.0001);

142

}

else
switch (prod) {
case 22: return(0.0);
case 23: return(0.01);
case 24: return(0.89);

case 25: return(0.1);

}

. Right — Stay (p;)

. Right = MoveR ChooseAcc SignalL Right (p;)

. Right — MoveR ChooseAcc SignalOff Right (p;)
. Right = MoveR ChooseAcc SignalR Right (p;)

if (Xpos < 7) /* Right lane */
lane = 2;

else if (Xpos < 13) /* Middle lane */

lane = 1;
else /* Left lane */
lane = 0;

if ((Xpos == 16) || (Xpos == 10) || (Xpos == 3))

if (prod == 22)
return(1.0);
else
return(0.0);

else if (Signal == right)
switch (prod) {
case 22: return(0.0);
case 23: return(0.999);
case 24: return(0.0009);
case 25: return(0.0001);
}

else if (Signal == off)

143

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

switch (prod) {

case 22: return(0.0);
case 23: return(0.0099);
case 24: return(0.99);
case 25: return(0.0001);
}

else
switch (prod) {
case 22: return(0.0);
case 23: return(0.01);
case 24: return(0.89);

case 25: return(0.1);

}

StartLeftAcc — Stay (ps)

StartLeftAcc — Stay StartLeftAcc (py;)

StartLeftAcc — Movel Accelerate Signall LeftAcc (py)
StartLeftAcc — Movel Accelerate Signal Off LeftAcc (py)
StartLeftAcc — Movel Accelerate SignalR LeftAcc (pg;)
StartRightAcc — Stay (psr)

StartRightAcc — Stay StartRightAcc (psr)

StartRightAcc — MoveR Accelerate Signall RightAcc (ps)
StartRightAcc — MoveR Accelerate SignalOff RightAcc (ps;)
StartRightAcc — MoveR Accelerate SignalR RightAcc (ps)
LeftAcc — Stay (p;)

LeftAcc — Movel Accelerate Signall LeftAcc (p;)

LeftAcc — Movel Accelerate SignalOff LeftAcc (p;)
LeftAcc — Movel Accelerate SignalR LeftAcc (p;)

144

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

RightAcc — Stay (p;)

RightAcc — MoveR Accelerate SignalL RightAcc (p;)
RightAcc — MoveR Accelerate SignalOff RightAcc (p;)
RightAcc — MoveR Accelerate SignalR RightAcc (p,)
2Left — StartLeft StartLeft (1.0)

2Right — StartRight StartRight (1.0)

Stay — NoMove ChooseAcc Signall (ps)

Stay — NoMove ChooseAcc SignalOff (p;)

Stay — NoMove ChooseAcc SignalR (ps)

ChooseAcc — Accelerate (p,)

ChooseAcc — Decelerate (pg)

ChooseAcc — NoAccelerate (pg)

if (Xpos < 7) /* Right lane */
lane = 2;

else if (Xpos < 13) /* Middle lane */

lane = 1;
else /* Left lane */
lane = 0;

if (F(lane)-car < Speed)
return((prod==51)71.0:0.0);
else if (Speed < DesiredSpeed)
return((prod==49)71.0:0.0);
else if (Speed > DesiredSpeed)
if (B(lane)-car > Speed)
return((prod==50)71.0:0.0);
else
return((prod==51)71.0:0.0);
else

return((prod==50)71.0:0.0);

145

A.5 Prior Probability Distribution

Xpos The driver starts in the middle of one of the three lanes:
z Pr(Xpos(Q®) = z)

3 1/3
10 1/3
16 1/3

otherwise 0

Ypos The driver starts at the beginning of the highway, so Pr(Ypos(Q®) = 0) = 1.
Speed The driver’s speed is uniformly distributed, so Pr(Speed(Q°) = v) = 1/12
XX-Car The values for the other cars are uniformly distributed.

Exit The driver’s intended exit is uniformly distributed, so Pr(Exit(Q°) = y) = 1/5.

DesiredSpeed The driver’s preferred traveling speed is distributed as follows:

v Pr(DesiredSpeed(Q°) = v)
50 0.02
55 0.03
60 0.05
65 0.15
70 0.23
75 0.27
80 0.15
86 0.05
90 0.03
95 0.02

Type The driver’s type is distributed as follows:
t Pr(Type(Q°) =1)
normal 0.75
cautious 0.10K
aggressive 0.15

A.6 World Dynamics

Xpos If the driver performs a Movel, then its lateral position evolves as follows:
r1 Pr(Xpos(Q') = z1|Xpos(Q®) = z¢, B! = Movel)
zg+3 0.1
zo+1 0.6

If the driver performs a MoveR, then its lateral position evolves as follows:

146

z1 Pr(Xpos(Q') = z1|Xpos(Q’) = zg, X! = MoveR)

rg — 3 0.1
zo—2 0.3
xrg — 1 0.6

If the driver performs neither a Movel nor a MoveR, then its lateral position does not

change, so Pr(Xpos(Q') = zq|Xpos(Q®) = zg, X! & {Movel, MoveR}) = 1.

Yprob The driver’s new position along the highway is independent of low-level actions,
but we condition on the acceleration maneuver, so that we update the position only
once for the three components. In the following expression, we define AccManeuver=

{Accelerate, Decelerate, NoAccelerate }:
Pr(Ypos(Q') = yo+2+v0/3600|Ypos(Q®) = yo, Speed(Q°) = vy, B! € AccManeuver) = 1
For the other two components,

Pr(Ypos(Q') = yo|Ypos(Q®) = yo, &' & AccManeuver) = 1

Speed The driver’s speed changes as follows:
! V1 Pr(Speed(Q') = v1|Speed(Q°) = vy, &})
Accelerate vg + 15 0.1
Accelerate vo+10=95 0.33
Accelerate v +10< 95 0.3
Accelerate v+5=95 1.0
Accelerate vo+5=90 0.67
Accelerate v99+5<90 0.6

Accelerate vg =95 1.0
Accelerate vo # 95 0.0
Accelerate < vy 0.0
Decelerate vy — 15 0.1

Decelerate vo—10=40 0.33
Decelerate vg—10>40 0.3
Decelerate v—5H=40 1.0
Decelerate vo—b=45 0.67
Decelerate v9—b>45 0.6

Decelerate vg = 40 1.0
Decelerate vy # 40 0.0
Decelerate > g 0.0
NoAccelerate () 1.0

XX-Car The variables for the other cars have a uniform distribution, independent of any

other variables.

Exit,DesiredSpeed,Type These preferences are time-invariant.

147

APPENDIX B

PSDG Representation of Air Combat

B.1 Nonterminal Symbols

ExecuteMission start symbol, pilot’s top-level plan
FlyToTarget pilot simply flies to chosen target

Intercept pilot engages enemy plane

BugOut

Wait delay plan, used while waiting for certain conditions to hold
EmployWeapons pilot fires missile at enemy plane

Evade pilot evades actions by enemy plane

Fpole turning maneuver useful in guiding missile
SelMissile select missile to fire, simply a delay in this model
GetMissileLAR. plan reach launch acceptability region
FpoleLeft guidance maneuver with direction specified
FpoleRight guidance maneuver with direction specified
StartFpoleLeft initiates guidance maneuver
StartFpoleRight initiates guidance maneuver

LaunchMissile plan for launching missile at enemy plane

148

GetSteeringCircle plan to achieve steering circle in preparation for firing missile
LockMissile plan to lock enemy target

BeamLeft evasive maneuver to left

BeamRight evasive maneuver to right

StartBeamLeft initiates evasive maneuver

StartBeamRight initiates evasive maneuver

B.2 Terminal Symbols

LeftTurn turns plane to the left

RightTurn turns plane to the right
MaintainHeading keeps plane at current heading

FireMissile fires missile at enemy plane

B.3 State Variables

EnemyMissilep Boolean indicating whether the enemy plane has a fired a missile at

observed plane. Observed.
Bogeyp Boolean indicating whether there is an enemy plane or not. Observed.
MyHeading Observed pilot’s heading, in {0, 15,30, ...,345}, in degrees. Observed.

EnemyXPos X coordinate of enemy’s position, relative to observed pilot, in {-10,-9,...,0,

..., 10}. Observed

EnemyYPos Y coordinate of enemy’s position, relative to observed pilot, in {-10,-9,...,0,

..., 10}. Observed.
EnemyHeading Enemy pilot’s heading, in {0, 15,30, ...,345}, in degrees. Observed.

EnemyTurning indicates whether enemy pilot is currently changing its heading, in {none,

left, right}. Observed.

149

Additional variables InLARp (Boolean), EnemyTheta (in degrees), and EnemyBearing ({straight,
left, right}, are useful in simplifying the descriptions of productions and world dynamics.

All three are completely deterministic given the values of the state variables listed.

B.4 Productions

The production probability functions specify only nonzero values.

1. ExecuteMission — FlyToTarget ExecuteMission (p;(g) = 1.0 if Bogeyp(gq) = false
2. ExecuteMission — BugOut ExecuteMission (p2(q) = 0.1 if Bogeyp(gq) = true)

3. ExecuteMission — Intercept ExecuteMission (p3(g) = 0.9 if Bogeyp(g) = true)

4. FlyToTarget — MaintainHeading (p4(gq) = 1.0)

5. BugOut — LeftTurn BugOut (p5(q) = 1.0 if Bogeyp = true, EnemyBearing = right)
6. BugOut — RightTurn BugOut (ps(q) = 1.0 if Bogeyp = true, EnemyBearing = left)

7. BugOut — MaintainHeading BugOut (p7(¢q) = 1.0 if Bogeyp = true, EnemyBearing =
straight)

8. BugOut — MaintainHeading (ps(q) = 1.0 if Bogeyp = false)
9. Intercept — Evade Intercept (pg(g) = 1.0 if EnemyMissilep(q) = true, Bogeyp = true)

10. Intercept — EmployWeapons Intercept (p19(¢) = 1.0 if EnemyMissilep(q)=false, Bo-

geyp=true)
11. Intercept — MaintainHeading (p11(q) = 1.0 if Bogeyp = false)
12. EmployWeapons — SelMissile GetMissileLAR Launch-missile Fpole (p12(g) = 1.0)
13. SelMissile — MaintainHeading (p13(q) = 1.0)

14. GetMissileLAR — RightTurn GetMissileLAR (p14(¢) = 1.0 if InLARp=false, EnemyBear-
ing=right, EnemyMissilep(q)=false)

15. GetMissileLAR — LeftTurn GetMissileLAR (p15(¢) = 1.0 if InLARp=false, EnemyBear-
ing=left, EnemyMissilep(q)=false)

150

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

GetMissileLAR — MaintainHeading GetMissileLAR (p16(q) = 1.0 if InLARp=false, Ene-
myBearing=straight, EnemyMissilep(q)= false)

GetMissileLAR — MaintainHeading (p17(¢) = 1.0 if InLARp=true, EnemyMissilep(q)=

false)
GetMissileLAR — MaintainHeading (p17(g) = 1.0 if EnemyMissilep(q) = true)

Launch-missile — GetSteeringCircle LockMissile FireMissile (p15(g) = 1.0 if EnemyMis-
silep(q)=false)

Launch-missile — MaintainHeading (p19(q) = 1.0 if EnemyMissilep(q)=true)

GetSteeringCircle — MaintainHeading (p2o(q) = 1.0 if EnemyBearing=straight, Ene-
myMissilep(q)=false)

GetSteeringCircle — RightTurn GetSteeringCircle (p21(g) = 1.0 if EnemyBearing=right,
EnemyMissilep(q)=false)

GetSteeringCircle — LeftTurn GetSteeringCircle (p22(q) = 1.0 if EnemyBearing=left, En-
emyMissilep(q)=false)

GetSteeringCircle — MaintainHeading (p23(q) = 1.0 if EnemyMissilep(q)=true)
LockMissile — Wait Wait (p24(q) = 1.0)

Wait — MaintainHeading (p25(q) = 1.0)

Fpole — StartFpoleLeft FpoleLeft (p2g(g) = 1.0 if EnemyTurning = right)
Fpole — StartFpoleRight FpoleRight (p27(g) = 1.0 if EnemyTurning = left)
Fpole — StartFpoleRight FpoleRight (p2s(q) = 1.0 if EnemyBearing = left)
Fpole — StartFpoleLeft FpoleLeft (p29(g) = 1.0 if EnemyBearingright)

Fpole — StartFpoleRight FpoleRight (p3o(g) = 0.5 if EnemyBearingstraight)
Fpole — StartFpoleLeft FpoleLeft (p3; = 0.5 if EnemyBearingstraight)
StartFpoleLeft — LeftTurn (ps2(g) = 1.0)

StartFpoleRight — RightTurn (p33(g) = 1.0)

151

35. FpoleRight — RightTurn RightTurn RightTurn (p34(q) = 1.0)

36. FpoleLeft — LeftTurn LeftTurn LeftTurn (pss(¢) = 1.0)

37. Evade — StartBeamleft BeamLeft (p3s(g) = 1.0 if EnemyBearing = right)
38. Evade — StartBeamRight BeamRight (ps7(¢) = 1.0 if EnemyBearing = left)
39. Evade — StartBeamleft BeamLeft (p3s(q) = 0.5 if EnemyBearing = straight)

40. Evade — StartBeamRight BeamRight (p39(q) = 0.5 if EnemyBearing = straight)

B.5 Prior Probability Distribution

Bogeyp Pr(Bogeyp(Q°)) = 0.6

B Pr(EnemyMissilep(q) = true|Q° = g, Bogeyp(q) = B)
EnemyMissilep true 0.3
false 0.0

MyHeading uniformly distributed

EnemyXPos if Bogeyp(q) =false, then the value is irrelevant, since there is no enemy

plane. Otherwise,

z Pr(EnemyXPos(Q°) = z|Q°, Bogeyp(Q°))
10 9/70
9 9/70
8 7/70
7 5/70
6 3/70
5 1/70
4 1/70
30
-2
-1

jan)
[en R e an B e B an)

1/70
1/70
3/70
5/70
7/70
9/70
9/70

S © 00O Ok WwN -

—_

152

EnemyYPos same distribution as EnemyXPos

EnemyHeading if Bogeyp(Q°) is true, then uniformly distributed; otherwise, irrelevant.

T Pr(EnemyTurning(Q°) = x)

EnemyTurning strlz;%ht 82
right 0.2

B.6 World Dynamics

Bogeyp We model the enemy planes with a fixed probability distribution.
Bogeyp(Q°) Pr(Bogeyp(Q1)|Q°)
true 1.0
false 0.6

EnemyMissilep We model the enemy plane’s missile firing with a fixed probability dis-

tribution.
EnemyMissilep(Q°) Bogeyp(Q') Pr(EnemyMissilep(Q')|Q°, Bogeyp(Q*))
. false 0
true true 1
false true 0.3

MyHeading The low-level actions have a deterministic effect on the observed pilot’s head-
ing. If the pilot performs a RightTurn, its heading at time ¢ 4+ 1 decreases by one step
from the value at time ¢. Likewise, If the pilot performs a LeftTurn, its heading at
time ¢ + 1 increases by one step from the value at time ¢. For all other actions, the

heading remains unchanged.
EnemyTurning same as prior distribution
EnemyXPos same as prior distribution
EnemyYPos same as prior distribution

EnemyHeading same as prior distribution

153

